Tomato Residue Silage as a Sustainable Feed for Lambs with Implications for Performance, Water Use and Meat Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Animals
2.2. Semi-Feedlot and Diets
2.3. Estimation of Pasture Intake, Feed Analysis, and Animal Performance
2.4. Pesticide Residue Analysis in PMR Silage
2.5. Quantification of Organic Acids in Silage Using HPLC
2.6. Water Intake from Drinker and Feed
2.7. Pre-Slaughter Procedures, Slaughter, and Meat Analysis
2.8. On-Farm Energy Demand, and Economic Costs
2.9. Statistical Analysis
3. Results
3.1. Pesticide Residues and Silage Fermentation Profile
3.2. Animal Performance, Nutrient Intake, and Water Consumption
3.3. Carcass Traits and Meat Quality
3.4. On-Farm Energy Use and Economic Costs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Souza Oliveira, B.Y.; de Silva Moura, C.M.; de Araújo, G.G.L.; Turco, S.H.N.; Voltolini, T.V.; Furtado, D.A.; de Medeiros, A.N.; Gois, G.C.; Campos, F.S. Thermoregulatory responses and ingestive behavior of sheep subjected to water restriction and high- and low-energy diets in a semi-arid environment. J. Therm. Biol. 2024, 119, 103749. [Google Scholar] [CrossRef] [PubMed]
- Barros de Freitas, A.C.; Bartholazzi, A., Jr.; Quirino, C.R.; da Costa, R.L.D. Water and food utilization efficiencies in sheep and their relationship with some production traits. Small Rumin. Res. 2021, 197, 106334. [Google Scholar] [CrossRef]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. World Atlas of Desertification; Publication Office of the European Union: Luxembourg, 2018; Available online: https://wad.jrc.ec.europa.eu/download (accessed on 24 June 2025).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Jerónimo, E.; Cachucho, L.; Alves, H.; Guerreiro, O.; Paulos, K.; Costa, C.; Costa, J.; Gomes, S.; Alvarenga, N.; Alves, S.P.; et al. Partial replacement of concentrate in the lactating ewe’s diet with silages of agro-industrial by-products—Effect on milk composition and fatty acid profile, serum metabolites and growth of suckling lambs. Anim. Feed Sci. Technol. 2025, 325, 116345. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Denek, N.; Can, A. Feeding value of wet tomato pomace ensiled with wheat straw and wheat grain for Awassi sheep. Small Rumin. Res. 2006, 65, 260–265. [Google Scholar] [CrossRef]
- Elbadrawy, E.; Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 2016, 9, S1010–S1018. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Our World in Data Tomato Production—FAO [Dataset] 2025; Food and Agriculture Organization: Rome, Italy, 2025; Available online: https://ourworldindata.org/grapher/tomato-production (accessed on 24 June 2025).
- Golub, N.; Galić, E.; Radić, K.; Smigic, N.; Djekić, I.; Pedisić, S.; Čepo, D.V. Microwave-Assisted Valorization of Tomato Pomace for Pectin Recovery: Improving Yields and Environmental Footprint. Foods 2025, 14, 1516. [Google Scholar] [CrossRef]
- Pishgar Komleh, S.H.; Keyhani, A.; Rafiee, S.; Sefeedpary, P. Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy 2011, 36, 3335–3341. [Google Scholar] [CrossRef]
- Azizpanah, A.; Namdari, M.; Abed, A.K. Integrated life cycle and data envelopment analysis of input optimization and environmental impacts in silage corn farming. Results Eng. 2025, 27, 106380. [Google Scholar] [CrossRef]
- Moura-Andrade, G.C.R.; Oetterer, M.; Tornisielo, V.L. Tomato as food—Production chain and pesticide residues. Pesticidas 2010, 20, 57–66. [Google Scholar] [CrossRef]
- Rafaela da Silva Costa, F.; Vitor de Melo Freitas, J.; Maria Barreto Amaral, S.; Larisse Pinheiro Uchia, M. Aparecida Liberato Milhome, Maria Multiresidue analysis of tomato and derived products: A brief review. Braz. J. Agrotechnol. 2021, 11, 328–335. [Google Scholar] [CrossRef]
- Agência Nacional de Vigilância Sanitária (ANVISA). Pesticide Residue Analysis Program in Food—PARA; Brazilian Health Regulatory Agency: Brasília, Brazil, 2019. Available online: https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos (accessed on 1 July 2025).
