Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics
Abstract
1. Introduction
2. Materials and Methods
2.1. Island Community
2.2. Renewable Energy Potential on Isla Fuerte
2.3. VAWT Type Selection
2.4. Selecting the NACA Profile for the VAWT Model
2.5. Statistical Treatment by DOE
2.6. CFD Method
3. Results and Discussion
3.1. Sequence of Treatments in DOE
3.2. DOE Analysis Results
3.3. Analysis of the Behavior of Optimal VAWTs
3.4. Energy Analysis Reasoning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| VAWT | Vertical-axis wind turbine | 
| HAWT | Horizontal-axis wind turbine | 
| CFD | Computational fluid dynamics | 
| DOE | Design of experiments | 
| Cp | Power coefficient | 
| Cm | Moment coefficient | 
| Cl | Lift coefficient | 
| Cd | Drag coefficient | 
| AEf | Aerodynamic efficiency | 
| FFED | Fractional factorial experimental design | 
| FFD | Full factorial design | 
| H-VAWT | H-type Darrieus turbine VAWT | 
| T-VAWT | Turby VAWT | 
| SGDs | Sustainable Development Goals | 
| DANE | National Administrative Department of Statistics | 
| CNM | National Monitoring Center | 
| PSP | Photovoltaic Solar Panels | 
| DG | Diesel Generator | 
| IDEAM | Institute of Hydrology, Meteorology and Environmental Studies | 
| POWER | Prediction of Worldwide Energy Resources | 
| PSHs | Peak Sun Hours | 
| α | Angle of attack | 
| ρ | Density | 
| k | Turbulent kinetic energy | 
| ω | Turbulent dissipation rate | 
| u | Fluid velocity | 
| x, y, z | Position coordinate | 
| Gk | Generation of turbulent kinetic energy | 
| Yk | Dissipation of turbulent kinetic energy | 
| Sk | User-defined source terms k | 
| Γk | Effective diffusivity of k | 
| Gω | Generation of turbulent dissipation rate | 
| Yω | Dissipation of turbulent dissipation rate | 
| Sω | User-defined source terms ω | 
| Γω | Effective diffusivity of ω | 
| P | Linear momentum | 
| m | Torque | 
| I | Inertia moment | 
| F | Net force | 
| θ | Rotational displacement | 
| Angular velocity | |
| Angular acceleration | 
References
- Kassa, B.Y.; Baheta, A.T.; Beyene, A. Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review. ASME Open J. Eng. 2024, 3, 031001. [Google Scholar] [CrossRef]
- Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078. [Google Scholar] [CrossRef]
- Fábregas, J.; Tovar, I.; Palencia, A. Electrification as a development and sustainability approach in rural areas using renewable energy sources. Global J. Environ. Sci. Manag. 2024, 10, 2115–2126. [Google Scholar] [CrossRef]
- Fabregas, J.; Palencia, A. The significance of clean energy, education, and environmental management in fostering a sustainable future. Global J. Environ. Sci. Manag. 2025, 11, 1001–1018. [Google Scholar] [CrossRef]
- Abraham, A.M.; Anil Lal, S. Multi-Objective Optimization of an Axial Flow Turbine Design Using Surrogate Modeling and Genetic Algorithm. ASME Open J. Eng. 2022, 1, 011022. [Google Scholar] [CrossRef]
