A Holistic One Health Assessment Framework for Coastal Areas
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Environmental and Ecosystem Health Dynamics
3.2. Human and Animal Health in Socio-Economic Context
3.3. Cross-Sectoral Governance and Policy Integration
3.4. One Health in Coastal Environments: Indicator-Based Approaches for Human, Animal, and Ecosystem Health
4. Discussion
4.1. Applications of This Study’s Findings
4.2. Limitations and Possible Solutions
4.3. Future Development of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAHRI | Aquatic Animal Health Risk Index |
AMBI | AZTI Marine Biotic Index |
AMR | Antimicrobial Resistance |
ASP | Amnesic Shellfish Poisoning |
BWD | Bathing Water Directive |
CFU | Colony Forming Units |
C-OH | Coastal One Health |
CTX | Ciguatera Toxin |
DIN | Dissolved Inorganic Nitrogen |
DIP | Dissolved Inorganic Phosphorus |
DSP | Diarrhetic Shellfish Poisoning |
DPSIR | Drivers–Pressures–State–Impact–Response |
EEQI | Environmental Ecosystem Quality Index |
GIS | Geographic Information Systems |
GOHI | Global One Health Index |
HAB | Harmful Algal Blooms |
HHOI | Human Health Outcome Index |
IDI | Intrinsic Drivers Index |
ICZM | Integrated Coastal Zone Management |
MAR index | Multiple Antibiotic Resistance index |
MCDA | Multi-Criteria Decision Analysis |
MSFD | Marine Strategy Framework Directive |
MPN | Most Probable Number |
MSP | Marine Spatial Planning |
N:P | Nitrogen-to-Phosphorus ratio |
NGO(s) | Non-Governmental Organization(s) |
OHI | Ocean Health Index |
OH | One Health |
PAHs | Polycyclic Aromatic Hydrocarbons |
PBDEs | Polybrominated Diphenyl Ethers |
PCA | Principal Component Analysis |
PCBs | Polychlorinated Biphenyls |
PFAS | Per- and Polyfluoroalkyl Substances |
PFOS | Perfluorooctane Sulfonate |
POPs | Persistent Organic Pollutants |
PSP | Paralytic Shellfish Poisoning |
SDGs | Sustainable Development Goals |
SPL/SEL | Sound Pressure Level/Sound Exposure Level |
SSB/SSBMSY | Spawning Stock Biomass/Maximum Sustainable Yield reference point |
SST | Sea Surface Temperature |
TN | Total Nitrogen |
TP | Total Phosphorus |
UN | United Nations |
WASH | Water, Sanitation and Hygiene |
WFD | Water Framework Directive |
WOAH | World Organisation for Animal Health |
References
- Borja, Á.; Elliott, M.; Andersen, J.; Berg, T.; Carstensen, J.; Halpern, B.; Heiskanen, A.; Korpinen, S.; Lowndes, J.; Martin, G.; et al. Overview of Integrative Assessment of Marine Systems: The Ecosystem Approach in Practice. Front. Mar. Sci. 2016, 3, 20. [Google Scholar] [CrossRef]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Norman, S.A.; Palic, D.; Savage, A.C.N.P.; Plön, S.; Shields, S.; Venegas, C. Editorial: Aquatic One Health—The Intersection of Marine Wildlife Health, Public Health, and Our Oceans. Front. Mar. Sci. 2023, 10, 1227121. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Spalding, M.D.; McIvor, A.L.; Beck, M.W.; Koch, E.W.; Möller, I.; Reed, D.J.; Rubinoff, P.; Spencer, T.; Woodroffe, C.D. Coastal Ecosystems: A Critical Element of Risk Reduction. Conserv. Lett. 2014, 7, 293–301. [Google Scholar] [CrossRef]
- Airoldi, L.; Beck, M.W. Loss, Status and Trends for Coastal Marine Habitats of Europe. Oceanogr. Mar. Biol. Annu. Rev. 2007, 45, 345–405. Available online: https://cris.unibo.it/handle/11585/37346 (accessed on 15 July 2025).
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Breslow, S.J.; Allen, M.; Holstein, D.; Sojka, B.; Barnea, R.; Basurto, X.; Carothers, C.; Charnley, S.; Coulthard, S.; Dolšak, N.; et al. Evaluating Indicators of Human Well-Being for Ecosystem-Based Management. Ecosyst. Health Sustain. 2017, 3, 1411767. [Google Scholar] [CrossRef]
- Our Shared Seas. Threats: Pollution. Our Shared Seas. 2024. Available online: https://oursharedseas.com/threats/threats-pollution/ (accessed on 15 July 2025).
- European Parliament; Council of the European Union. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Repealing Directive 76/160/EEC. Off. J. Eur. Union 2006, L 64, 37–51. Available online: https://eur-lex.europa.eu/eli/dir/2006/7/oj/eng (accessed on 15 July 2025).
- Halpern, B.S.; Longo, C.; Hardy, D.; McLeod, K.L.; Samhouri, J.F.; Katona, S.K.; Kleisner, K.; Lester, S.E.; O’Leary, J.; Ranelletti, M. An Index to Assess the Health and Benefits of the Global Ocean. Nature 2012, 488, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.; Hay, J.; McLean, R.; Ragoonaden, S.; Woodroffe, C.D. Coastal Systems and Low-Lying Areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-chapter6-1.pdf (accessed on 15 July 2025).