- Diário Oficial da União. Law No. 14.785, 27 December 2023. Provides for the Research, Experimentation, Production, Packaging and Labeling, Transportation, Storage, Marketing, Use, Import and Export of Pesticides, Their Components and Related Products, and Other Provisions; Diário Oficial da União: Brasília, Brazil, 2023. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/legislacao (accessed on 24 June 2025).
- National Health Surveillance Agency (ANVISA). Resolution RDC No. 4, 18 January 2012. Provides for the Conduct of Pesticide Residue Studies for the Purpose of Pesticide Registration in Brazil; Diário Oficial da União: Brasília, Brazil, 2012. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2012/res0004_18_01_2012.html (accessed on 1 July 2025).
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). Codex Alimentarius—Pesticide Residues in Food and Feed, Maximum Residue Limits (MRLs); FAO: Rome, Italy; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Li, Z.; Xiong, J.; Fantke, P. Screening of pesticide distributions in foods of animal origin: A matrix-based approach for biotransfer factor modeling of grazing mammals. Environ. Sci. Process. Impacts 2022, 24, 609–624. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET). Climatic Data—Temperature, Humidity and Precipitation; INMET: Brasília, Brazil, 2025. Available online: https://portal.inmet.gov.br/ (accessed on 1 July 2025).
- Campos, W.E.; Saturnino, H.M.; Borges, A.L.C.C.; e Silva, R.R.; de Sousa, B.M.; Campos, M.M.; Rogério, M.C.P. Apparent digestibility of diets containing different proportions of industrial tomato residue. Ciênc. Anim. Bras. 2007, 8, 479–484. Available online: https://revistas.ufg.br/vet/article/view/1689 (accessed on 1 July 2025).
- Silva, A.F.; Rigueira, J.P.S.; Albuquerque, C.J.B.; Rocha Junior, V.R.; Santos, A.S.; Silva, F.V.; Silva, M.F.P.; Porto, E.M.V.; Monção, F.P.; Silva, P.H.F. Nutritional value, fermentation characteristics and aerobic stability of maize grain silage rehydrated with increasing levels of wet tomato byproduct. J. Anim. Feed Sci. 2025, 34, 121–130. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-47323-1. Available online: https://nap.nationalacademies.org/catalog/11654/nutrient-requirements-of-small-ruminants-sheep-goats-cervids-and-new (accessed on 13 June 2025).
- Alves, A.M.d.J.T.; dos Santos Oliveira, L.L.; Silva, G.L.S.; Dornelas, M.E.O.; D’Angelo, M.F.S.V.; de Oliveira, D.F.; Lima, W.d.S.; Pereira, C.A.d.J.; e Silva, F.V. The effect of Momordica charantia extract on sheep infected with Haemonchus contortus. Res. Vet. Sci. 2024, 180, 105401. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.M.F.; e Silva, F.V.; dos Santos Oliveira, L.L.; Rocha Júnior, V.R.; Novaes, C.G.; Novais, F.C.; Rigueira, J.P.S. Mineral content of longissimus lumborum from growing lambs fed crude glycerin. Meat Sci. 2020, 169, 108222. [Google Scholar] [CrossRef]
- Detmann, E.; Silva, L.F.C.; Rocha, G.C.; Palma, M.N.N.; Rodrigues, J.P.P. Food Analysis Methods, INCT—Animal Science, 2nd ed.; Produção Independente: Viçosa, MG, Brazil, 2021. [Google Scholar]
- De Vries, M.F.W. Estimating Forage Intake and Quality in Grazing Cattle: A Reconsideration of the Hand-Plucking Method. J. Range Manag. 1995, 48, 370–375. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Agência Nacional de Vigilância Sanitária (ANVISA). Pesticide Monographs. Available online: https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias (accessed on 24 June 2025).
