Eco-Friendly Biosynthesis and Characterization of Silver Nanoparticles Using Zinnia elegans L. Plant Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Methods
2.2. Characterization of AgNPs
3. Results and Discussion
3.1. Biochemical Properties of Zinnia elegans L.
3.1.1. Antioxidant Activity
3.1.2. Estimation of the Total Concentration of Phenolic Compounds
3.1.3. Estimation of the Concentration of Phenolic Acids
3.1.4. Estimation of the Total Concentration of Flavonoids
3.1.5. Determination of the Antibacterial Activity of Zinnia elegans L. Plant Extracts
3.2. Biosynthesis of AgNPs Using Zinnia elegans L. Plant Extracts
3.3. Characterization of AgNPs
3.3.1. UV-Vis Absorption Spectroscopy
3.3.2. ATR-FTIR Spectrum Analysis
3.3.3. X-Ray Diffraction Analysis
3.3.4. SEM/EDX Analysis of AgNPs
3.3.5. TEM/EDX Analysis of AgNPs
3.3.6. TGA/DTA Analysis of AgNPs
3.4. Antibacterial Activity of AgNPs
3.4.1. Antibacterial Activity of AgNPs Against E. coli
3.4.2. Antibacterial Activity of AgNPs Against B. subtilis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AgNPs | Silver nanoparticles |
| BAP | 6-Benzylaminopurine |
| NAA | 1-Nahtylacetic acid |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| FRAP | Ferric ion reducing antioxidant power |
| XRD | X-ray diffraction |
| FCC | Face-centered cubic |
| FTIR | Fourier transform infrared |
| SEM | Scanning electron microscopy |
| TEM | Transmission electron microscopy |
| EDX | Energy-dispersive X-ray spectroscopy |
| TGA | Thermogravimetric analysis |
| DTA | Differential thermal analysis |
References
- Souza, F.J.C., Jr.; Assunção, M.C. First Report of Meloidogyne Javanica Infecting Zinnia Elegans in Ceará State, Brazil. J. Nematol. 2020, 52, 1–4. [Google Scholar] [CrossRef]
- Ozturk, M.; Sagdollina, N.R.; Ibrayeva, M.M. Component Composition and Biological Activity of Essential Oil of Plant Zinnia elegans. Int. J. Biol. Chem. 2023, 16, 90–96. [Google Scholar] [CrossRef]
- Burlec, A.F.; Pecio, Ł.; Mircea, C.; Cioancă, O.; Corciovă, A.; Nicolescu, A.; Oleszek, W.; Hăncianu, M. Chemical Profile and Antioxidant Activity of Zinnia Elegans Jacq. Fractions. Molecules 2019, 24, 2934. [Google Scholar] [CrossRef]
- Gomaa, A.A.-R.; Samy, M.N.; Abdelmohsen, U.R.; Krischke, M.; Mueller, M.J.; Wanas, A.S.; Desoukey, S.Y.; Kamel, M.S. Metabolomic Profiling and Anti-Infective Potential of Zinnia elegans and Gazania rigens (Family Asteraceae). Nat. Prod. Res. 2020, 34, 2612–2615. [Google Scholar] [CrossRef] [PubMed]
- Tulub, I.; Burda, N. Study of antimicrobial activity of Zinnia elegans raw materials. Ann. Mechnikov Inst. 2023, 4, 150–153. [Google Scholar] [CrossRef]
- Goonewardene, G.; Kandiah, M.; Gunaratne, B.; Perera, O. Sustainable Synthesis of Silver Nanoparticles via Zinnia Elegans Leaf Extract: A Nano Catalytic Approach in Catalysis Applications. Int. J. Res. Innov. Appl. Sci. 2025, X, 683–702. [Google Scholar] [CrossRef]
- Gomaa, A.; Samy, M.; Desoukey, S.; Kamel, M. A Comprehensive Review of Phytoconstituents and Biological Activities of Genus Zinnia. J. Adv. Biomed. Pharm. Sci. 2018, 2, 29–37. [Google Scholar] [CrossRef]
- Haque, S.; Norbert, C.C.; Acharyya, R.; Mukherjee, S.; Kathirvel, M.; Patra, C.R. Biosynthesized Silver Nanoparticles for Cancer Therapy and In Vivo Bioimaging. Cancers 2021, 13, 6114. [Google Scholar] [CrossRef]