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. Extreme Sea Levels on the Rise along Europe’s Coasts. Earth’s Future 2018, 6, 504–518. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC103278 (accessed on 15 July 2025). [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-Based Coastal Defence in the Face of Global Change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Zhang, Y.; Cai, T.; Wu, R. Comparative Study of Environmental Assessment Methods in the Evaluation of Resources and Environmental Carrying Capacity—A Case Study in Xinjiang, China. Sustainability 2019, 11, 4666. [Google Scholar] [CrossRef]
- Gari, S.R.; Newton, A.; Icely, J.D. A Review of the Application and Evolution of the DPSIR Framework with an Emphasis on Coastal Social-Ecological Systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef]
- Patrício, J.; Elliott, M.; Mazik, K.; Papadopoulou, K.N.; Smith, C.J. DPSIR—Two Decades of Trying to Develop a Unifying Framework for Marine Environmental Management? Front. Mar. Sci. 2016, 3, 177. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, L 327, 1–73. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng (accessed on 15 July 2025).
- European Parliament; Council of the European Union. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Off. J. Eur. Union 2008, L 164, 19–40. Available online: https://eur-lex.europa.eu/eli/dir/2008/56/oj/eng (accessed on 15 July 2025).
- Zhang, X.-X.; Liu, J.-S.; Han, L.-F.; Xia, S.; Li, S.-Z.; Li, O.Y.; Kassegne, K.; Li, M.; Yin, K.; Hu, Q.-Q. Towards a Global One Health Index: A Potential Assessment Tool for One Health Performance. Infect. Dis. Poverty 2022, 11, 57. [Google Scholar] [CrossRef]
- Rabinowitz, P.M.; Pappaioanou, M.; Bardosh, K.L.; Conti, L. A Planetary Vision for One Health. BMJ Glob. Health 2018, 3, e001137. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1). Resolution Adopted by the General Assembly on 25 September 2015. United Nations. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 15 July 2025).
- Cabrera, J.; Lee, H.S.; Jeong, J.S.; Aljber, M. Integrated Framework for Coastal Zone Health Index and Vulnerability Assessment. Coast. Eng. Proc. 2024, 38, 163. Available online: https://icce-ojs-tamu.tdl.org/icce/article/view/14482/13754 (accessed on 15 July 2025). [CrossRef]
- Day, M.J. One Health: The Importance of Companion Animal Vector-Borne Diseases. Parasites Vectors 2011, 4, 49. [Google Scholar] [CrossRef]
- Mencke, N. Future Challenges for Parasitology: Vector Control and ‘One Health’ in Europe. Vet. Parasitol. 2013, 195, 256–271. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Wilmer, S. Introduction au Concept “Une Seule Santé”. Centre de Collaboration Nationale en Santé Environnementale. 2011, pp. 1–10. Available online: www.ccnse.ca/sites/default/files/Un_seule_sante_nov_2011.pdf (accessed on 15 July 2025).
- Morand, S.; Figuié, M. Émergence de Maladies Infectieuses. Risques et Enjeux de Société; Quae: Versailles, France, 2016. [Google Scholar]
- Vittecoq, M.; Roche, B.; Prugnolle, F.; Renaud, F.; Thomas, F. Les Maladies Infectieuses; de Boeck Solal: Paris, France, 2015. [Google Scholar]
- Giraudoux, P. Équilibre Écologique et Santé des Écosystèmes: Entre Mythe Biologique et Consensus Social. In Nature ou Culture (Les Colloques de l’Institut Universitaire de France); Publications de l’Université de St Etienne: Saint-Étienne, France, 2014; Available online: https://hal.science/hal-01018244 (accessed on 15 July 2025).
