Bayesian–Kalman Fusion Framework for Thermal Fault Diagnosis of Battery Energy Storage Systems
Abstract
1. Introduction
- (1)
- A novel Bayesian–Kalman fusion framework integrating PLS-based spatiotemporal feature extraction, dual-stage weight optimization, and time window cumulative contribution analysis.
- (2)
- A dual-stage optimization strategy combining Bayesian global exploration with Kalman real-time adaptation for intelligent weight determination.
- (3)
- A hierarchical localization method employing time window cumulative analysis for localization.
- (4)
- Experimental validation on a Li-ion battery pack demonstrating the superior performance of the proposed method across diverse operating conditions, including UDDS dynamic profiles.
2. Problem Description
2.1. System Configuration
2.2. Problem Formulation
3. Methodology
3.1. Partial Least Squares-Based Spatiotemporal Feature Extraction
3.2. Module Similarity Analysis for Voltage Monitoring
3.3. Bayesian–Kalman Dual-Stage Weight Optimization
3.4. Time Window-Based Fault Localization
3.4.1. Module Identification via Correlation Analysis
3.4.2. Time Window-Based Cumulative Contribution Analysis
4. Experimental Verification
4.1. Experimental Dataset and Setup
Algorithm Parameter Configuration
4.2. Fault Detection Results
4.3. Fault Localization Results
5. Results Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BESS | Battery Energy Storage System |
| PLS | Partial Least Squares |
| NIPALS | Nonlinear Iterative Partial Least Squares |
| UDDS | Urban Dynamometer Driving Schedule |
| ADR | Anomaly Detection Rate |
| FAR | False Alarm Rate |
| UCL | Upper Control Limit |
| SOC | State of Charge |
References
- Cao, K.L.A.; Ogi, T. Advanced carbon sphere-based hybrid materials produced by innovative aerosol process for high-efficiency rechargeable batteries. Energy Storage Mater. 2025, 74, 103901. [Google Scholar] [CrossRef]
- Nyamathulla, S.; Dhanamjayulu, C. A review of battery energy storage systems and advanced battery management system for different applications: Challenges and recommendations. J. Energy Storage 2024, 86, 111179. [Google Scholar] [CrossRef]
- Lawder, M.T.; Suthar, B.; Northrop, P.W.C.; De, S.; Hoff, C.M.; Leitermann, O.; Crow, M.L.; Santhanagopalan, S.; Subramanian, V.R. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications. Proc. IEEE 2014, 102, 1014–1030. [Google Scholar] [CrossRef]
- Eskandari, M.; Rajabi, A.; Savkin, A.V.; Moradi, M.H.; Dong, Z.Y. Battery energy storage systems (BESSs) and the economy-dynamics of microgrids: Review, analysis, and classification for standardization of BESSs applications. J. Energy Storage 2022, 55, 105627. [Google Scholar] [CrossRef]
- Wang, L.; Bu, Y.; Wu, Y. Multi-Scale Risk-Informed Comprehensive Assessment Methodology for Lithium-Ion Battery Energy Storage System. Sustainability 2024, 16, 9046. [Google Scholar] [CrossRef]
- Feng, Y.; Li, H.X. Detection and Spatial Identification of Fault for Parabolic Distributed Parameter Systems. IEEE Trans. Ind. Electron. 2019, 66, 7300–7309. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Wan, Q.; Zhang, X.; Wang, B.C.; Li, H.X. From Online Systems Modeling to Fault Detection for a Class of Unknown High-Dimensional Distributed Parameter Systems. IEEE Trans. Ind. Electron. 2023, 70, 5317–5325. [Google Scholar] [CrossRef]
- Qi, C.; Li, H.X.; Zhang, X.; Zhao, X.; Li, S.; Gao, F. Time/space-separation-based SVM modeling for nonlinear distributed parameter processes. Ind. Eng. Chem. Res. 2011, 50, 332–341. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Zhang, S.; Zhou, Y.; Wang, S.; Shen, W. Distributed Thermal Monitoring for Large-Format Li-Ion Battery Under Limited Sensing. IEEE Trans. Transp. Electrif. 2024, 10, 3206–3217. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.X. Incremental spatiotemporal learning for online modeling of distributed parameter systems. IEEE Trans. Syst. Man. Cybern. Syst. 2018, 49, 2612–2622. [Google Scholar] [CrossRef]