- Rhenals, M.; Robledo, A.; Fábregas, J.; Carpintero, J. Analysis of Fluid Pressure Drop through a Globe Valve Using Computational Fluid Dynamics and Statistical Techniques. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 115, 70–82. [Google Scholar] [CrossRef]
- Sakib, M.S.; Griffith, D.T. Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines. Wind Energy Sci. 2022, 7, 677–696. [Google Scholar] [CrossRef]
- Wang, W.Y.; Ferng, Y.M. Numerical model for noise reduction of small vertical-axis wind turbines. Wind Energy Sci. 2024, 9, 651–664. [Google Scholar] [CrossRef]
- Wiśniewski, J.; Rogowski, K.; Gumowski, K.; Szumbarski, J. Wind tunnel comparison of four VAWT configurations to test load-limiting concept and CFD validation. Wind Energy Sci. 2021, 6, 287–294. [Google Scholar] [CrossRef]
- Zamre, P.; Lutz, T. Computational-fluid-dynamics analysis of a Darrieus vertical-axis wind turbine installation on the rooftop of buildings under turbulent-inflow conditions. Wind Energy Sci. 2022, 7, 1661–1677. [Google Scholar] [CrossRef]
- Day, H.; Ingham, D.; Ma, L.; Pourkashanian, M. Adjoint Based Optimisation for Efficient VAWT Blade Aerodynamics Using CFD. J. Wind. Eng. Ind. Aerodyn. 2021, 208, 104431. [Google Scholar] [CrossRef]
- Attie, C.; ElCheikh, A.; Nader, J.; Elkhoury, M. Performance Enhancement of a Vertical Axis Wind Turbine Using a Slotted Deflective Flap at the Trailing Edge. Energy Convers. Manag. 2022, 273, 116388. [Google Scholar] [CrossRef]
- Shen, Z.; Gong, S.; Zu, H.; Guo, W. Multi-Objective Optimization Study on the Performance of Double Darrieus Hybrid Vertical Axis Wind Turbine Based on DOE-RSM and MOPSO-MODM. Energy 2024, 299, 131406. [Google Scholar] [CrossRef]
- Rasekh, S.; Aliabadi, S.K.; Hansen, M.O.L. Toward Improving the Performance of a Variable Pitch Vertical Axis Wind Turbine (VP-VAWT), Part 1: Sensitivity Analysis Using Taguchi-CFD Approach. Ocean Eng. 2023, 279, 114478. [Google Scholar] [CrossRef]
- Benharrats, F.; Mahi, H. Clear Sky Global Surface Solar Irradiance Estimation from Bird & Hulstrom Radiometric Model/MODIS Atmospheric Data Combination. J. Renew. Energ. 2023, 26, 31–39. [Google Scholar] [CrossRef]
- Younis, A.; Elshiekh, H.; Osama, D.; Shaikh-Eldeen, G.; Elamir, A.; Yassin, Y.; Omer, A.; Biraima, E. Wind Speed Forecast for Sudan Using the Two-Parameter Weibull Distribution: The Case of Khartoum City. Wind 2023, 3, 213–231. [Google Scholar] [CrossRef]
- Wang, X.; Ali, A.; Ke, H.; Huang, B.; Yang, J. Numerical Simulation of Aerodynamic Performance Degradation of Naca0012 Airfoils Under Icing Conditions for Vertical-Axis Wind Turbines. Case Stud. Therm. Eng. 2025, 72, 106433. [Google Scholar] [CrossRef]
- Beigmoradi, S.; Vahdati, M. Multi-Objective Optimization of a Hatchback Rear End Utilizing Fractional Factorial Design Algorithm. Eng. Comput. 2021, 37, 139–153. [Google Scholar] [CrossRef]
- Chan, W.; D’Ambrogio, A.; Zacharewicz, G.; Mustafee, N.; Wainer, G.; Page, E. A Tutorial on Design of Experiments for Simulation Modeling. IEEE Proc. Winter Simul. Conf. 2017, 1, 550–564. [Google Scholar] [CrossRef]
