Productive Efficiency Analysis of Olive Flounder Aquaculture in South Korea Using a Stochastic Frontier Approach for Sustainable Aquaculture
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Materials
3.2. Description of Variables
3.3. Data Analysis
Stochastic Frontier Analysis
4. Results
4.1. Descriptive Statistics and Cost Structure Analysis
4.2. Model Testing
4.3. Production Efficiency Analysis
4.4. Input Use and Efficiency Levels
5. Discussion
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MP | Moist pellets |
EP | Extruded pellets |
LR | Log-likelihood ratio |
TE | Technical efficiency |
SFA | Stochastic frontier approach |
DEA | Data envelopment analysis |
NIFS | National Institute of Fisheries Science |
BDEA | Bootstrapping DEA |
SBDEA | Single bootstrapping DEA |
DBDEA | Double BDEA |
Appendix A
Authors | Country | Production Technology | Method | First Stage | Second Stage | ||
---|---|---|---|---|---|---|---|
Sample Size | TE | Regression Analysis | Factors Affecting TE | ||||
Aripin et al. (2020) [17] | Malaysia | Cage | DEA | 70 | 0.92 | Tobit model | Age (−), Experience (+), Education (+), Generation (−), Polyculture (+), Kelantan (+), Penang (−) *, Terengganu (−) ***, Year (+) |
Malaysia | Pond | DEA | 33 | 0.95 | Tobit model | Experience (+) *, Education (+), Generation (−) **, Polyculture (+) **, Penang (−), Terengganu (−), Year (+) | |
Aung et al. (2021) [20] | Myanmar | Small-scale aquaculture | DBDEA | 423 | 0.44 | Double bootstrap truncated model | Age (+), Age squared (−), Experience (+), Extension services (−), Education level (−), Household expenditure per year (−), Gender (−) **, Women’s participation in decision-making index (−) **, Integrated fish farming (−), Polyculture (−) **, Pond size (−) ***, Household adopted mitigation strategies against climatic shocks (−) **, Climatic shocks that affected fish farming in the previous production cycle (+) |
Iliyasu et al. (2016) [18] | Malaysia | Freshwater aquaculture | SBDEA | 212 | 0.80 | OLS model | Experience (+) *, Age (−) *, Extension visit (+) ***, Education (+), Family number (+) *, Farm status (+) |
Malaysia | Pond | SBDEA | 66 | 0.77 | - | - | |
Malaysia | Cage | SBDEA | 69 | 0.80 | - | - | |
Malaysia | Tank | SBDEA | 57 | 0.77 | - | - | |
Malaysia | Pen culture | SBDEA | 20 | 0.63 | - | - | |
Long et al. (2020) [19] | Vietnam | White-leg shrimp | DBDEA | 318 | 0.69 | Tobit model | Education (−), Experience (−), Training (+), Occupation status (+), Farm size (−) ***, Culture length (+) ***, Access to formal credit (−), Phu Yen (−), Khanh Hoa (−), Ninh Thuan (+) |
Vietnam | White-leg shrimp | DEA | 318 | 0.77 | - | - | |
Vietnam | White-leg shrimp | SBDEA | 318 | 0.67 | - | - | |
Mitra et al. (2022a) [21] | Bangladesh | Pond aquaculture (water available) | Meta-frontier DEA | 77 | 0.71 | Tobit model | Farm area (−) *, Feed conversion ratio (−) ***, Access to open water (+) ***, Male (−) **, Education (−), Experience (−), Training (+) **, Land tenure (−) ***, Financial inclusion (+) *** |
Bangladesh | Pond aquaculture (water deficit) | Meta-frontier DEA | 234 | 0.60 | - | - |
Appendix B
Authors | Country | Production Technology | Method | Sample Size | Functional Form | TE | Factors Affecting TE |
---|---|---|---|---|---|---|---|
Awoyemi et al. (2003) [9] | Nigeria | Pond aquaculture | SFA | 46 | Cobb–Douglas | 0.24 | Capital (+) **, Pond size (+) **, Fingerlings (+) **, Chemicals (+) *, Labor (+) ** |
Chiang et al. (2004) [22] | Taiwan | Milkfish | SFA | 433 | Translog | 0.84 | Acreage (+) ***, Fry cost (+) ***, Feed cost (+) ***, Water and electricity (+) ***, Other costs (+) *** |