- De Araújo, G.G.L.; Voltolini, T.V.; Chizzotti, M.L.; Turco, S.H.N.; de Carvalho, F.F.R. Water and small ruminant production. Rev. Bras. Zootec. 2010, 39, 326–336. [Google Scholar] [CrossRef]
- Al-Ramamneh, D.; Riek, A.; Gerken, M. Deuterium oxide dilution accurately predicts water intake in sheep and goats. Animal 2010, 4, 1606–1612. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Livestock and Supply. Technical Regulation on Pre-Slaughter Handling and Humane Slaughter, and the Stunning Methods Authorized by the Ministry of Agriculture, Livestock and Supply; Ministry of Agriculture, Livestock and Supply: Brasília, Brazil, 2021. Available online: https://www.in.gov.br/en/web/dou/-/portaria-n-365-de-16-de-julho-de-2021-334038845 (accessed on 24 June 2025).
- Silva, F.V.; Borges, I.; Garcia, S.K.; Sá, H.C.M.; Silva, V.L.; Araújo, A.R.; Lima, J.A.; Oliveira, L.L.S.; Matos, A.M.; Toral, F.L.B. Effect of space allowance during transport of Dorper x Santa Inês lambs on biochemical stress parameters and meat quality. Small Rumin. Res. 2023, 219, 106910. [Google Scholar] [CrossRef]
- Hamm, R. Functional properties of the myofibrillar system and their measurements. In Muscle as Food; Bechtel, P.J., Ed.; Academic Press: Orlando, FL, USA, 1986; pp. 135–199. [Google Scholar]
- Ramos, E.M.; Gomide, L.A. Meat Quality Assessment: Fundamentals and Methodologies; Editora UFV: Viçosa, Brazil, 2017. [Google Scholar]
- Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M. Shear Force Procedures for Meat Tenderness Measurement; U.S. Meat Animal Research Center, USDA Agricultural Research Service: Clay Center, NE, USA, 2005. Available online: https://www.ars.usda.gov/ARSUserFiles/30400510/protocols/ShearForceProcedures.pdf (accessed on 1 July 2025).
- Soleimani, Y.; Shahsavari, M.J.; Sadeghi, P.; Sadeghi, H.; Aryanejad, A.; Qashami, Z.; Khazali, A.; Noori, N.; Karamian, S.; Nayebi, M.; et al. Chlorothalonil and Cancer: A Comprehensive Overview. Asian Pac. J. Environ. Cancer 2025, 1783, 20250316. [Google Scholar] [CrossRef]
- Sadighara, P.; Mahmudiono, T.; Marufi, N.; Yazdanfar, N.; Fakhri, Y.; Rikabadi, A.K.; Khaneghah, A.M. Residues of carcinogenic pesticides in food: A systematic review. Rev. Environ. Health 2024, 39, 659–666. [Google Scholar] [CrossRef]
- Kushwaha, A.; Wasnik, K.; Kumar, D.; Pandey, M.; Deepak Nannaware, A.; Kumar Verma, R. On-farm energy input-output and economic analysis of important essential oil-bearing Mint species in subtropical India. Energy Convers. Manag. X 2024, 23, 100617. [Google Scholar] [CrossRef]
- Ozbek, F.S. Estimating the Direct Energy Use in Agriculture: A Case Study for Turkey. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 2015, 72, 467–473. [Google Scholar] [CrossRef] [PubMed]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Volume 2: Energy; Intergovernmental Panel on Climate Change: Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 1 July 2025).