- Foust, E.C. The Behavior of Vertical Axis Water Turbine with Flexible Blades: Self-Start, Ventilation, and Cavitation. ASME Open J. Eng. 2023, 2, 021041. [Google Scholar] [CrossRef]
- Lisowski, F.; Augustyn, M. Analytical and Computational Fluid Dynamics Methods for Determining the Torque and Power of a Vertical-Axis Wind Turbine with a Carousel Rotor. Appl. Sci. 2025, 15, 208. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conv. Manag. 2018, 156, 301–316. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Conv. Manag. 2018, 168, 45–77. [Google Scholar] [CrossRef]
- Ji, B.; Zhong, K.; Xiong, Q.; Qiu, P.; Zhang, X.; Wang, L. CFD Simulations of Aerodynamic Characteristics for the Three-Blade NREL Phase VI Wind Turbine Model. Energy 2022, 249, 123670. [Google Scholar] [CrossRef]
- Hornshøj-Møller, S.D.; Nielsen, P.D.; Forooghi, P.; Abkar, M. Quantifying Structural Uncertainties in Reynolds-Averaged Navier–Stokes Simulations of Wind Turbine Wakes. Renew. Energy 2021, 164, 1550–1558. [Google Scholar] [CrossRef]
- Michna, J.; Rogowski, K. A Refined Approach for Angle of Attack Estimation and Dynamic Force Hysteresis in H-Type Darrieus Wind Turbines. Energies 2024, 17, 6264. [Google Scholar] [CrossRef]
- Fábregas, J.; Palencia, A.; Buitrago, C. Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 119, 103–113. [Google Scholar] [CrossRef]
- Alvarez, J.; Fábregas, J.; Márquez, M.; Carpintero, J. Energy Evaluation of Synthesis Gas in a Turbocharger System Employing CFD Tools. CFD Lett. 2024, 16, 109–119. [Google Scholar] [CrossRef]
- Bang, C.S.; Rana, Z.A.; Prince, S.A. CFD Analysis on Novel Vertical Axis Wind Turbine (VAWT). Machines 2024, 12, 800. [Google Scholar] [CrossRef]
- Ayaz Atalan, Y.; Atalan, A. Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance. Appl. Sci. 2025, 15, 241. [Google Scholar] [CrossRef]
- Mohan Kumar, P.; Sivalingam, K.; Lim, T.-C.; Ramakrishna, S.; Wei, H. Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines. Clean Technol. 2019, 1, 205–223. [Google Scholar] [CrossRef]
- Mohan Kumar, P.; Sivalingam, K.; Lim, T.-C.; Ramakrishna, S.; Wei, H. Strategies for Enhancing the Low Wind Speed Performance of H-Darrieus Wind Turbine—Part 1. Clean Technol. 2019, 1, 185–204. [Google Scholar] [CrossRef]
- El Maani, R.; Radi, B.; El Hami, A. Numerical Study and Optimization-Based Sensitivity Analysis of a Vertical-Axis Wind Turbine. Energies 2024, 17, 6300. [Google Scholar] [CrossRef]



























| Levels | ||
|---|---|---|
| Factors | (−) | (+) | 
| A: Wind Speed | 2 m/s | 5 m/s | 
| B: Diameter | 0.5 m | 1 m | 
| C: Height | 0.8 m | 1.6 m | 
| D: #Blades | 3 | 4 | 
| E: Blade Type | −1 (straight) | 1 (helical) | 
| Factorial Effects | |||
|---|---|---|---|
| 2k Design | Total Effects | Non-Ignorable Effects | Ignorable Effects | 
| 22 | 3 | 3 | 0 | 
| 23 | 7 | 6 | 1 | 
| 24 | 15 | 1 | 5 | 
| 25 | 31 | 15 | 16 | 
| Treatments | Factor A Wind Speed | Factor B Diameter | Factor C Height | Factor D #Blades | Factor E Blade Type | 
|---|---|---|---|---|---|
| T1 | 2 | 0.5 | 0.8 | 3 | 1 | 