- Le Roux, F.; Wegner, K.M.; Polz, M.F. Oysters and Vibrios as a Model for Disease Dynamics in Wild Animals. Trends Microbiol. 2016, 24, 568–580. [Google Scholar] [CrossRef]
- Paillard, C.; Jean, F.; Ford, S.E.; Powell, E.N.; Klinck, J.M.; Hofmann, E.E.; Flye-Sainte-Marie, J. A Theoretical Individual-Based Model of Brown Ring Disease in Manila Clams, Venerupis philippinarum. J. Sea Res. 2014, 91, 15–34. [Google Scholar] [CrossRef]
- Lagadec, E.; Gomard, Y.; Le Minter, G.; Cordonin, C.; Cardinale, E.; Ramasindrazana, B.; Dietrich, M.; Goodman, S.M.; Tortosa, P.; Dellagi, K. Identification of Tenrec ecaudatus, a Wild Mammal Introduced to Mayotte Island, as a Reservoir of the Newly Identified Human Pathogenic Leptospira mayottensis. PLoS Negl. Trop. Dis. 2016, 10, e0004933. [Google Scholar] [CrossRef] [PubMed]
- Picardeau, M. Virulence of the Zoonotic Agent of Leptospirosis: Still Terra incognita? Nat. Rev. Microbiol. 2017, 15, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.H.; Latham, S.M.; Woolhouse, M.E.J. Risk Factors for Human Disease Emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Haydon, D.T.; Antia, R. Emerging Pathogens: The Epidemiology and Evolution of Species Jumps. Trends Ecol. Evol. 2005, 20, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Huffman, M.A.; Satou, M.; Kawai, S.; Maeno, Y.; Kawamoto, Y.; Quang, N.T.; Nakazawa, S. New Perspectives on the Transmission of Malaria between Macaques and Humans: The Case of Vietnam. Folia Primatol. 2013, 84, 288–289. [Google Scholar] [CrossRef]
- Bebber, D.P. Range-Expanding Pests and Pathogens in a Warming World. Annu. Rev. Phytopathol. 2015, 53, 335–356. [Google Scholar] [CrossRef]
- Vezzulli, L.; Grande, C.; Reid, P.C.; Hélaouet, P.; Edwards, M.; Höfle, M.G.; Pruzzo, C. Climate Influence on Vibrio and Associated Human Diseases during the Past Half-Century in the Coastal North Atlantic. Proc. Natl. Acad. Sci. USA 2016, 113, E5062–E5071. [Google Scholar] [CrossRef]
- Moore, S.M.; ten Bosch, Q.A.; Siraj, A.S.; Soda, K.J.; España, G.; Campo, A.; Gómez, S.; Salas, D.; Raybaud, B.; Wenger, E.; et al. Local and Regional Dynamics of Chikungunya Virus Transmission in Colombia: The Role of Mismatched Spatial Heterogeneity. BMC Med. 2018, 16, 152. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Charlesworth, S.; Leitão, J.P.; Rodríguez-Sánchez, J.P. Urban Drainage in a Context of Climate and Land Cover Changes. Front. Water 2023, 4, 1118338. [Google Scholar] [CrossRef]
- Stoate, C.; Báldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; van Doorn, A.; de Snoo, G.R.; Rakosy, L.; Ramwell, C. Ecological Impacts of Early 21st Century Agricultural Change in Europe—A Review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef]
- Chouaïbou, M.; Fodjo, B.K.; Fokou, G.; Allassane, O.F.; Tchicaya, E.S.; Ngba, K.P.; Koffi, A.A.; David, J.P. Influence of the Agrochemicals Used for Rice and Vegetable Cultivation on Insecticide Resistance in Malaria Vectors in Southern Côte d’Ivoire. Malar. J. 2016, 15, 426. [Google Scholar] [CrossRef]
- Tantely, M.L.; Tortosa, P.; Alout, H.; Berticat, C.; Berthomieu, A.; Rutee, A.; Dehecq, J.-S.; Makoundou, P.; Labbé, P.; Pasteur, N.; et al. Insecticide Resistance in Culex pipiens quinquefasciatus and Aedes albopictus Mosquitoes from La Réunion Island. Insect Biochem. Mol. Biol. 2010, 40, 317–324. [Google Scholar] [CrossRef]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the Mechanisms and Drivers of Antimicrobial Resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Read, A.F.; Woods, R.J. Antibiotic Resistance Management. Evol. Med. Public Health 2014, 2014, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Ezenwa, V.O.; Prieur-Richard, A.-H.; Roche, B.; Bailly, X.; Becquart, P.; García-Peña, G.E.; Hosseini, P.R.; Keesing, F.; Rizzoli, A.; Suzán, G.; et al. Interdisciplinarity and Infectious Diseases: An Ebola Case Study. PLoS Pathog. 2015, 11, e1004992. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, W.; de Figueiredo, P.; Criscitiello, M.F. One Health: Addressing Global Challenges at the Nexus of Human, Animal, and Environmental Health. PLoS Pathog. 2016, 12, e1005731. [Google Scholar] [CrossRef] [PubMed]
- Harvell, C.D.; Kim, K.; Burkholder, J.M.; Colwell, R.R.; Epstein, P.R.; Grimes, D.J.; Hofmann, E.E.; Lipp, E.K.; Osterhaus, A.D.M.E.; Overstreet, R.M.; et al. Emerging Marine Diseases—Climate Links and Anthropogenic Factors. Science 1999, 285, 1505–1510. [Google Scholar] [CrossRef]