- Central Bank of Brazil. Time Series Management System (SGS)—Series 3695: U.S. Dollar (Selling)—Exchange Rate—PTAX—End of Period. Available online: https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries (accessed on 1 October 2025).
- Kay, R.D.; Edwards, W.M.; Duffy, P.A. Farm Management, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2016; Available online: https://archive.org/details/farmmanagement0000kayr_s7a1? (accessed on 1 October 2025).
- Radaideh, M.I.; Radaideh, M.I. Application of Stochastic and Deterministic Techniques for Uncertainty Quantification and Sensitivity Analysis of Energy Systems. Int. J. Energy Res. 2020, 44, 2517–2534. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 1 October 2025).
- Kung, L.; Shaver, R.; Grant, R.; Schmidt, R. Silage review: Interpretation of chemical, microbial, and organoleptic properties. J. Dairy Sci. 2018, 101, 4020–4036. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Shaver, R. Interpretation and Use of Silage Fermentation Analysis Reports; University of Wisconsin Extension, ForageLab: Madison, WI, USA, 2001; Available online: https://fyi.extension.wisc.edu/forage/files/2014/01/Fermentation.pdf (accessed on 1 October 2025).
- Gheller, L.S.; Ghizzi, L.G.; Takiya, C.S.; Grigoletto, N.T.S.; Silva, T.B.P.; Marques, J.A.; Dias, M.S.S.; Freu, G.; Rennó, F.P. Different organic acid preparations on fermentation and microbiological profile, chemical composition, and aerobic stability of whole-plant corn silage. Anim. Feed Sci. Technol. 2021, 281, 115083. [Google Scholar] [CrossRef]
- Tuoxunjiang, H.; Yimamu, A.; Li, X.Q.; Maimaiti, R.; Wang, Y.L. Effect of ensiled tomato pomace on performance and antioxidant status in the peripartum dairy cow. J. Anim. Feed Sci. 2020, 29, 105–114. [Google Scholar] [CrossRef]
- Corrias, F.; Atzei, A.; Lai, C.; Dedola, F.; Ibba, E.; Zedda, G.; Canu, F.; Angioni, A. Effects of Industrial Processing on Pesticide Multiresidues Transfer from Raw Tomatoes to Processed Products. Foods 2020, 9, 1497. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; Li, C.; Qian, H.; Yao, W.; Guo, Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 2021, 354, 129552. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Li, C.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. LWT 2021, 147, 111672. [Google Scholar] [CrossRef]
- Jia, Q.; Liao, G.; Chen, L.; Qian, Y.; Yan, X.; Qiu, J. Pesticide residues in animal-derived food: Current state and perspectives. Food Chem. 2024, 438, 137974. [Google Scholar] [CrossRef]
- Ebeid, H.M.; Gawad, R.M.A.; Mahmoud, A.E.M. Influence of Ration Containing Tomato Pomace Silage on Performance of Lactating Buffaloes and Milk Quality. Asian J. Anim. Vet. Adv. 2015, 10, 14–24. [Google Scholar] [CrossRef]
- Da Silva, J.A.; Poli, C.H.E.C.; Tontini, J.F.; Irigoyen, L.R.; Modesto, E.C.; Villalba, J.J. Ingestive Behavior of Young Lambs on Contrasting Tropical Grass Sward Heights. Front. Vet. Sci. 2020, 7, 643. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.J.; Jung, H.-J.G. Lignin and Fiber Digestion. J. Range Manag. Arch. 2001, 54, 420–430. [Google Scholar] [CrossRef]
