Assessment of the Effect of Applying Sustainable Irrigation Systems on the Growth of Three Selected Rangelands’ Plants in Semi-Arid Areas of Saudi Arabia
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Plant Selection
2.2. Experimental Setup
2.3. Seedlings Plantation and Irrigation Practices
2.4. Growth Parameters Assessment
2.5. Statistical Analysis
3. Results
3.1. Influence of Irrigation Practices on Plant Height
3.2. Effect of Irrigation System on Stem Diameter
3.3. Effect of Irrigation Practices on Crown Size Ratio
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boone, R.B.; Conant, R.T.; Sircely, J.; Thornton, P.K.; Herrero, M. Climate change impacts on selected global rangeland ecosystem services. Glob. Change Biol. 2018, 24, 1382–1393. [Google Scholar] [CrossRef]
- McCollum, D.W.; Tanaka, J.A.; Morgan, J.A.; Mitchell, J.E.; Fox, W.E.; Maczko, K.A.; Hidinger, L.; Duke, C.S.; Kreuter, U.P. Climate change effects on rangelands and rangeland management: Affirming the need for monitoring. Ecosyst. Health Sustain. 2017, 3, e01264. [Google Scholar] [CrossRef]
- Stringer, L.C.; Mirzabaev, A.; Benjaminsen, T.A.; Harris, R.M.B.; Jafari, M.; Lissner, T.K.; Stevens, N.; Tirado-von Der Pahlen, C. Climate change impacts on water security in global drylands. One Earth 2021, 4, 851–864. [Google Scholar] [CrossRef]
- Al-Jashaami, S.H.K.; Almudhafar, S.M.; Almayahi, B.A. Environmental assessment of natural rangelands and their management potential in Iraq. Libr. Prog. Libr. Sci. Inf. Technol. Comput. 2024, 44, 15357–15366. [Google Scholar]
- Alhaithloul, H.A.S. Environmental and genetic diversity of rangeland plant species in Saudi Arabia. World J. Environ. Biosci. 2019, 8, 46–55. [Google Scholar] [CrossRef]
- Mussa, M.; Hashim, H.; Teha, M. Rangeland degradation: Extent, impacts, and alternative restoration techniques in the rangelands of Ethiopia. Trop. Subtrop. Agroecosyst. 2016, 19, 305–318. [Google Scholar]
- Ghorbel, M.; Alghamdi, A.; Brini, F.; Hawamda, A.I.M.; Mseddi, K. Mitigating water loss in arid lands: Buffelgrass as a potential replacement for alfalfa in livestock feed. Agronomy 2025, 15, 371. [Google Scholar] [CrossRef]
- Ziadat, F.; Conchedda, G.; Haddad, F.; Njeru, J.; Brès, A.; Dawelbait, M.; Li, L. Desertification and Agrifood Systems: Restoration of Degraded Agricultural Lands in the Arab Region. Agriculture 2025, 15, 1249. [Google Scholar] [CrossRef]
- Ouled Belgacem, A.; Ben Salem, F.; Gamoun, M.; Chibani, R.; Louhaichi, M. Revival of traditional best practices for rangeland restoration under climate change in the dry areas: A case study from Southern Tunisia. Int. J. Clim. Change Strateg. Manag. 2019, 11, 643–659. [Google Scholar] [CrossRef]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on drip irrigation: Impact on crop yield, quality, and water productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- Bansal, G.; Mahajan, A.; Verma, A.; Singh, D.B. A review on materialistic approach to drip irrigation system. Mater. Today Proc. 2021, 46, 10712–10717. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Jiang, Y.; Pan, X.; Hussain, Z.; Javaid, M.; Rizwan, M. Advances in sprinkler irrigation: A review in the context of precision irrigation for crop production. Agronomy 2023, 14, 47. [Google Scholar] [CrossRef]
- Vaddula, Y.; Singh, K. Progression of drip irrigation and fertigation in cotton across the globe and its future perspectives for sustainable agriculture: An overview. Appl. Water Sci. 2023, 13, 177. [Google Scholar] [CrossRef]