- Samy, M.N.; Gomaa, A.A.-R.; Attia, E.Z.; Ibrahim, M.A.A.; Desoukey, S.Y.; Kamel, M.S. Flavonoids of Zinnia elegans: Chemical Profile and in Vitro Antioxidant and in Silico Anti-COVID-19 Activities. S. Afr. J. Bot. 2022, 147, 576–585. [Google Scholar] [CrossRef]
- Gupta, N.; Upadhyaya, C.P.; Singh, A.; Abd-Elsalam, K.A.; Prasad, R. Applications of Silver Nanoparticles in Plant Protection. In Nanobiotechnology Applications in Plant Protection; Abd-Elsalam, K.A., Prasad, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 247–265. ISBN 978-3-319-91161-8. [Google Scholar]
- Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical Aspects of Silver Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 115–126. [Google Scholar] [CrossRef]
- Jadhav, R.; Bhide, S.; Prasad, B.L.V.; Kunchiraman, B.; Shimpi, J.; Nandhini, U. Silver Nanoparticles: A New Perspective in Endodntic Therapy. IIOAB J. 2016, 7, 77–81. [Google Scholar]
- Lee, S.H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed]
- Chikkanayakanahalli Paramesh, C.; Giridasappa, A.; Channapillekoppalu Siddegowda, A.K.; Rangappa, D.; Doddakunche Shivaramu, P. Chapter 1—History, Introduction, and Physicochemical Properties of Silver Nanoparticles. In Silver Nanoparticles for Drug Delivery; Kesharwani, P., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 1–38. ISBN 978-0-443-15343-3. [Google Scholar]
- Seku, K.; Hussaini, S.S.; Bhagavanth Reddy, G.; Radha Krishna Reddy, M. Chapter 9—Silver-Based Biofungicides for the Suppression of Pathogenic Fungi in Agriculture Fields. In Nanofungicides; Abd-Elsalam, K.A., Ed.; Nanobiotechnology for Plant Protection; Elsevier: Amsterdam, The Netherlands, 2024; pp. 169–194. ISBN 978-0-323-95305-4. [Google Scholar]
- Verma, A.; Srivastava, M. Novel Silver Nanoparticles as Modern Defense Tools in Agro-Ecosystem. In Ecosystem Services: Types, Management, and Benefits; Jatav, H.S., Rajput, V.D., Eds.; Series: Agriculture Issues and Policies; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022; pp. 23–44. ISBN 978-1-68507-614-6. [Google Scholar]
- Mo, F.; Zhou, Q.; He, Y. Nano–Ag: Environmental Applications and Perspectives. Sci. Total Environ. 2022, 829, 154644. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, A.; Theertha, V.; Prakash, P.; Smitha Chandran, S. From Waste to a Value Added Product: Green Synthesis of Silver Nanoparticles from Onion Peels Together with Its Diverse Applications. Mater. Today Proc. 2021, 46, 4460–4463. [Google Scholar] [CrossRef]
- Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver Nanoparticles: Synthesis Methods, Bio-Applications and Properties. Crit. Rev. Microbiol. 2014, 42, 173–180. [Google Scholar] [CrossRef]
- Prajapati, S.; Yadav, S.; Khan, J. Bionanofactories for the Environmental Friendly Fabrication of Silver Nanoparticles: Application to the Analysis of Antimicrobial Agents. Curr. Pharm. Anal. 2024, 20, 98–114. [Google Scholar] [CrossRef]
- Galatage, S.T.; Hebalkar, A.S.; Gote, R.V.; Mali, O.R.; Killedar, S.G. Silver Nano Particles by Green Synthesis: An Overview. Res. J. Pharm. Technol. 2020, 13, 1503–1510. [Google Scholar] [CrossRef]
- Fahim, M.; Shahzaib, A.; Nishat, N.; Jahan, A.; Bhat, T.A.; Inam, A. Green Synthesis of Silver Nanoparticles: A Comprehensive Review of Methods, Influencing Factors, and Applications. JCIS Open 2024, 16, 100125. [Google Scholar] [CrossRef]