- E Silva, F.V.; Borges, I.; Silva, V.L.; Lana, Â.M.Q.; Borges, A.L.C.C.; dos Reis, S.T.; Araújo, A.R.; Matos, A.M. Performance and carcass characteristics of lambs fed a solution of crude glycerin during feedlot and pre-slaughter lairage. Rev. Bras. Zootec. 2018, 47, e20170032. [Google Scholar] [CrossRef]
- Weiss, W.P.; Frobose, D.L.; Koch, M.E. Wet Tomato Pomace Ensiled with Corn Plants for Dairy Cows1. J. Dairy Sci. 1997, 80, 2896–2900. [Google Scholar] [CrossRef]
- Costa, R.G.; Treviño, I.H.; de Medeiros, G.R.; Medeiros, A.N.; Pinto, T.F.; de Oliveira, R.L. Effects of replacing corn with cactus pear (Opuntia ficus indica Mill) on the performance of Santa Inês lambs. Small Rumin. Res. 2012, 102, 13–17. [Google Scholar] [CrossRef]
- Costa, R.G.; Beltrão Filho, E.M.; de Medeiros, A.N.; Givisiez, P.E.N.; Queiroga, R.d.C.R.d.E.; Melo, A.A.S. Effects of increasing levels of cactus pear (Opuntia ficus-indica L. Miller) in the diet of dairy goats and its contribution as a water source. Small Rumin. Res. 2009, 82, 62–65. [Google Scholar] [CrossRef]
- Silva, T.S.; de Araujo, G.G.L.; Santos, E.M.; de Oliveira, J.S.; Campos, F.S.; Godoi, P.F.A.; Gois, G.C.; Perazzo, A.F.; Ribeiro, O.L.; Turco, S.H.N. Water intake and ingestive behavior of sheep fed diets based on silages of cactus pear and tropical forages. Trop. Anim. Health Prod. 2021, 53, 244. [Google Scholar] [CrossRef]
- Valenti, B.; Luciano, G.; Pauselli, M.; Mattioli, S.; Biondi, L.; Priolo, A.; Natalello, A.; Morbidini, L.; Lanza, M. Dried tomato pomace supplementation to reduce lamb concentrate intake: Effects on growth performance and meat quality. Meat Sci. 2018, 145, 63–70. [Google Scholar] [CrossRef]
- Knight, M.I.; Linden, N.; Ponnampalam, E.N.; Kerr, M.G.; Brown, W.G.; Hopkins, D.L.; Baud, S.; Ball, A.J.; Borggaard, C.; Wesley, I. Development of VISNIR predictive regression models for ultimate pH, meat tenderness (shear force) and intramuscular fat content of Australian lamb. Meat Sci. 2019, 155, 102–108. [Google Scholar] [CrossRef]
- Wu, G.; Farouk, M.M.; Clerens, S.; Rosenvold, K. Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Sci. 2014, 98, 637–645. [Google Scholar] [CrossRef]
- Lawrie, R.A.; Ledward, D. Lawrie’s Meat Science; Woodhead Publishing: Sawston, UK, 2014; ISBN 1-84569-161-X. [Google Scholar]
- Souza, X.R.; Bressan, M.C.; Pérez, J.R.O.; Faria, P.B.; Vieira, J.O.; Kabeya, D.M. Effects of genetic group, sex, and slaughter weight on the physicochemical properties of meat from growing lambs. Food Sci. Technol. 2004, 24, 543–549. [Google Scholar] [CrossRef]
- Pang, B.; Yu, X.; Bowker, B.; Zhang, J.; Yang, Y.; Zhuang, H. Effect of meat temperature on moisture loss, water properties, and protein profiles of broiler pectoralis major with the woody breast condition. Poult. Sci. 2021, 100, 1283–1290. [Google Scholar] [CrossRef]