- Zhang, H.; Khan, A.; Tan, D.K.Y.; Luo, H. Rational water and nitrogen management improves root growth, increases yield and maintains water use efficiency of cotton under mulch drip irrigation. Front. Plant Sci. 2017, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Du, G.; Tian, J.; Jiang, C.; Zhang, Y.; Zhang, W. Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity. Agric. Water Manag. 2021, 255, 106992. [Google Scholar] [CrossRef]
- Farooq, T.H.; Rafay, M.; Basit, H.; Shakoor, A.; Shabbir, R.; Riaz, M.U.; Ali, B.; Kumar, U.; Qureshi, K.A.; Jaremko, M. Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species toward Cr and Pb stress. Front. Plant Sci. 2022, 13, 997120. [Google Scholar] [CrossRef]
- Byambadorj, S.-O.; Park, B.B.; Hernandez, J.O.; Dulamsuren, N.; Sainbuyan, Z.; Altantugs, O.; Sharavdorj, K.; Seong, I.K.; Batkhuu, N.-O. Optimal irrigation regime for woody species potentially suitable for effective and sustainable afforestation in the desert region of Mongolia. Land 2021, 10, 212. [Google Scholar] [CrossRef]
- Franco-Navarro, J.D.; Padilla, Y.G.; Álvarez, S.; Calatayud, Á.; Colmenero-Flores, J.M.; Gómez-Bellot, M.J.; Hernández, J.A.; Martínez-Alcalá, I.; Penella, C.; Pérez-Pérez, J.G. Advancements in Water-Saving Strategies and Crop Adaptation to Drought: A Comprehensive Review. Physiol. Plant. 2025, 177, e70332. [Google Scholar] [CrossRef]
- Ashour, M.A.; Ali, Y.M.; Hasan, A.E.; Abu-Zaid, T.S. A field study on replacing traditional flood irrigation of sugarcane crop in upper Egypt with drip irrigation technique. Appl. Water Sci. 2025, 15, 192. [Google Scholar] [CrossRef]
- Fan, X.; Chen, D.; Che, H.; Wang, Y.; Du, Y.; Hu, X. Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China. Agronomy 2025, 15, 1852. [Google Scholar] [CrossRef]
- van Wijk, M.T. Understanding plant rooting patterns in semi-arid systems: An integrated model analysis of climate, soil type and plant biomass. Glob. Ecol. Biogeogr. 2011, 20, 331–342. [Google Scholar] [CrossRef]
- Reinhardt, K.; McAbee, K.; Germino, M.J. Changes in structure and physiological functioning due to experimentally enhanced precipitation seasonality in a widespread shrub species. Plant Ecol. 2019, 220, 199–211. [Google Scholar] [CrossRef]
- Aziz, M.A.; Zahra, S.; Adil, B.; Naserin, A.; Hameed, M.A.; Ali, I.; Ahmed, T.; Ahmad, A. Effect of Different Levels of Copper Oxide (CuO) Nanoparticles and Biochar on Soil’s Microbial Activities and Maize (Zea Mays L.) Growth. J. Soil Sci. Plant Nutr. 2025, 13, 1–18. [Google Scholar] [CrossRef]
- Aziz, M.A.; Adil, B.; Ali, I.; Alghamdi, A.G. Role of biochar and PGPR in improving soil biochemical characteristics and maize growth under Cr contamination. Int. J. Phytoremediation 2025, 27, 1154–1168. [Google Scholar] [CrossRef]
- El Kenany, E.T.; El-Keblawy, A.; Shaltout, S.K. Effects of soil salinity on nodulation and growth of invasive and native Prosopis seedlings in arid deserts. Res. Sq. 2024, 1–23. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wei, K.; Guo, Y.; Mu, W.; Sun, Y. Magnetic water treatment: An eco-friendly irrigation alternative to alleviate salt stress of brackish water in seed germination and early seedling growth of cotton (Gossypium hirsutum L.). Plants 2022, 11, 1397. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q.; Zhao, X.; Li, Z.; Li, M.; Zhang, J.; Wei, K. Field irrigation using magnetized brackish water affects the growth and water consumption of Haloxylon ammodendron seedlings in an arid area. Front. Plant Sci. 2022, 13, 929021. [Google Scholar] [CrossRef]
- Alam, H.; Zamin, M.; Adnan, M.; Ahmad, N.; Nawaz, T.; Saud, S.; Basir, A.; Liu, K.; Harrison, M.T.; Hassan, S. Evaluating the resistance mechanism of Atriplex leucoclada (Orache) to salt and water stress; A potential crop for biosaline agriculture. Front. Plant Sci. 2022, 13, 948736. [Google Scholar] [CrossRef]