- Mondet, F.; de Miranda, J.R.; Kretzschmar, A.; le Conte, Y.; Mercer, A.R. On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor. PLoS Pathog. 2014, 10, e1004323. [Google Scholar] [CrossRef]
- Burge, C.A.; Eakin, C.M.; Friedman, C.S.; Froelich, B.; Hershberger, P.K.; Hofmann, E.E.; Petes, L.E.; Prager, K.C.; Weil, E.; Willis, B.L.; et al. Climate Change Influences on Marine Infectious Diseases: Implications for Management and Society. Annu. Rev. Mar. Sci. 2014, 6, 249–277. [Google Scholar] [CrossRef] [PubMed]
- de Montaudouin, X.; Paul-Pont, I.; Lambert, C.; Gonzalez, P.; Raymond, N.; Jude, F.; Legeay, A.; Baudrimont, M.; Dang, C.; Le Grand, F.; et al. Bivalve Population Health: Multistress to Identify Hot Spots. Mar. Pollut. Bull. 2010, 60, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Petton, B.; Bruto, M.; James, A.; Labreuche, Y.; Alunno-Bruscia, M.; le Roux, F. Crassostrea gigas Mortality in France: The Usual Suspect, a Herpes Virus, May Not Be the Killer in This Polymicrobial Opportunistic Disease. Front. Microbiol. 2015, 6, 686. [Google Scholar] [CrossRef]
- Barneah, O.; Ben-Dov, E.; Kramarsky-Winter, E.; Kushmaro, A. Characterization of Black Band Disease in Red Sea Stony Corals. Environ. Microbiol. 2007, 9, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Bossart, G.D. Marine Mammals as Sentinel Species for Oceans and Human Health. Vet. Pathol. 2011, 48, 676–690. [Google Scholar] [CrossRef]
- Grogan, L.F.; Berger, L.; Rose, K.; Grillo, V.; Cashins, S.D.; Skerratt, L.F. Surveillance for Emerging Biodiversity Diseases of Wildlife. PLoS Pathog. 2014, 10, e1004015. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Yun, S.H.; Rudd, R.J.; Behr, M. High Concentrations of Persistent Organic Pollutants Including PCBs, DDT, PBDEs and PFOS in Little Brown Bats with White-Nose Syndrome in New York, USA. Chemosphere 2010, 80, 613–618. [Google Scholar] [CrossRef]
- Rohr, J.R.; Schotthoefer, A.M.; Raffel, T.R.; Carrick, H.J.; Halstead, N.; Hoverman, J.T.; Johnson, C.M.; Johnson, L.B.; Lieske, C.; Piwoni, M.D.; et al. Agrochemicals Increase Trematode Infections in a Declining Amphibian Species. Nature 2008, 455, 1235–1239. [Google Scholar] [CrossRef]
- Acevedo-Whitehouse, K.; Duffus, A.L.J. Effects of Environmental Change on Wildlife Health. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3429–3438. [Google Scholar] [CrossRef]
- Marcogliese, D.J.; Pietrock, M. Combined Effects of Parasites and Contaminants on Animal Health: Parasites Do Matter. Trends Parasitol. 2011, 27, 123–130. [Google Scholar] [CrossRef]
- Abi-Khalil, C.; Finkelstein, D.S.; Conejero, G.; du Bois, J.; Destoumieux-Garzon, D.; Rolland, J.L. The Paralytic Shellfish Toxin, Saxitoxin, Enters the Cytoplasm and Induces Apoptosis of Oyster Immune Cells through a Caspase-Dependent Pathway. Aquat. Toxicol. 2017, 190, 133–141. [Google Scholar] [CrossRef]
- Beasley, V. Vet Ital. In Veterinaria Italiana n.d., 45(1). Available online: http://www.izs.it/vet_italiana (accessed on 15 July 2025).
- Hégaret, H.; da Silva, P.M.; Sunila, I.; Soudant, P.; Shumway, S.E.; Dixon, M.S.; Alix, J.; Wikfors, G.H. Perkinsosis in the Manila Clam Ruditapes philippinarum Affects Responses to the Harmful Alga Prorocentrum minimum. J. Exp. Mar. Biol. Ecol. 2009, 371, 112–120. [Google Scholar] [CrossRef]
- Lafferty, K.D.; Kuris, A.M. How Environmental Stress Affects the Impacts of Parasites. Limnol. Oceanogr. 1999, 44, 925–931. [Google Scholar] [CrossRef]
- Martin, L.B. Stress and Immunity in Wild Vertebrates: Timing Is Everything. Gen. Comp. Endocrinol. 2009, 163, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, P.M.; Gordon, Z.; Holmes, R.; Taylor, B.; Wilcox, M.; Chudnov, D.; Nadkarni, P.; Dein, F.J. Animals as Sentinels of Human Environmental Health Hazards: An Evidence-Based Analysis. EcoHealth 2005, 2, 26–37. [Google Scholar] [CrossRef]
- Finger, R.; Swinton, S.; El Benni, N.; Walter, A. Precision Farming at the Nexus of Agricultural Production and the Environment. Annu. Rev. Resour. Econ. 2019, 11, 313–335. [Google Scholar] [CrossRef]
- Christakis, N.A.; Fowler, J.H. The Spread of Obesity in a Large Social Network over 32 Years. N. Engl. J. Med. 2007, 357, 370–379. [Google Scholar] [CrossRef]