- Rodríguez-Félix, F.; Graciano-Verdugo, A.Z.; Moreno-Vásquez, M.J.; Lagarda-Díaz, I.; Barreras-Urbina, C.G.; Armenta-Villegas, L.; Olguín-Moreno, A.; Tapia-Hernández, J.A. Trends in Sustainable Green Synthesis of Silver Nanoparticles Using Agri-Food Waste Extracts and Their Applications in Health. J. Nanomater. 2022, 2022, 8874003. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Bharath, L.V.; Geetha, R. Broad Spectrum Antibacterial Silver Nanoparticle Green Synthesis: Characterization, and Mechanism of Action. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 429–444. ISBN 978-0-08-102579-6. [Google Scholar]
- Jain, A.S.; Pawar, P.S.; Sarkar, A.; Junnuthula, V.; Dyawanapelly, S. Bionanofactories for Green Synthesis of Silver Nanoparticles: Toward Antimicrobial Applications. Int. J. Mol. Sci. 2021, 22, 11993. [Google Scholar] [CrossRef]
- Chung, I.-M.; Park, I.; Seung-Hyun, K.; Thiruvengadam, M.; Rajakumar, G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Res. Lett. 2016, 11, 40. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Mostafa, M.A.H.; Konno, H.; Younis, M.A. Exploring the Green Synthesis of Silver Nanoparticles Using Natural Extracts and Their Potential for Cancer Treatment. 3 Biotech 2024, 14, 274. [Google Scholar] [CrossRef] [PubMed]
- Kazlagić, A.; Abud, O.A.; Ćibo, M.; Hamidović, S.; Borovac, B.; Omanović-Mikličanin, E. Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antimicrobial Properties. Health Technol. 2020, 10, 147–150. [Google Scholar] [CrossRef]
- Fiorati, A.; Bellingeri, A.; Punta, C.; Corsi, I.; Venditti, I. Silver Nanoparticles for Water Pollution Monitoring and Treatments: Ecosafety Challenge and Cellulose-Based Hybrids Solution. Polymers 2020, 12, 1635. [Google Scholar] [CrossRef] [PubMed]
- Rathi, B.S.; Kumar, P.S.; Senthilkumar, S.; Vellaichamy, P.; Rangasamy, G.; Vo, D.-V.N. Innovative Eco-Friendly Silver Nanoparticles: Various Synthesis Methods, Characterization and Prospective Applications. Chem. Eng. Commun. 2025, 212, 472–507. [Google Scholar] [CrossRef]
- Jonuškienė, I.; Stankevičienė, R.; Kantminienė, K.; Tumosienė, I. The Influence of Phytohormones on Antioxidative and Antibacterial Activities in Callus Cultures of Hypericum perforatum L. Agriculture 2023, 13, 1543. [Google Scholar] [CrossRef]
- Nutautaitė, M.; Racevičiūtė-Stupelienė, A.; Bliznikas, S.; Jonuškienė, I.; Karosienė, J.; Koreivienė, J.; Vilienė, V. Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora Glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology. Water 2022, 14, 1138. [Google Scholar] [CrossRef]
- Fabrowska, J.; Messyasz, B.; Pankiewicz, R.; Wilińska, P.; Łęska, B. Seasonal Differences in the Content of Phenols and Pigments in Thalli of Freshwater Cladophora glomerata and Its Habitat. Water Res. 2018, 135, 66–74. [Google Scholar] [CrossRef]
- Kvasnička, F.; Čopíková, J.; Ševčík, R.; Krátká, J.; Syntytsia, A.; Voldřich, M. Determination of Phenolic Acids by Capillary Zone Electrophoresis and HPLC. Cent. Eur. J. Chem. 2008, 6, 410–418. [Google Scholar] [CrossRef]
- Khuluk, R.H.; Yunita, A.; Rohaeti, E.; Syafitri, U.D.; Linda, R.; Lim, L.W.; Takeuchi, T.; Rafi, M. An HPLC-DAD Method to Quantify Flavonoids in Sonchus Arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis. Separations 2021, 8, 12. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The Reflection of X-rays by Crystals. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1997, 88, 428–438. [Google Scholar] [CrossRef]