- Shahid, S.A.; Alkandari, A.J. Halophytic Crops as a Solution for Food Security, Land Rehabilitation, and Mitigating Future Water Crises by Utilizing Marginal Quality Waters. In Halophytes vis-à-vis Saline Agriculture: Perspectives and Opportunities for Food Security; Springer: Singapore, 2024; pp. 441–478. [Google Scholar]
- Chen, Z.; Li, S.; Wan, X.; Liu, S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Front. Plant Sci. 2022, 13, 926535. [Google Scholar] [CrossRef]
- Uni, D.; Sheffer, E.; Klein, T.; Shem-Tov, R.; Segev, N.; Winters, G. Responses of two Acacia species to drought suggest different water-use strategies, reflecting their topographic distribution. Front. Plant Sci. 2023, 14, 1154223. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Blanco, M.J.; Ortuño, M.F.; Bañon, S.; Álvarez, S. Deficit irrigation as a strategy to control growth in ornamental plants and enhance their ability to adapt to drought conditions. J. Hortic. Sci. Biotechnol. 2019, 94, 137–150. [Google Scholar] [CrossRef]
- Balliu, A.; Zheng, Y.; Sallaku, G.; Fernández, J.A.; Gruda, N.S.; Tuzel, Y. Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae 2021, 7, 243. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Syst. 2020, 4, 534187. [Google Scholar] [CrossRef]
- Farid, M.; Iqbal, S.; Rana, D.N.; Mushtaq, H.; Sarfraz, W.; Islam, M.; Raza, N.; Ramzan, M.; Umer, M.; Saqib, Z. Development of rangeland conservation and sustainable management practices under changing climate. In Managing Plant Production Under Changing Environment; Springer: Singapore, 2022; pp. 327–349. [Google Scholar]
- Hoyos-Villegas, V.; Houx, J.H.; Singh, S.K.; Fritschi, F.B. Ground-based digital imaging as a tool to assess soybean growth and yield. Crop Sci. 2014, 54, 1756–1768. [Google Scholar] [CrossRef]
- Shepherd, M.J.; Lindsey, L.E.; Lindsey, A.J. Soybean canopy cover measured with Canopeo compared with light interception. Agric. Environ. Lett. 2018, 3, 180031. [Google Scholar] [CrossRef]
- Al-Ghobari, H.M.; Dewidar, A.Z. Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agric. Water Manag. 2018, 209, 55–61. [Google Scholar] [CrossRef]
- Ahmed Mohammed, M.E.; Refdan Alhajhoj, M.; Ali-Dinar, H.M.; Munir, M. Impact of a novel water-saving subsurface irrigation system on water productivity, photosynthetic characteristics, yield, and fruit quality of date palm under arid conditions. Agronomy 2020, 10, 1265. [Google Scholar] [CrossRef]
- Alharbi, S.; Felemban, A.; Abdelrahim, A.; Al-Dakhil, M. Agricultural and Technology-based strategies to improve water-use efficiency in Arid and Semiarid areas. Water 2024, 16, 1842. [Google Scholar] [CrossRef]
- Ali, O.; Cheddadi, I.; Landrein, B.; Long, Y. Revisiting the relationship between turgor pressure and plant cell growth. New Phytol. 2023, 238, 62–69. [Google Scholar] [CrossRef]
- Qaderi, M.M.; Martel, A.B.; Dixon, S.L. Environmental factors influence plant vascular system and water regulation. Plants 2019, 8, 65. [Google Scholar] [CrossRef]
- Al-Huqail, A.A.; Al-Harbi, H.F.; Alowaifeer, A.M.; El-Sheikh, M.A.; Assaeed, A.M.; Alsaleem, T.S.; Kassem, H.S.; Azab, O.M.; Dar, B.A.; Malik, J.A. Correlation between aboveground vegetation composition and soil seed bank of Raudhat desert habitat: A case study of Raudhat Alkhafs, Saudi Arabia. BMC Plant Biol. 2025, 25, 136. [Google Scholar]
- El-Keblawy, A. Impact of fencing and irrigation on species composition and diversity of desert plant communities in the United Arab Emirates. Land Degrad. Dev. 2017, 28, 1354–1362. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, B.; Pang, Y.; Jia, X. Shrub growth improves morphological features of nebkhas: A case study of Nitraria tangutorum in the Tengger Desert. Plants 2024, 13, 624. [Google Scholar] [CrossRef]