| T2 | 5 | 0.5 | 0.8 | 3 | −1 | 
| T3 | 2 | 1 | 0.8 | 3 | −1 | 
| T4 | 5 | 1 | 0.8 | 3 | 1 | 
| T5 | 2 | 0.5 | 1.6 | 3 | −1 | 
| T6 | 5 | 0.5 | 1.6 | 3 | 1 | 
| T7 | 2 | 1 | 1.6 | 3 | 1 | 
| T8 | 5 | 1 | 1.6 | 3 | −1 | 
| T9 | 2 | 0.5 | 0.8 | 4 | −1 | 
| T10 | 5 | 0.5 | 0.8 | 4 | 1 | 
| T11 | 2 | 1 | 0.8 | 4 | 1 | 
| T12 | 5 | 1 | 0.8 | 4 | −1 | 
| T13 | 2 | 0.5 | 1.6 | 4 | 1 | 
| T14 | 5 | 0.5 | 1.6 | 4 | −1 | 
| T15 | 2 | 1 | 1.6 | 4 | −1 | 
| T16 | 5 | 1 | 1.6 | 4 | 1 | 
| First Layer Thickness [mm] | Average Yplus | Maximum Yplus | Selected First Layer Thickness [mm] | Selected Time Step [s] | di Value | W Average | Cp Average | 
|---|---|---|---|---|---|---|---|
| 0.005 | 0.1061 | 0.2680 | 0.01 | 0.001 | 3D | 20.120 | 0.16096 | 
| 0.01 | 0.2128 | 0.5317 | 5D | 20.108 | 0.16086 | ||
| 0.015 | 0.3199 | 0.8471 | 10D | 20.101 | 0.16081 | 
| Treatments | Factor A Wind Speed | Factor B Diameter | Factor C Height | Factor D #Blades | Factor E Blade Type | Power [W] | Cp | 
|---|---|---|---|---|---|---|---|
| T1 | 2 | 0.5 | 0.8 | 3 | 1 | 0.46 | 0.23 | 
| T2 | 5 | 0.5 | 0.8 | 3 | −1 | 7.91 | 0.25 | 
| T3 | 2 | 1 | 0.8 | 3 | −1 | 1.11 | 0.28 | 
| T4 | 5 | 1 | 0.8 | 3 | 1 | 10.07 | 0.16 | 
| T5 | 2 | 0.5 | 1.6 | 3 | −1 | 1.07 | 0.27 | 
| T6 | 5 | 0.5 | 1.6 | 3 | 1 | 21.92 | 0.35 | 
| T7 | 2 | 1 | 1.6 | 3 | 1 | 1.75 | 0.22 | 
| T8 | 5 | 1 | 1.6 | 3 | −1 | 37.59 | 0.30 | 
| T9 | 2 | 0.5 | 0.8 | 4 | −1 | 0.60 | 0.30 | 
| T10 | 5 | 0.5 | 0.8 | 4 | 1 | 6.93 | 0.22 | 
| T11 | 2 | 1 | 0.8 | 4 | 1 | 1.15 | 0.29 | 
| T12 | 5 | 1 | 0.8 | 4 | −1 | 12.63 | 0.20 | 
| T13 | 2 | 0.5 | 1.6 | 4 | 1 | 1.21 | 0.30 | 
| T14 | 5 | 0.5 | 1.6 | 4 | −1 | 9.57 | 0.15 | 
| T15 | 2 | 1 | 1.6 | 4 | −1 | 2.73 | 0.34 | 
| T16 | 5 | 1 | 1.6 | 4 | 1 | 20.12 | 0.16 | 
| Optimum | ||
|---|---|---|
| VAWT-V1 | VAWT-V2 | |
| Factors | Power [W] | Cp | 
| A: Wind Speed | 5 m/s | 5 m/s | 
| B: Diameter | 1.0 m | 0.5 m | 
| C: Height | 1.6 m | 1.6 m | 
| D: #Blades | 3 | 3 | 
| E: Blade Type | −1 (straight) | 1 (helical) | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fábregas-Villegas, J.; Palacios-Pineda, L.M.; Abuchar-Curi, A.M.; Palencia-Díaz, A. Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics. Sustainability 2025, 17, 9663. https://doi.org/10.3390/su17219663
Fábregas-Villegas J, Palacios-Pineda LM, Abuchar-Curi AM, Palencia-Díaz A. Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics. Sustainability. 2025; 17(21):9663. https://doi.org/10.3390/su17219663
Chicago/Turabian StyleFábregas-Villegas, Jonathan, Luis Manuel Palacios-Pineda, Alfredo Miguel Abuchar-Curi, and Argemiro Palencia-Díaz. 2025. "Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics" Sustainability 17, no. 21: 9663. https://doi.org/10.3390/su17219663
APA StyleFábregas-Villegas, J., Palacios-Pineda, L. M., Abuchar-Curi, A. M., & Palencia-Díaz, A. (2025). Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics. Sustainability, 17(21), 9663. https://doi.org/10.3390/su17219663
 
        



 
                         
       