- Ali, M.H.; Azad, M.A.K.; Khan, K.A.; Rahman, M.O.; Chakma, U.; Kumer, A. Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques. ACS Omega 2023, 8, 28133–28142. [Google Scholar] [CrossRef]
- Kainz, M.P.; Legenstein, L.; Holzer, V.; Hofer, S.; Kaltenegger, M.; Resel, R.; Simbrunner, J. GIDInd: An Automated Indexing Software for Grazing-Incidence X-ray Diffraction Data. J. Appl. Crystallogr. 2021, 54, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Bedlovičová, Z.; Strapáč, I.; Baláž, M.; Salayová, A. A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules 2020, 25, 3191. [Google Scholar] [CrossRef] [PubMed]
- Pyrzynska, K.; Pękal, A. Application of Free Radical Diphenylpicrylhydrazyl (DPPH) to Estimate the Antioxidant Capacity of Food Samples. Anal. Methods 2013, 5, 4288–4295. [Google Scholar] [CrossRef]
- Nilsson, J.; Pillai, D.; Önning, G.; Persson, C.; Nilsson, A.; Åkesson, B. Comparison of the 2,2′-Azinobis-3-Ethylbenzotiazo-Line-6-Sulfonic Acid (ABTS) and Ferric Reducing Anti-Oxidant Power (FRAP) Methods to Asses the Total Antioxidant Capacity in Extracts of Fruit and Vegetables. Mol. Nutr. Food Res. 2005, 49, 239–246. [Google Scholar] [CrossRef]
- Li, H.-B.; Wong, C.-C.; Cheng, K.-W.; Chen, F. Antioxidant Properties in Vitro and Total Phenolic Contents in Methanol Extracts from Medicinal Plants. LWT Food Sci. Technol. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Gottshall, R.Y.; Lucas, E.H.; Lickfeldt, A.; Roberts, J.M. The Occurrence of Antibacterial Substances Active Against Mycobacterium Tuberculosis in Seed Plants. J Clin Invest. 1949, 28, 920–923. [Google Scholar] [CrossRef]
- Kryuchkov, M.; Adamcik, J.; Katanaev, V.L. Bactericidal and Antiviral Bionic Metalized Nanocoatings. Nanomaterials 2022, 12, 1868. [Google Scholar] [CrossRef] [PubMed]
- Ruby; Aryan; Mehata, M.S. Surface Plasmon Resonance Allied Applications of Silver Nanoflowers Synthesized from Breynia Vitis-Idaea Leaf Extract. Dalton Trans. 2022, 51, 2726–2736. [Google Scholar] [CrossRef] [PubMed]
- Padalia, H.; Moteriya, P.; Chanda, S. Green Synthesis of Silver Nanoparticles from Marigold Flower and Its Synergistic Antimicrobial Potential. Arab. J. Chem. 2015, 8, 732–741. [Google Scholar] [CrossRef]
- Mani, M.; Pavithra, S.; Mohanraj, K.; Kumaresan, S.; Alotaibi, S.S.; Eraqi, M.M.; Gandhi, A.D.; Babujanarthanam, R.; Maaza, M.; Kaviyarasu, K. Studies on the Spectrometric Analysis of Metallic Silver Nanoparticles (Ag NPs) Using Basella Alba Leaf for the Antibacterial Activities. Environ. Res. 2021, 199, 111274. [Google Scholar] [CrossRef]
- Taleb Safa, M.A.; Koohestani, H. Green Synthesis of Silver Nanoparticles with Green Tea Extract from Silver Recycling of Radiographic Films. Results Eng. 2024, 21, 101808. [Google Scholar] [CrossRef]
- Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang, Q. Green Synthesis of Silver Nanoparticles Using Capsicum annuum L. Extract. Green Chem. 2007, 9, 852–858. [Google Scholar] [CrossRef]
- Aslam, M.; Fozia, F.; Gul, A.; Ahmad, I.; Ullah, R.; Bari, A.; Mothana, R.A.; Hussain, H. Phyto-Extract-Mediated Synthesis of Silver Nanoparticles Using Aqueous Extract of Sanvitalia Procumbens, and Characterization, Optimization and Photocatalytic Degradation of Azo Dyes Orange G and Direct Blue-15. Molecules 2021, 26, 6144. [Google Scholar] [CrossRef]