- Rasheed, F.; Gondal, A.; Kudus, K.A.; Zafar, Z.; Nawaz, M.F.; Khan, W.R.; Abdullah, M.; Ibrahim, F.H.; Depardieu, C.; Pazi, A.M.M. Effects of soil water deficit on three tree species of the arid environment: Variations in growth, physiology, and antioxidant enzyme activities. Sustainability 2021, 13, 3336. [Google Scholar] [CrossRef]
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J. Salinity stress in arid and semi-arid climates: Effects and management in field crops. In Climate Change and Agriculture; IntechOpen: London, UK, 2019. [Google Scholar]
- Hassan, I.F.; Ajaj, R.; Gaballah, M.S.; Ogbaga, C.C.; Kalaji, H.M.; Hatterman-Valenti, H.M.; Alam-Eldein, S.M. Foliar application of nano-silicon improves the physiological and biochemical characteristics of ‘Kalamata’olive subjected to deficit irrigation in a semi-arid climate. Plants 2022, 11, 1561. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, S.; Wu, M.; Yang, H.; Zhang, W.; Chen, J.; Wang, C.; Huang, S.; Zhang, R.; Zhang, Y. Drip irrigation improves spring wheat water productivity by reducing leaf area while increasing yield. Eur. J. Agron. 2023, 143, 126710. [Google Scholar] [CrossRef]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Lakhiar, I.A. Effects of drip irrigation emitter density with various irrigation levels on physiological parameters, root, yield, and quality of cherry tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. A comprehensive review of impacts of soil management practices and climate adaptation strategies on soil thermal conductivity in agricultural soils. Rev. Environ. Sci. Bio/Technol. 2025, 24, 513–543. [Google Scholar] [CrossRef]
- Aziz, M.A.; Khan, K.S.; Khalid, R.; Shabaan, M.; Alghamdi, A.G.; Alasmary, Z.; Majrashi, M.A. Integrated application of biochar and chemical fertilizers improves wheat (Triticum aestivum) productivity by enhancing soil microbial activities. Plant Soil 2024, 502, 433–448. [Google Scholar] [CrossRef]
- Alkhedir, G.M.; Taniguchi, T. Morphological and physiological adaptation of a desert shrub, Encelia farinosa, under drought stress. Acta Oecologica 2024, 122, 103976. [Google Scholar] [CrossRef]
- Asghar, R.; Aziz, M.A.; Okla, M.K.; Ali, I.; Khan, B.; Alkahtani, J.; Iqbal, T.; Yong, J.W.H. Recycling of agricultural waste through anaerobic composting and its impact on soil biochemical health and Zea mays productivity. J. Mater. Cycles Waste Manag. 2025, 27, 2207–2220. [Google Scholar] [CrossRef]
- Sorce, C.; Giovannelli, A.; Sebastiani, L.; Anfodillo, T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep. 2013, 32, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.M.; Karimi, M.; Venditti, A.; Zahra, N.; Siddique, K.H.M.; Farooq, M. Plant adaptation to drought stress: The role of anatomical and morphological characteristics in maintaining the water status. J. Soil Sci. Plant Nutr. 2025, 25, 409–427. [Google Scholar] [CrossRef]
- Arseniou, G.; MacFarlane, D.W. Fractal dimension of tree crowns explains species functional-trait responses to urban environments at different scales. Ecol. Appl. 2021, 31, e02297. [Google Scholar] [CrossRef]
- Tao, Y.; Chiu, L.-W.; Hoyle, J.W.; Dewhirst, R.A.; Richey, C.; Rasmussen, K.; Du, J.; Mellor, P.; Kuiper, J.; Tucker, D. Enhanced photosynthetic efficiency for increased carbon assimilation and woody biomass production in engineered hybrid poplar. Forests 2023, 14, 827. [Google Scholar] [CrossRef]
- Kang, J.; Peng, Y.; Xu, W. Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. Int. J. Mol. Sci. 2022, 23, 9310. [Google Scholar] [CrossRef]
- Bhattacharya, A. Effect of soil water deficit on growth and development of plants: A review. In Soil Water Deficit and Physiological Issues in Plants; Springer: Singapore, 2021; pp. 393–488. [Google Scholar]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef]