Islam et al. (2016) [23] | Malaysia | Cage aquaculture | SFA | 78 | Cobb–Douglas | 0.37 | Fry (+) ***, Feed (+) *, Labor (+) ***, Operational cost (−), Energy (+), Other input (−) |
Khan et al. (2020) [26] | Bangladesh | Pond aquaculture | SFA | 225 | Translog | 0.92 | Labor (+) ***, Feed (+) ***, Capital (+) *** |
Long (2024) [24] | Vietnam | White-leg shrimp | SFA | 102 | Cobb–Douglas | 0.88 | Seed (+) ***, Labor (+) ***, Feed (+) ***, Chemicals (−) ***, Electricity (+), Farm size (+) *** |
Mitra et al. (2022b) [25] | Bangladesh | Fish aquaculture | SFA | 517 | Cobb–Douglas | 0.74 | Labor (+) ***, Feed (+) ***, Fingerlings (+) ***, Salt (+), Lime (−) **, Potassium permanganate (+), Water exchange frequency (+) ** |
Singh et al. (2009) [10] | India | Freshwater aquaculture | SFA | 101 | Cobb–Douglas | 0.71 | Pond area (+) ***, Lime (+) *, Chemical fertilizers (−), Rice bran (−), Oil cake (−), Fish health care (+), Fingerlings stocked (+) ***, Labor (+) ** |
Zuzeni Thidza et al. (2024) [27] | Malawi | Pond aquaculture | SFA | 96 | Cobb–Douglas | 0.29 | Fingerlings (+) **, Feed (+), Labor (−), Manure (+), Pond size (−) *, Type of feed (+) ***, Pond area (+) |
References
- National Institute of Fisheries Science (NIFS). Standard Manual of Olive Flounder Culture; NIFS: Busan, Republic of Korea, 2006; pp. 1–2. [Google Scholar]
- National Institute of Fisheries Science (NIFS). The History of Korean Aquaculture; NIFS: Busan, Republic of Korea, 2016; pp. 178–182. [Google Scholar]
- Korean Statistical Information Service (KOSIS). Statistic Database for Aquaculture Production; KOSIS: Daejeon, Republic of Korea, 2024; Available online: https://kostat.go.kr/portal/korea/index (accessed on 9 April 2024).
- Jee, B.Y.; Shin, K.W.; Lee, D.W.; Kim, Y.J.; Lee, M.K. Monitoring of the mortalities and medications in the inland farms of olive flounder, Paralichthys Olivaceus, in South Korea. J. Fish Pathol. 2014, 27, 77–83. [Google Scholar] [CrossRef]
- Kim, S.M.; Jun, L.J.; Park, M.A.; Jung, S.H.; Jeong, H.D.; Jeong, J.B. Monitoring of emaciation disease in cultured olive flounder Paralichthys Olivaceus in Jeju (2010–2013), Korea. Korean J. Parasitol. 2019, 32, 29–35. [Google Scholar] [CrossRef]
- Jwa, M.S.; Park, K.I.; Kim, D.H. The current status and an economic analysis of Jeju olive flounder aquaculture. J. Korean Soc. Fish. Mar. Educ. 2020, 32, 1612–1622. [Google Scholar] [CrossRef]
- Kim, N.L.; Park, K.I.; Lee, B.J.; Kim, D.H. An economic analysis of olive flounder (Paralichthys olivaceus) aquaculture in Wando Region. J. Korean Soc. Fish. Mar. Educ. 2021, 33, 734–743. [Google Scholar] [CrossRef]
- Bravo-Ureta, B.E.; Pinheiro, A.E. Technical, economic, and allocative efficiency in peasant farming: Evidence from the Dominican Republic. J. Dev. Econ. 1997, 35, 4–67. [Google Scholar] [CrossRef]
- Awoyemi, T.T.; Amao, J.O.; Ehirim, N.C. Technical efficiency in aquaculture in Oyo State, Nigeria. Indian J. Agric. Sci. 2003, 58, 812–819. [Google Scholar] [CrossRef]
- Singh, K.; Dey, M.M.; Rabbani, A.G.; Sudhakaran, P.O.; Thapa, G. Technical efficiency of freshwater aquaculture and its determinants in Tripura, India. Agric. Econ. Res. Rev. 2009, 22, 185–195. [Google Scholar] [CrossRef]
- Bukenya, J.O.; Hyuha, T.S.; Molnar, J.; Twinamasiko, J. Efficiency of resource use among pond fish farmers in Central Uganda: A stochastic frontier production function approach. Aquac. Econ. Manag. 2013, 17, 148–170. [Google Scholar] [CrossRef]
- Theodoridis, A.M.; Anwar, M.M. A comparison of DEA and SFA methods: A case study of farm households in Bangladesh. J. Dev. Areas 2011, 45, 95–110. [Google Scholar] [CrossRef]