- Jensen, T.A.; Antille, D.L.; Tullberg, J.N. Improving On-farm Energy Use Efficiency by Optimizing Machinery Operations and Management: A Review. Agric. Res. 2025, 14, 15–33. [Google Scholar] [CrossRef]
- Lampridi, M.; Kateris, D.; Sørensen, C.G.; Bochtis, D. Energy Footprint of Mechanized Agricultural Operations. Energies 2020, 13, 769. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Tyris, D.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy Use in the EU Livestock Sector: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption. Appl. Sci. 2022, 12, 2142. [Google Scholar] [CrossRef]
- Pestisha, A.; Gabnai, Z.; Chalgynbayeva, A.; Lengyel, P.; Bai, A. On-Farm Renewable Energy Systems: A Systematic Review. Energies 2023, 16, 862. [Google Scholar] [CrossRef]


| Ingredient (g kg−1, Dry Matter Basis) | Concentrate | Partial Mixed Ration Silage |
|---|---|---|
| Corn meal | 655.2 | 510.0 |
| Soybean meal | 294.9 | 80.0 |
| Mineral mix † | 32.8 | 20.0 |
| Limestone | 17.2 | 10.0 |
| Agro-industrial tomato residue ‡ | — | 380.0 |
| Nutrient composition | ||
| Dry matter (g kg−1, as-fed) | 883.4 | 343.8 |
| Crude protein (g kg−1, DM) | 240.0 | 148.8 |
| Total digestible nutrients (g kg−1, DM) | 836.5 | 703.8 |
| Ether extract (g kg−1, DM) | 69.0 | 67.0 |
| Neutral detergent fiber (g kg−1, DM) | 97.8 | 261.8 |
| Acid detergent fiber (g kg−1, DM) | 34.7 | 227.4 |
| Non-fiber carbohydrates (g kg−1, DM) | 499.8 | 412.2 |
| Ash (g kg−1, DM) | 93.4 | 110.2 |
| Lignin (g kg−1, DM) | 11.6 | 116.5 |
| Pesticide residue (µg kg−1) | ||
| Abamectin | — | ND |
| Cimoxanil | — | ND |
| Chlorothalonil | — | ND |
| Difenoconazole | — | ND |
| Mancozeb | — | ND |
| Control | PMR Silage | SE | p-Value | |
|---|---|---|---|---|
| Total dry matter intake (g day−1) | 578.21 | 784.24 | 98.22 | 0.001 |
| Supplement dry matter intake (g day−1) † | 372.20 | 570.62 | 97.37 | 0.001 |
| Forage dry matter intake (g day−1) | 206.01 | 213.91 | 6.27 | 0.019 |
| Crude protein intake (g day−1) | 110.30 | 105.84 | 15.33 | 0.554 |
| Ether extract intake (g day−1) | 30.97 | 43.70 | 6.53 | 0.001 |
| Total digestible nutrient intake (g day−1) | 429.43 | 522.99 | 68.81 | 0.013 |
| Neutral detergent fiber intake (g day−1) | 170.26 | 289.90 | 29.60 | <0.001 |
| Acid detergent fiber intake (g day−1) | 103.06 | 225.14 | 27.21 | <0.001 |
| Non-fibrous carbohydrates intake (g day−1) | 201.66 | 258.59 | 40.13 | 0.010 |
| Lignin intake (g day−1) | 20.44 | 84.19 | 13.90 | <0.001 |
| Ash intake (g day−1) | 21.66 | 89.08 | 14.16 | <0.001 |
| Average daily gain (g day−1) | 138.79 | 213.84 | 60.43 | 0.021 |
| Feed efficiency (g gain g intake−1) | 0.23 | 0.27 | 0.09 | 0.462 |
| Final body weight (kg) | 24.96 | 27.81 | 2.30 | 0.021 |
| Control (Planned) | Control (Intake) † | PMR (Planned) | PMR (Intake) † | |
|---|---|---|---|---|
| Ingredients (g·kg−1 DM) | ||||
| Concentrate | 438.0 | 643.0 | - | - |
| PMR silage | - | - | 891.0 | 727.0 |