- Zinsstag, J.; Schelling, E.; Waltner-Toews, D.; Tanner, M. From “One Medicine” to “One Health” and Systemic Approaches to Health and Well-Being. Prev. Vet. Med. 2011, 101, 148–156. [Google Scholar] [CrossRef]
- Ostrom, E. A Diagnostic Approach for Going beyond Panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef]
- Rock, M.; Buntain, B.J.; Hatfield, J.M.; Hallgrímsson, B. Animal–Human Connections, “One Health,” and the Syndemic Approach to Prevention. Soc. Sci. Med. 2009, 68, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Stark, J.; Kirschner, D. Systems Biology of Persistent Infection: Tuberculosis as a Case Study. Nat. Rev. Microbiol. 2008, 6, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a Science, a Movement and a Practice—A Review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef]
- Ezeh, A.; Oyebode, O.; Satterthwaite, D.; Chen, Y.-F.; Ndugwa, R.; Sartori, J.; Mberu, B.; Melendez-Torres, G.J.; Haregu, T.; Watson, S.I.; et al. The History, Geography, and Sociology of Slums and the Health Problems of People Who Live in Slums. Lancet 2017, 389, 547–558. [Google Scholar] [CrossRef]
- Garbois, J.A.; Sodré, F.; Dalbello-Araujo, M. Da Noção de Determinação Social à de Determinantes Sociais da Saúde. Saúde Debate 2017, 41, 63–76. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Jeggo, M.; Daszak, P.; Richt, J.A. (Eds.) One Health: The Human–Animal–Environment Interfaces in Emerging Infectious Diseases: The Concept and Examples of a One Health Approach; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Nguyen-Viet, H.; Lâm, S.; Alonso, S.; Unger, F.; Moodley, A.; Bett, B.; Fèvre, E.M.; Knight-Jones, T.; Mor, S.M.; Nguyen, H.T.T.; et al. Insights and Future Directions: Applying the One Health Approach in International Agricultural Research for Development to Address Food Systems Challenges. One Health 2025, 20, 101007. [Google Scholar] [CrossRef]
- Cleaveland, S.; Sharp, J.; Abela-Ridder, B.; Allan, K.J.; Buza, J.; Crump, J.A.; Davis, A.; Del Rio Vilas, V.J.; de Glanville, W.A.; Kazwala, R.R.; et al. One Health Contributions towards More Effective and Equitable Approaches to Health in Low- and Middle-Income Countries. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160168. [Google Scholar] [CrossRef]
- Essack, S.Y.; Agyepong, N.; Govinden, U.; Owusu-Ofori, A. Multidrug-Resistant Gram-Negative Bacterial Infections in a Teaching Hospital in Ghana. Antibiotics 2018, 7, 37. [Google Scholar] [CrossRef]
- European Commission. One Health Governance in the European Union—Scientific Opinion No. 16; Publications Office of the European Union: Luxembourg, 2024; Available online: https://research-and-innovation.ec.europa.eu/news/all-research-and-innovation-news/commissions-science-advisors-recommend-ways-strengthening-one-health-governance-eu-2024-11-15_en (accessed on 15 July 2025).
- Chuang, Y.; Song, X.; Li, G. Multi-Stakeholder Platform for Coastal Ecosystem Restoration and Sustainable Livelihood in Sanniang Bay in Guangxi, South China. In Ecosystem Restoration through Managing Socio-Ecological Production Landscapes and Seascapes (SEPLS); Nishi, M., Subramanian, S.M., Eds.; Springer: Singapore, 2023; pp. 227–245. [Google Scholar] [CrossRef]
- Kusters, K.; De Graaf, M.; Buck, L.; Galido, K.; Maindo, A.; Mendoza, H.; Nghi, T.H.; Purwanto, E.; Zagt, R. Inclusive Landscape Governance for Sustainable Development: Assessment Methodology and Lessons for Civil Society Organizations. Land 2020, 9, 128. [Google Scholar] [CrossRef]
- Barletti, J.P.S.; Larson, A.M.; Vigil, N.H. Organizing for Transformation? How and Why Organizers Plan Their Multi-Stakeholder Forums. Int. For. Rev. 2021, 23 (Suppl. S1), 9–23. [Google Scholar] [CrossRef]
- Caribbean Natural Resources Institute (CANARI). Integrating Digital Technologies and Participatory Tools to Support Coastal Community Resilience in Trinidad and Tobago (Tech4CoastalResilience); CANARI, 2023; Available online: https://canari.org/projects/tech-4-coastal-resilience/ (accessed on 22 July 2025).
- Trice, A.; Robbins, C.; Philip, N.; Rumsey, M. Challenges and Opportunities for Ocean Data to Advance Conservation and Management; Ocean Conservancy: Washington, DC, USA, 2021; Available online: https://oceanconservancy.org/wp-content/uploads/2021/05/Ocean-Data-Report-FINAL.pdf (accessed on 15 July 2025).