- Suarez-Fernandez, S.; Quiroga-Garcia, R.; Manzano-Perez, I. A Comparison of DEA and SFA approaches: Application to the US non-life insurance market. Appl. Econ. 2020, 28, 107–127. [Google Scholar]
- Odeck, J.; Bråthen, S. A Meta-analysis of DEA and SFA studies of the technical efficiency of seaports: A comparison of fixed and random-effects regression models. Transp. Res. A Policy Pract. 2012, 46, 1574–1585. [Google Scholar] [CrossRef]
- Malik, M.; Efendi, S.; Zarlis, M. Data envelopment analysis (DEA) model in operation management. IOP Conf. Ser. Mater. Sci. Eng. 2018, 300, 012008. [Google Scholar] [CrossRef]
- Vu, L.T.; Nguyen, N.T.; Dinh, L.H. Measuring banking efficiency in Vietnam: Parametric and non-parametric methods. Banks Bank. Syst. 2019, 14, 55–66. [Google Scholar]
- Aripin, A.; Coglan, L.; Pascoe, S.; Hoang, V.-N. Productive efficiency and capacity utilization of sea bass grow-out culture in peninsular Malaysia. Aquac. Econ. Manag. 2019, 24, 102–121. [Google Scholar] [CrossRef]
- Iliyasu, A.; Mohamed, Z.A.; Terano, R. Comparative analysis of technical efficiency for different production culture systems and species of freshwater aquaculture in Peninsular Malaysia. Aquac. Rep. 2016, 3, 51–57. [Google Scholar] [CrossRef]
- Long, L.K.; Van Thap, L.; Hoai, N.T.; Pham, T.T.T. Data envelopment analysis for analyzing technical efficiency in aquaculture: The bootstrap methods. Aquac. Econ. Manag. 2020, 24, 422–446. [Google Scholar] [CrossRef]
- Aung, Y.M.; Khor, L.Y.; Tran, N.; Shikuku, K.M.; Zeller, M. Technical efficiency of small-scale aquaculture in Myanmar: Does women’s participation in decision-making matter? Aquac. Rep. 2021, 21, 100841. [Google Scholar] [CrossRef]
- Mitra, S.; Khan, M.A.; Nielsen, R.; Rahman, M.T. Improving aquaculture productivity, efficiency and profitability in Bangladesh: Does land ownership matter? Aquac. Econ. Manag. 2022, 26, 215–231. [Google Scholar] [CrossRef]
- Chiang, F.-S.; Sun, C.-H.; Yu, J.-M. Technical efficiency analysis of milkfish (Chanos Chanos) production in Taiwan—An application of the stochastic frontier production function. Aquaculture 2004, 230, 99–116. [Google Scholar] [CrossRef]
- Islam, G.M.N.; Tai, S.Y.; Kusairi, M.N. A stochastic frontier analysis of technical efficiency of fish cage culture in Peninsular Malaysia. SpringerPlus 2016, 5, 1127. [Google Scholar] [CrossRef]
- Long, L.K. Analyzing technical inefficiency and production risk in aquaculture—The stochastic frontier production function with double heteroskedasticity. Aquac. Econ. Manag. 2024, 28, 681–703. [Google Scholar] [CrossRef]
- Mitra, S.; Khan, M.A.; Rahman, M.T.; Nielsen, R. Effects of open water availability on productivity and efficiency of tilapia fish farming. Aquac. Econ. Manag. 2022, 27, 315–334. [Google Scholar] [CrossRef]
- Khan, M.A.; Begum, R.; Nielsen, R.; Hoff, A. Production risk, technical efficiency, and input use nexus: Lessons from Bangladesh aquaculture. J. World. Aquac. Soc. 2020, 52, 57–72. [Google Scholar] [CrossRef]
- Zuzeni Thidza, I.; Viet Nguyen, T.; Már Kristófersson, D. Analysis of pond aquaculture in the northern Malawi: Application of stochastic frontier analysis. Aquac Econ Manag. 2024, 29, 113–130. [Google Scholar] [CrossRef]
- Mussa, H.; Kaunda, E.; Jere, W.W.L.; Ng’ong’ola, D.H. Resource use efficiency in tilapia production in central and southern Malawi. Aquac Econ Manag. 2019, 24, 213–231. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lovell, C.A. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
Variable Name | Unit | Description |
---|---|---|
Production | Kg | Annual production of olive flounder |
Variables in the production frontier | ||
Labor | Person | Preharvest hired and family labor used |