- Yu, Z.; Tian, Y.; Li, B. A simulation study of Li-ion batteries based on a modified P2D model. J. Power Sources 2024, 618, 234376. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.X.; Xie, S. Modified High-Order SVD for Spatiotemporal Modeling of Distributed Parameter Systems. IEEE Trans. Ind. Electron. 2022, 69, 4296–4304. [Google Scholar] [CrossRef]
- Wei, P.; Li, H.X. Two-Dimensional Spatial Construction for Online Modeling of Distributed Parameter Systems. IEEE Trans. Ind. Electron. 2022, 69, 10227–10235. [Google Scholar] [CrossRef]
- Stocker, R.; Mumtaz, A.; Paramjeet; Braglia, M.; Lophitis, N. Universal Li-Ion Cell Electrothermal Model. IEEE Trans. Transp. Electrif. 2021, 7, 6–15. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Du, J.; Cong, X.; Zhang, L.; Jiang, Y.; Wang, L. Fault diagnosis for lithium-ion batteries in electric vehicles based on signal decomposition and two-dimensional feature clustering. Green Energy Intell. Transp. 2022, 1, 100009. [Google Scholar] [CrossRef]
- Gupta, S.; Sahoo, A.K.; Sahoo, U.K. Wireless Sensor Network-Based Distributed Approach to Identify Spatio-Temporal Volterra Model for Industrial Distributed Parameter Systems. IEEE Trans. Ind. Inform. 2020, 16, 7671–7681. [Google Scholar] [CrossRef]
- Wei, P.; Li, H.X. A Spatio-Temporal Inference System for Abnormality Detection and Localization of Battery Systems. IEEE Trans. Ind. Inform. 2023, 19, 6275–6283. [Google Scholar] [CrossRef]
- Salehimehr, S.; Miraftabzadeh, S.M.; Brenna, M. A Novel Machine Learning-Based Approach for Fault Detection and Location in Low-Voltage DC Microgrids. Sustainability 2024, 16, 2821. [Google Scholar] [CrossRef]
- Xu, K.; Yang, H.; Zhu, C.; Jin, X.; Fan, B.; Hu, L. Deep Extreme Learning Machines Based Two-Phase Spatiotemporal Modeling for Distributed Parameter Systems. IEEE Trans. Ind. Inform. 2023, 19, 2919–2929. [Google Scholar] [CrossRef]
- Wu, D.; Guan, Q.; Fan, Z.; Deng, H.; Wu, T. AutoML With Parallel Genetic Algorithm for Fast Hyperparameters Optimization in Efficient IoT Time Series Prediction. IEEE Trans. Ind. Inform. 2023, 19, 9555–9564. [Google Scholar] [CrossRef]
- Li, F.; Min, Y.; Zhang, Y.; Zuo, H.; Bai, F.; Zhang, Y. Towards general and efficient fault diagnosis: A novel framework for multi-fault cross-domain diagnosis of lithium-ion batteries in real-world scenarios. Energy 2025, 334, 137825. [Google Scholar] [CrossRef]
- Meng, X.B.; Chen, C.L.P.; Li, H.X. Confidence-Aware Multiscale Learning for Online Modeling of Distributed Parameter Systems With Application to Curing Process. IEEE Trans. Ind. Electron. 2023, 70, 9432–9440. [Google Scholar] [CrossRef]
- Yan, Y.; Luo, W.; Wang, Z.; Xu, S.; Yang, Z.; Zhang, S.; Hao, W.; Lu, Y. Fault diagnosis of lithium-ion battery sensors based on multi-method fusion. J. Energy Storage 2024, 85, 110969. [Google Scholar] [CrossRef]
- Mienye, I.D.; Sun, Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access 2022, 10, 99129–99149. [Google Scholar] [CrossRef]
- Webb, G.; Zheng, Z. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Trans. Knowl. Data Eng. 2004, 16, 980–991. [Google Scholar] [CrossRef]
- Wang, B.C.; Ji, Z.D.; Wang, Y.; Li, H.X.; Li, Z. A Physics-Informed Composite Network for Modeling of Electrochemical Process of Large-Scale Lithium-Ion Batteries. IEEE Trans. Ind. Inform. 2025, 21, 287–296. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Ma, F.; Yang, J.; Xu, X.; Qu, C.; Zhang, J.; Shan, T.; Hou, Y.; Zhou, Y. Thermal Runaway Prognosis of Battery Systems Using the Modified Multiscale Entropy in Real-World Electric Vehicles. IEEE Trans. Transp. Electrif. 2021, 7, 2269–2278. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Xie, J.; Liu, K. Ensemble Learning-Based Correlation Coefficient Method for Robust Diagnosis of Voltage Sensor and Short-Circuit Faults in Series Battery Packs. IEEE Trans. Power Electron. 2023, 38, 9143–9156. [Google Scholar] [CrossRef]