- Malone, T.C.; Newton, A. The Globalization of Cultural Eutrophication in the Coastal Ocean: Causes and Consequences. Front. Mar. Sci. 2020, 7, 670. [Google Scholar] [CrossRef]
- Melet, A.; Teatini, P.; Le Cozannet, G.; Jamet, C.; Conversi, A.; Benveniste, J.; Almar, R. Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers. Surv. Geophys. 2020, 41, 1489–1534. [Google Scholar] [CrossRef]
- Zamora-López, A.; Guerrero-Gómez, A.; Torralva, M.; Zamora-Marín, J.M.; Guillén-Beltrán, A.; Oliva-Paterna, F.J. Shallow Waters as Critical Habitats for Fish Assemblages under Eutrophication-Mediated Events in a Coastal Lagoon. Estuar. Coast. Shelf Sci. 2023, 291, 108447. [Google Scholar] [CrossRef]
- Malham, S.K.; Taft, H.; Farkas, K.; Ladd, C.J.T.; Seymour, M.; Robins, P.E.; Jones, D.L.; McDonald, J.E.; Le Vay, L.; Jones, L. Multi-Scale Influences on Escherichia coli Concentrations in Shellfish: From Catchment to Estuary. Environ. Pollut. 2025, 366, 125476. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Meng, X.; Zhang, C.; Chen, Z. Improved Method for Benthic Ecosystem Health Assessment by Integrating Chemical Indexes into Multiple Biological Indicator Species—A Case Study of the Baiyangdian Lake, China. J. Environ. Manag. 2023, 335, 117530. [Google Scholar] [CrossRef]
- Douglas, E.J.; Pilditch, C.A.; Kraan, C.; Schipper, L.A.; Lohrer, A.M.; Thrush, S.F. Macrofaunal Functional Diversity Provides Resilience to Nutrient Enrichment in Coastal Sediments. Ecosystems 2017, 20, 1324–1336. [Google Scholar] [CrossRef]
- Rishan, S.T.; Kline, R.J.; Rahman, M.S. Exploitation of Environmental DNA (eDNA) for Ecotoxicological Research: A Critical Review on eDNA Metabarcoding in Assessing Marine Pollution. Chemosphere 2024, 351, 141238. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Kroon, F.J.; Berry, K.L.E.; Brinkman, D.L.; Kookana, R.; Leusch, F.D.L.; Melvin, S.D.; Neale, P.A.; Negri, A.P.; Puotinen, M.; Tsang, J.J.; et al. Sources, Presence and Potential Effects of Contaminants of Emerging Concern in the Marine Environments of the Great Barrier Reef and Torres Strait, Australia. Sci. Total Environ. 2020, 719, 135140. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, B.E.; Brewton, R.A.; Herren, L.W.; Porter, J.W.; Hu, C. Nitrogen Enrichment, Altered Stoichiometry, and Coral Reef Decline at Looe Key, Florida Keys, USA: A Three-Decade Study. Mar. Biol. 2019, 166, 108. [Google Scholar] [CrossRef]
- McQuatters-Gollop, A.; Guérin, L.; Arroyo, N.; Aubert, A.; Artigas, L.; Bedford, J.; Corcoran, E.; Dierschke, V.; Elliott, S.; Geelhoed, S.; et al. Assessing the State of Marine Biodiversity in the Northeast Atlantic. Ecol. Indic. 2022, 141, 109148. [Google Scholar] [CrossRef]
- GBD 2019 Antimicrobial Resistance Collaborators. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. Biomarkers-Based Tools to Assess Environmental and Chemical Stressors in Aquatic Systems. Ecol. Indic. 2021, 122, 107207. [Google Scholar] [CrossRef]
- Grizzetti, B.; Vigiak, O.; Udias, A.; Aloe, A.; Zanni, M.; Bouraoui, F.; Pistocchi, A.; Dorati, C.; Friedland, R.; De Roo, A.; et al. How EU Policies Could Reduce Nutrient Pollution in European Inland and Coastal Waters. Glob. Environ. Change 2021, 69, 102281. [Google Scholar] [CrossRef] [PubMed]
- McCrackin, M.L.; Jones, H.P.; Jones, P.C.; Moreno-Mateos, D. Recovery of Lakes and Coastal Marine Ecosystems from Eutrophication: A Global Meta-Analysis. Limnol. Oceanogr. 2016, 62, 507–518. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, J.; Wang, J. Linking Pollution to Biodiversity and Ecosystem Multifunctionality across Benthic–Pelagic Habitats of a Large Eutrophic Lake: A Whole-Ecosystem Perspective. Environ. Pollut. 2021, 277, 117501. [Google Scholar] [CrossRef]
- Jones, A.G.; Schaal, G.; Boyé, A.; Creemers, M.; Derolez, V.; Desroy, N.; Fiandrino, A.; Mouton, T.L.; Simier, M.; Smith, N.; et al. Disentangling the Effects of Eutrophication and Natural Variability on Macrobenthic Communities across French Coastal Lagoons. Peer Community J. 2024, 4, e112. [Google Scholar] [CrossRef]
- Piroddi, C.; Akoglu, E.; Andonegi, E.; Bentley, J.A.; Celić, I.; Coll, M.; Dimarchopoulou, D.; Friedland, R.; de Mutsert, K.; Girardin, R.; et al. Effects of Nutrient Management Scenarios on Marine Food Webs: A Pan-European Assessment in Support of the Marine Strategy Framework Directive. Front. Mar. Sci. 2021, 8, 596797. [Google Scholar] [CrossRef]
- Baquero, O.S. One Health of Peripheries: Biopolitics, Social Determination, and Field of Praxis. Front. Public Health 2021, 9, 617003. [Google Scholar] [CrossRef] [PubMed]
Dimension | Key Insights |
---|---|
Similarities | The literature consistently underscores the central role of animal health within the OH paradigm, recognizing livestock, fisheries, and wildlife as reservoirs and early indicators of emerging threats [68]. There is also a broad consensus that epidemics commonly arise at the interface of human, animal, and environmental systems [75]. Furthermore, most studies stress the necessity of cross-sectoral collaboration and the inclusion of socio-economic determinants in designing effective health strategies [69,70,71]. |
Differences | Research varies in terms of emphasis: some scholars highlight agriculture’s economic contributions to GDP and labor markets [72], while others focus on ecological sustainability and biodiversity loss [73,74]. Distinct contrasts are also observed between studies prioritizing institutional and policy frameworks [76] and those concentrating on technical instruments such as surveillance, data integration, and operational coordination [75]. Divergent approaches also exist in mitigation strategies, ranging from targeted livestock vaccination programs [77] to broader governance and policy measures [76]. |