- Labulo, A.H.; David, O.A.; Terna, A.D. Green Synthesis and Characterization of Silver Nanoparticles Using Morinda lucida Leaf Extract and Evaluation of Its Antioxidant and Antimicrobial Activity. Chem. Pap. 2022, 76, 7313–7325. [Google Scholar] [CrossRef]
- Jeeva, K.; Thiyagarajan, M.; Elangovan, V.; Geetha, N.; Venkatachalam, P. Caesalpinia coriaria Leaf Extracts Mediated Biosynthesis of Metallic Silver Nanoparticles and Their Antibacterial Activity against Clinically Isolated Pathogens. Ind. Crops Prod. 2014, 52, 714–720. [Google Scholar] [CrossRef]
- Shukla, V.K.; Yadav, R.S.; Yadav, P.; Pandey, A.C. Green Synthesis of Nanosilver as a Sensor for Detection of Hydrogen Peroxide in Water. J. Hazard. Mater. 2012, 213–214, 161–166. [Google Scholar] [CrossRef]
- Nindawat, S.; Agrawal, V. Fabrication of Silver Nanoparticles Using Arnebia hispidissima (Lehm.) A. DC. Root Extract and Unravelling Their Potential Biomedical Applications. Artif. Cells Nanomed. Biotechnol. 2019, 47, 166–180. [Google Scholar] [CrossRef]
- Paterlini, P.; Rodríguez, C.; Ledesma, A.; Pereyra, J.; Dávila Costa, J.S.; Álvarez, A.; Romero, C.M. Characterization of Biosynthesized Silver Nanoparticles from Streptomyces Aqueous Extract and Evaluation of Surface-Capping Proteins Involved in the Process. Nano-Struct. Nano-Objects 2021, 26, 100755. [Google Scholar] [CrossRef]
- Majeed Khan, M.A.; Kumar, S.; Ahamed, M.; Alrokayan, S.A.; AlSalhi, M.S. Structural and Thermal Studies of Silver Nanoparticles and Electrical Transport Study of Their Thin Films. Nanoscale Res. Lett. 2011, 6, 434. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Terzioğlu, E.; Arslan, M.; Balaban, B.G.; Çakar, Z.P. Microbial Silver Resistance Mechanisms: Recent Developments. World J. Microbiol. Biotechnol. 2022, 38, 158. [Google Scholar] [CrossRef]


















| 2θ of the Intense Peak (°) | FWHM βhkl (°) | Miller Indices (hkl) | Crystallite Diameter D (nm) | Interplanar Spacing d (nm) | Lattice Parameters a (nm) |
|---|---|---|---|---|---|
| 38.13 | 0.229 | 111 | 36.70 | 0.236 | 0.4085 |
| 44.33 | 0.405 | 200 | 21.19 | 0.204 | 0.4084 |
| 64.51 | 0.507 | 220 | 18.54 | 0.144 | 0.4082 |
| Average values (nm) | 25.48 | 0.195 | 0.4084 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonuškienė, I.; Narmontaitė, J.; Kantminienė, K.; Tumosienė, I.; Stankevičienė, R.; Petrašauskienė, N. Eco-Friendly Biosynthesis and Characterization of Silver Nanoparticles Using Zinnia elegans L. Plant Extracts. Sustainability 2025, 17, 9451. https://doi.org/10.3390/su17219451
Jonuškienė I, Narmontaitė J, Kantminienė K, Tumosienė I, Stankevičienė R, Petrašauskienė N. Eco-Friendly Biosynthesis and Characterization of Silver Nanoparticles Using Zinnia elegans L. Plant Extracts. Sustainability. 2025; 17(21):9451. https://doi.org/10.3390/su17219451
Chicago/Turabian StyleJonuškienė, Ilona, Justė Narmontaitė, Kristina Kantminienė, Ingrida Tumosienė, Rima Stankevičienė, and Neringa Petrašauskienė. 2025. "Eco-Friendly Biosynthesis and Characterization of Silver Nanoparticles Using Zinnia elegans L. Plant Extracts" Sustainability 17, no. 21: 9451. https://doi.org/10.3390/su17219451
APA StyleJonuškienė, I., Narmontaitė, J., Kantminienė, K., Tumosienė, I., Stankevičienė, R., & Petrašauskienė, N. (2025). Eco-Friendly Biosynthesis and Characterization of Silver Nanoparticles Using Zinnia elegans L. Plant Extracts. Sustainability, 17(21), 9451. https://doi.org/10.3390/su17219451