| Deferred pasture | 562.0 | 357.0 | 109.0 | 273.0 |
| Chemical composition (g·kg−1 DM) | ||||
| Crude protein | 166.4 | 191.0 | 144.5 | 135.0 |
| TDN | 689.7 | 743.0 | 689.7 | 667.0 |
| Ether extract | 69.0 | 54.0 | 67.0 | 56.0 |
| NDF | 97.8 | 295.0 | 261.8 | 370.0 |
| ADF | 34.7 | 178.0 | 227.4 | 287.0 |
| Ash | 93.4 | 38.0 | 110.2 | 114.0 |
| NFC | 499.8 | 349.0 | 412.2 | 330.0 |
| Lignin | 11.6 | 35.0 | 116.5 | 107.0 |
| Control | PMR Silage | SE | p-Value | |
|---|---|---|---|---|
| Non-carcass components (kg) | 13.74 | 15.11 | 1.35 | 0.051 |
| Hot carcass weight (kg) | 11.22 | 12.70 | 1.08 | 0.012 |
| Cold carcass weight (kg) | 10.16 | 11.61 | 1.13 | 0.017 |
| Subcutaneous fat thickness (mm) | 0.02 | 0.06 | 0.04 | 0.098 |
| Longissimus area 100 kg BW (cm2) | 93.16 | 97.61 | 13.14 | 0.491 |
| Hot carcass yield (%) | 44.87 | 45.51 | 1.61 | 0.298 |
| Cold carcass yield (%) | 40.22 | 40.95 | 1.86 | 0.428 |
| Drip loss (%) | 10.22 | 10.24 | 2.33 | 0.987 |
| Ultimate pH | 5.58 | 5.53 | 0.05 | 0.097 |
| Electrical conductivity (mV) | 84.23 | 84.56 | 3.25 | 0.960 |
| Water activity | 0.96 | 0.97 | 0.00 | 0.435 |
| L* (lightness) | 39.21 | 38.23 | 2.99 | 0.442 |
| a* (intensity of red) | 8.84 | 8.71 | 1.87 | 0.900 |
| b* (intensity of yellow) | 10.29 | 10.16 | 1.11 | 0.984 |
| Water-holding capacity (%) | 28.92 | 28.48 | 1.25 | 0.501 |
| Cooking loss (%) | 29.88 | 39.46 | 7.71 | 0.024 |
| Shear force (N) | 27.22 | 28.25 | 3.36 | 0.330 |
| Chlorothalonil (µg kg−1) | ND | ND | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.M.d.; Ruas, J.R.M.; Vieira, L.K.F.; Monção, F.P.; Oliveira, L.L.d.S.; Pereira, M.I.B.; Porto, E.M.V.; Landim, A.V.; Silva, F.V.e. Tomato Residue Silage as a Sustainable Feed for Lambs with Implications for Performance, Water Use and Meat Quality. Sustainability 2025, 17, 9453. https://doi.org/10.3390/su17219453
Silva AMd, Ruas JRM, Vieira LKF, Monção FP, Oliveira LLdS, Pereira MIB, Porto EMV, Landim AV, Silva FVe. Tomato Residue Silage as a Sustainable Feed for Lambs with Implications for Performance, Water Use and Meat Quality. Sustainability. 2025; 17(21):9453. https://doi.org/10.3390/su17219453
Chicago/Turabian StyleSilva, Adson Moreira da, José Reinaldo Mendes Ruas, Loren Ketlyn Fernandes Vieira, Flávio Pinto Monção, Laura Lúcia dos Santos Oliveira, Maria Izabel Batista Pereira, Edson Marcos Viana Porto, Aline Vieira Landim, and Fredson Vieira e Silva. 2025. "Tomato Residue Silage as a Sustainable Feed for Lambs with Implications for Performance, Water Use and Meat Quality" Sustainability 17, no. 21: 9453. https://doi.org/10.3390/su17219453
APA StyleSilva, A. M. d., Ruas, J. R. M., Vieira, L. K. F., Monção, F. P., Oliveira, L. L. d. S., Pereira, M. I. B., Porto, E. M. V., Landim, A. V., & Silva, F. V. e. (2025). Tomato Residue Silage as a Sustainable Feed for Lambs with Implications for Performance, Water Use and Meat Quality. Sustainability, 17(21), 9453. https://doi.org/10.3390/su17219453