Strengths | A significant strength lies in the holistic framing of human, animal, and environmental health, which enhances community resilience and improves the effectiveness of health systems [68,71]. International cooperation is often noted as a driver for reducing social inequalities and advancing public health outcomes [71]. Preventive mechanisms including zoonotic disease and antimicrobial resistance (AMR) monitoring [75], coupled with targeted vaccination schemes [77] are highlighted as cost-efficient and sustainable alternatives to reactive interventions. |
Weaknesses | Several limitations are evident across studies. Dependence on political commitment and institutional coordination often undermines progress, particularly in low-resource settings [76]. Insufficient financial support for public health and veterinary services further constrains implementation [77]. The technical and organizational complexity of establishing synchronized surveillance and cross-sectoral mechanisms poses additional challenges [75]. Moreover, socio-cultural barriers within rural communities may slow the uptake of innovative health measures [76]. |
Pillars OH | Sub-Dimensions | Specific Indicators | Pathway of Transmission | Relevance C-OH Framework | References |
---|---|---|---|---|---|
Human Health Outcome Index (HHOI) | Bathing water quality | Enterococci, E. coli (Colony Forming Units (CFU)/100 mL) | Bathing waters become contaminated through untreated sewage, agricultural runoff, and combined sewer overflows, leading to the introduction of fecal bacteria. These organisms survive in coastal waters and are directly ingested or encounter humans during recreational activities. | This indicator reflects the risk of gastrointestinal and skin infections in local populations and tourists, and it is fundamental for public health management in coastal zones. | [85] |
Illness outcomes | Gastrointestinal, dermal, and ear infections (cases per 100k) | Illnesses are triggered by exposure to pathogens and pollutants in contaminated coastal waters. Monitoring reported cases provides evidence of the direct impact of waterborne hazards on communities. | Tracking illness outcomes translates environmental contamination into tangible human health burdens and supports risk-based management decisions. | [96] | |
Vibrio risk | Vibriosis incidence; Vibrio suitability index | Rising sea surface temperatures combined with moderate salinity create optimal growth conditions for Vibrio species. These bacteria can infect humans via open wounds or through the consumption of raw or undercooked seafood. | Vibrio infections are an emerging climate-sensitive hazard, demonstrating how environmental change directly influences disease risk and public health. | [85] | |
Seafood safety | Heavy Metals (Hg, Cd, Pb), PFAS, PCBs, PAHs; shellfish toxins (PSP, Diarrhetic Shellfish Poisoning (DSP), Amnesic Shellfish Poisoning (ASP), Ciguatera Toxin (CTX)) | Contaminants and algal toxins are taken up by filter-feeding organisms and bioaccumulate in fish and shellfish tissues. Consumption of these seafood products leads to dietary exposure and poisoning incidents. | This indicator connects environmental contamination with food safety, nutrition security, and consumer protection. It also highlights the dependency of coastal communities on safe seafood. | [87,97] | |
Harvest closures | Days per year of shellfish closures | Authorities’ close shellfish harvesting areas when monitoring shows microbial or toxin exceedances. Closures prevent intoxication but also disrupt livelihoods and local economies. | The frequency of closures reflects both environmental stress and the social-economic vulnerability of fishing communities, emphasizing the balance between public safety and economic resilience. | [87] | |
Drinking-water intrusion | Salinity exceedances in aquifers | Sea-level rise, storm surges, and flooding lead to the intrusion of saline water into coastal aquifers. This degrades the quality of drinking water and reduces freshwater availability. | Safe and sufficient drinking water is essential for health. This indicator illustrates how coastal hazards undermine basic human needs and increase vulnerability to climate change. | [86] | |
Aquatic Animal Health Risk Index (AAHRI) | Shellfish hygiene | E. coli in shellfish flesh (MPN/100 g); Class A/B/C | Shellfish accumulate microorganisms by filtering large volumes of water. Elevated fecal contamination in shellfish indicates polluted waters and creates risks for consumers. | Monitoring shellfish hygiene protects food safety and provides an early-warning signal for zoonotic transmission pathways at the human–animal–environment interface. | [88] |
Biotoxin accumulation | PSP/DSP/ASP toxin concentrations (µg/kg) | HAB produce toxins that are concentrated in shellfish tissues. These toxins can cause mortality in marine organisms and poisoning in humans. | This indicator reveals how ecosystem disturbances, such as eutrophication, propagate through the food chain and compromise both animal health and human well-being. | [87] | |