- Liu, L.; Feng, X.; Zhang, M.; Lu, L.; Han, X.; He, X.; Ouyang, M. Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. Appl. Energy 2020, 259, 114143. [Google Scholar] [CrossRef]











| Fault No. | Current | Time of Fault Occurrence | Fault Position | |
|---|---|---|---|---|
| #1 | 2C | 10 | 1000 | [1,4] |
| #2 | 2C | 10 | 1000 | [2,1] |
| #3 | 2C | 5 | 1000 | [6, 3] |
| #4 | 1C | 10 | 1000 | [6,3] |
| #5 | UDDS | 10 | 1000 | [6,3] |
| #6 | 2C | 20 | 1000 | [6,3] |
| Component | Parameter | Symbol | Value |
|---|---|---|---|
| Measurement Noise | Voltage SNR | SNRV | 90 dB |
| Temperature SNR | SNRT | 50 dB | |
| PLS Analysis | Number of sensors | 24 | |
| Principal components | 6 | ||
| Training samples | 800 | ||
| Test samples | 1200 | ||
| Bayesian Optimization | FAR penalty | 80 | |
| ADR penalty | 60 | ||
| Delay penalty | 0.05 | ||
| Kalman Filtering | Process noise | ||
| Observation noise | |||
| Degradation coefficient | 0.8 | ||
| Reference coefficient | 0.2 | ||
| Exploration coefficient | 0.005 | ||
| Time Window Localization | Analysis window | W | 50 |
| Z-score weight | 0.3 | ||
| Deviation weight | 0.3 | ||
| Rise indicator weight | 0.2 |
| Fault No. | Optimization | ADR (%) | FAR (%) | Delay (s) | |||
|---|---|---|---|---|---|---|---|
| #1 | Original weight | 0.400 | 0.400 | 0.200 | 99.50 | 2.00 | 2 |
| Bayesian optimization | 0.516 | 0.223 | 0.261 | 99.80 | 1.80 | 2 | |
| Bayesian–Kalman Fusion | 0.492 | 0.235 | 0.273 | 99.90 | 1.80 | 1 | |
| #2 | Original weight | 0.400 | 0.400 | 0.200 | 95.14 | 0.40 | 2 |
| Bayesian optimization | 0.053 | 0.396 | 0.551 | 99.70 | 0.10 | 2 | |
| Bayesian–Kalman Fusion | 0.032 | 0.398 | 0.570 | 99.70 | 0.10 | 2 | |
| #3 | Original weight | 0.400 | 0.400 | 0.200 | 99.80 | 1.80 | 2 |
| Bayesian optimization | 0.762 | 0.188 | 0.050 | 99.80 | 1.70 | 2 | |
| Bayesian–Kalman Fusion | 0.747 | 0.189 | 0.065 | 99.90 | 1.70 | 2 | |
| #4 | Original weight | 0.400 | 0.400 | 0.200 | 99.90 | 2.10 | 2 |
| Bayesian optimization | 0.705 | 0.233 | 0.062 | 99.90 | 0.50 | 1 | |
| Bayesian–Kalman Fusion | 0.695 | 0.231 | 0.074 | 99.90 | 0.30 | 1 | |
| #5 | Original weight | 0.400 | 0.400 | 0.200 | 97.45 | 32.33 | N/A |
| Bayesian optimization | 0.113 | 0.118 | 0.787 | 96.86 | 11.67 | 44 | |
| Bayesian–Kalman Fusion | 0.125 | 0.114 | 0.759 | 96.92 | 7.22 | 27 | |
| #6 | Original weight | 0.400 | 0.400 | 0.200 | 99.60 | 1.80 | 4 |
| Bayesian optimization | 0.253 | 0.318 | 0.429 | 99.50 | 0.60 | 5 | |
| Bayesian–Kalman Fusion | 0.247 | 0.315 | 0.438 | 99.50 | 0.60 | 5 |
| Fault No. | Module Position | Cell Position | Result |
|---|---|---|---|
| #1 | 1 | 4 | Correct |
| #2 | 2 | 1 | Correct |
| #3 | 6 | 3 | Correct |
| #4 | 6 | 3 | Correct |
| #5 | 6 | 3 | Correct |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, P.; Tao, J.; Xie, C.; Yang, Y.; Zhu, W.; Huang, Y. Bayesian–Kalman Fusion Framework for Thermal Fault Diagnosis of Battery Energy Storage Systems. Sustainability 2025, 17, 10092. https://doi.org/10.3390/su172210092
Wei P, Tao J, Xie C, Yang Y, Zhu W, Huang Y. Bayesian–Kalman Fusion Framework for Thermal Fault Diagnosis of Battery Energy Storage Systems. Sustainability. 2025; 17(22):10092. https://doi.org/10.3390/su172210092
Chicago/Turabian StyleWei, Peng, Jinze Tao, Changjun Xie, Yang Yang, Wenchao Zhu, and Yunhui Huang. 2025. "Bayesian–Kalman Fusion Framework for Thermal Fault Diagnosis of Battery Energy Storage Systems" Sustainability 17, no. 22: 10092. https://doi.org/10.3390/su172210092
APA StyleWei, P., Tao, J., Xie, C., Yang, Y., Zhu, W., & Huang, Y. (2025). Bayesian–Kalman Fusion Framework for Thermal Fault Diagnosis of Battery Energy Storage Systems. Sustainability, 17(22), 10092. https://doi.org/10.3390/su172210092