Fry | Number | Quantity of fingerlings stocked in a farm |
Feed | Kg | Preharvest feeding |
Variables in the inefficiency function | ||
Region | Wando and Jeju | |
Feed type | Raw fish-based moist pellets (MP), extruded pellets (EP), and mixed feed (MP + EP) |
Variable | Unit | Frequency (%) | Mean | S.D | Minimum | Maximum |
---|---|---|---|---|---|---|
Production(Y) | Kg | 124,682 | 66,438.45 | 15,000 | 380,000 | |
Labor | Person | 5 | 2.28 | 2 | 15 | |
Fry | Number | 184,083 | 111,683.02 | 37,500 | 700,000 | |
Feed | Kg | 493,393 | 359,163.48 | 1200 | 2,267,000 | |
Regions | ||||||
Wando | 34 | |||||
Jeju | 66 | |||||
Feed type | ||||||
EP (extruded pellets) | 7 | |||||
MP (moist pellets) | 62 | |||||
EP + MP | 31 |
Region | Wando | Jeju | ||
---|---|---|---|---|
USD/kg | % | USD/kg | % | |
Cost item | ||||
Feed | 3.28 | 36.3 | 2.29 | 32.6 |
Labor | 1.16 | 12.9 | 0.91 | 13.0 |
Depreciation | 0.73 | 8.1 | 1.05 | 14.9 |
Energy | 1.01 | 11.1 | 0.79 | 11.2 |
Fry | 0.84 | 9.3 | 0.70 | 10.0 |
Medicine | 0.55 | 6.0 | 0.54 | 7.6 |
Maintenance | 0.73 | 8.1 | 0.25 | 3.5 |
Food | 0.11 | 1.3 | 0.13 | 1.8 |
Tax | 0.07 | 0.8 | 0.16 | 2.3 |
Sale | 0.12 | 1.3 | 0.03 | 0.4 |
Management | 0.01 | 0.2 | 0.05 | 0.7 |
Fuel | 0.02 | 0.3 | 0.04 | 0.6 |
Etc. | 0.39 | 4.3 | 0.08 | 1.2 |
Total cost | 9.03 | 100.0 | 7.03 | 100.0 |
Revenue | 11.92 | 10.10 | ||
Profit | 2.89 | 3.09 |
Null Hypothesis | Likelihood Ratio | Critical Value (a = 0.05) |
---|---|---|
11.93 | 12.59 | |
7.72 ** | 3.84 |
Variable | Parameter | Coefficient | Standard Error |
---|---|---|---|
Production frontier | |||
Constant | β0 | 3.678 *** | 0.941 |
ln lab | β1 | 0.289 *** | 0.103 |
ln fry | β2 | 0.485 *** | 0.073 |
ln feed | β3 | 0.214 *** | 0.053 |
Inefficiency function | |||
Constant | δ0 | −3.540 *** | 1.003 |
Wando | δ1 | −1.906 *** | 0.430 |
MP (moist pellets) | δ2 | 0.085 | 0.927 |
MP (moist pellets) + EP (extruded pellets) | δ3 | −0.192 | 0.826 |
Diagnostic statistics | |||
Sigma squared ( ) | 0.120 | ||
Gamma () | 0.999 | ||
Log-likelihood | −22.290 |
Production Efficiency | Number of Farms | % |
---|---|---|
0.00–0.20 | 9 | 10 |
0.21–0.40 | 55 | 61 |
0.41–0.60 | 21 | 23 |
0.61–0.80 | 0 | 0 |
0.81–1.00 | 5 | 6 |
TE mean | 0.38 | - |
TE minimum | 0.13 | - |
TE maximum | 1.00 | - |
S.D | 0.17 | - |
Production Efficiency | Sale (kg) | Labor (Persons) | Fry (Number) | Feed (kg) |
---|---|---|---|---|
0.00–0.20 | 59,778 | 5 | 213,333 | 434,244 |
0.21–0.40 | 114,310 | 5 | 169,682 | 530,397 |
0.41–0.60 | 174,110 | 5 | 206,905 | 520,614 |
0.81–1.00 | 148,000 | 4 | 194,000 | 78,500 |
Mean | 124,682 | 5 | 184,083 | 493,393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.-L.; Kim, K.-W.; Kim, D.-H. Productive Efficiency Analysis of Olive Flounder Aquaculture in South Korea Using a Stochastic Frontier Approach for Sustainable Aquaculture. Sustainability 2025, 17, 9228. https://doi.org/10.3390/su17209228
Kim N-L, Kim K-W, Kim D-H. Productive Efficiency Analysis of Olive Flounder Aquaculture in South Korea Using a Stochastic Frontier Approach for Sustainable Aquaculture. Sustainability. 2025; 17(20):9228. https://doi.org/10.3390/su17209228
Chicago/Turabian StyleKim, Nam-Lee, Kang-Woong Kim, and Do-Hoon Kim. 2025. "Productive Efficiency Analysis of Olive Flounder Aquaculture in South Korea Using a Stochastic Frontier Approach for Sustainable Aquaculture" Sustainability 17, no. 20: 9228. https://doi.org/10.3390/su17209228
APA StyleKim, N.-L., Kim, K.-W., & Kim, D.-H. (2025). Productive Efficiency Analysis of Olive Flounder Aquaculture in South Korea Using a Stochastic Frontier Approach for Sustainable Aquaculture. Sustainability, 17(20), 9228. https://doi.org/10.3390/su17209228