Pathogens in fauna | Prevalence of Vibrio, Salmonella, norovirus in bivalves and fish | Aquatic animals act as reservoirs of zoonotic pathogens. Infections in wildlife and aquaculture species create a risk of cross-species transmission to humans. | Surveillance of pathogens in marine animals is essential to identify reservoirs, protect aquaculture, and prevent foodborne and zoonotic outbreaks. | [89] | |
AMR in isolates | Percentage of resistant E. coli; MAR index | Antibiotic residues from aquaculture and wastewater select for resistant bacteria in coastal waters. These resistant strains persist in wildlife and can spread to humans. | AMR in coastal environments represents a critical OH issue because it links environmental pollution to reduced treatment efficacy in human and veterinary medicine. | [91] | |
Contaminant burden | Metals, POPs (mg/kg); microplastics ingestion | Marine fauna ingest microplastics and accumulate chemical pollutants. These substances induce sublethal effects and are transferred to higher trophic levels. | This indicator highlights how environmental pollutants impact animal welfare, ecosystem functioning, and indirectly human health through seafood consumption. | [93,97] | |
Nutrients | TN, TP, Dissolved Inorganic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP), N:P ratios; silica | Nutrient over-enrichment stimulates phytoplankton growth, leading to eutrophication, HAB, and oxygen depletion. | Nutrient indicators are foundational for linking agricultural runoff and land use with coastal ecosystem degradation, fisheries decline, and human health hazards. | [92,98] | |
Environmental Ecosystem Quality Index (EEQI) | Eutrophication status | Chlorophyll-a, dissolved oxygen, Secchi depth, hypoxic area | Excess primary production and decomposition lower oxygen levels and reduce water clarity, creating hypoxic or anoxic conditions that destabilize marine food webs. | Eutrophication status integrates multiple ecosystem processes and provides early warnings of fisheries collapse, biodiversity loss, and public health risks associated with HABs. | [85,99] |
Chemical contaminants | Metals, pesticides, PFAS, pharmaceuticals | Persistent contaminants accumulate in sediments and organisms, where they exert chronic toxic effects, disrupt endocrine systems, and bio magnify through food chains. | Monitoring contaminants addresses long-term threats to ecosystem resilience, animal health, and human food security. | [89,100] | |
Marine litter and plastics | Macro-litter density; microplastics in water and sediment | Marine litter causes entanglement, habitat degradation, and ingestion hazards. Microplastics also carry pathogens and toxic chemicals into marine food webs. | This indicator bridges environmental pollution, animal welfare, and food safety, highlighting the pervasive cross-sector risks of plastic pollution. | [93] | |
Non-indigenous species | Number of introductions; impact class | Invasive species are introduced by shipping and aquaculture, where they alternative biodiversity and ecosystem functions and may carry novel pathogens. | Invasions disrupt ecosystem stability, reduce fisheries productivity, and increase disease risks, demonstrating strong OH linkages. | [95] | |
Coastal habitats | Extent and condition of seagrass, saltmarsh, coral reefs | Habitat degradation reduces nursery areas for fish, weakens coastal protection, and lowers carbon storage capacity. | Healthy habitats support biodiversity, fisheries, climate mitigation, and cultural services, all of which are essential to OH sustainability. | [87,94] | |
Benthic quality indicators | AZTI Marine Biotic Index (AMBI), M-AMBI, SAV-IBI | Shifts in benthic communities occur under pollution and physical disturbance, with declines in sensitive species and dominance of tolerant taxa. | Benthic indicators capture the long-term condition of ecosystems, informing biodiversity conservation and sustainable resource use. | [89,101] | |
Fish community and fisheries | Large Fish Index, mean trophic level, F/FMSY, SSB/SSBMSY | Overfishing reduces population size, alters trophic structure, and undermines stock sustainability. | Fisheries indicators reveal how ecological pressures affect food provision, economic stability, and nutritional health in coastal communities. | [102] | |
Seafloor integrity | Swept-area ratio, benthic condition | Bottom-contact fishing and dredging damage benthic habitats, reduce biodiversity, and alter nutrient cycling. | Seafloor integrity connects human exploitation practices with ecosystem degradation and declining fisheries. | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, A.; Bataka, E.; Kokosis, N.; Kofinas, D.; Billinis, C.; Laspidou, C. A Holistic One Health Assessment Framework for Coastal Areas. Sustainability 2025, 17, 9359. https://doi.org/10.3390/su17219359
Ioannou A, Bataka E, Kokosis N, Kofinas D, Billinis C, Laspidou C. A Holistic One Health Assessment Framework for Coastal Areas. Sustainability. 2025; 17(21):9359. https://doi.org/10.3390/su17219359
Chicago/Turabian StyleIoannou, Alexandra, Evmorfia Bataka, Nikolaos Kokosis, Dimitris Kofinas, Charalambos Billinis, and Chrysi Laspidou. 2025. "A Holistic One Health Assessment Framework for Coastal Areas" Sustainability 17, no. 21: 9359. https://doi.org/10.3390/su17219359
APA StyleIoannou, A., Bataka, E., Kokosis, N., Kofinas, D., Billinis, C., & Laspidou, C. (2025). A Holistic One Health Assessment Framework for Coastal Areas. Sustainability, 17(21), 9359. https://doi.org/10.3390/su17219359