- Abdalla, M.; Bitterlich, M.; Jansa, J.; Püschel, D.; Ahmed, M.A. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. J. Exp. Bot. 2023, 74, 4808–4824. [Google Scholar] [CrossRef]
- Farooq, M.; Rafique, S.; Zahra, N.; Rehman, A.; Siddique, K.H.M. Root system architecture and salt stress responses in cereal crops. J. Agron. Crop Sci. 2024, 210, e12776. [Google Scholar] [CrossRef]
- Yadeta, T.; Veenendaal, E.; Sykora, K.; Tessema, Z.K.; Asefa, A. Effect of Vachellia tortilis on understory vegetation, herbaceous biomass and soil nutrients along a grazing gradient in a semi-arid African savanna. J. For. Res. 2018, 29, 1601–1609. [Google Scholar] [CrossRef]
Location/Plant | GWR (m d−1) | Total Water Added (m3 ha−1) | Drip Irrigation * | Sprinkler Irrigation * | ||
---|---|---|---|---|---|---|
Amount per Plot (L) | Operation Time ** (min) | Amount per Plot (L) | Operation Time ** (min) | |||
Al-Tamiryyat: | ||||||
Aldamran | 0.00093 | 3069 | 23.3 | 28 | 744 | 25 |
Alrughal | 0.00099 | 3267 | 24.8 | 30 | 792 | 26 |
Al-Rutha | 0.00113 | 3729 | 28.3 | 34 | 904 | 30 |
Al-Sahwa: | ||||||
Al-Samur | 0.00111 | 3663 | 27.8 | 33 | 888 | 30 |
Al-Awsag | 0.00148 | 4884 | 37.0 | 44 | 1184 | 40 |
Talih | 0.00148 | 4884 | 37.0 | 44 | 1184 | 40 |
Al-Fuhaihil: | ||||||
Talih | 0.00139 | 4587 | 34.8 | 42 | 1112 | 37 |
Al-Ghada | 0.00119 | 3927 | 29.8 | 36 | 952 | 32 |
Sidir | 0.00119 | 3927 | 29.8 | 36 | 952 | 32 |
ANOVA of Plant Height inAl-Tamiryyat (Al-Jouf) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 64,035.416 | 32,017.708 | 50.169 | 0.000 |
PT | 2 | 5879.824 | 2939.912 | 4.607 | 0.011 |
P | 11 | 6084.110 | 553.101 | 0.867 | 0.574 |
IRS × PT | 4 | 2,8944.246 | 7236.062 | 11.338 | 0.000 |
IRS × P | 22 | 9558.982 | 434.499 | 0.681 | 0.856 |
PT × P | 22 | 1846.762 | 83.944 | 0.132 | 1.000 |
IRS × PT × P | 44 | 3316.337 | 75.371 | 0.118 | 1.000 |
Residuals | 126 | 14,250.552 | 113.1 | ||
ANOVA of Plant Height inAl-Sahwa (Al-Madina) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 41,112.452 | 20,556.226 | 27.565 | 0.000 |
PT | 2 | 80,311.487 | 40,155.743 | 53.847 | 0.000 |
P | 11 | 18,734.424 | 1703.129 | 2.284 | 0.012 |
IRS × PT | 4 | 7924.299 | 1981.075 | 2.657 | 0.034 |
IRS × P | 22 | 16,956.662 | 770.757 | 1.034 | 0.425 |
PT × P | 22 | 3233.744 | 146.988 | 0.197 | 1.000 |
IRS × PT × P | 44 | 3036.337 | 69.008 | 0.093 | 1.000 |
Residuals | 212 | 158,095.310 | 745.733 | ||
ANOVA of Plant Height inAl-SahwaAl-Fuhaihil (Thadiq) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 519,213.935 | 259,606.967 | 1842.800 | 0.000 |
PT | 2 | 6724.722 | 3362.361 | 23.867 | 0.000 |
P | 11 | 58,568.562 | 5324.415 | 37.795 | 0.000 |
IRS × PT | 4 | 2841.397 | 710.349 | 5.042 | 0.001 |
IRS × P | 22 | 94,075.560 | 4276.162 | 30.354 | 0.000 |
PT × P | 22 | 3347.200 | 152.145 | 1.080 | 0.370 |
IRS × PT × P | 44 | 2736.998 | 62.204 | 0.442 | 0.999 |
Residuals | 216 | 30,429.302 | 140.876 |
ANOVA of Plant Height in Al-Tamiryyat (Al-Jouf) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 6206.854 | 3103.427 | 76.921 | 0.000 |
PT | 2 | 263.480 | 131.740 | 3.265 | 0.040 |
P | 11 | 1185.101 | 107.736 | 2.670 | 0.003 |
IRS × PT | 4 | 857.699 | 214.425 | 5.315 | 0.000 |
IRS × P | 22 | 607.781 | 27.626 | 0.685 | 0.852 |
PT × P | 22 | 106.847 | 4.857 | 0.120 | 1.000 |
IRS × PT × P | 44 | 148.076 | 3.365 | 0.083 | 1.000 |
Residuals | 216 | 8714.712 | 40.346 | ||
ANOVA of Plant Height in Al-Sahwa (Al-Madina) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 1349.662 | 674.831 | 84.417 | 0.000 |
PT | 2 | 681.351 | 340.675 | 42.616 | 0.000 |
P | 11 | 424.625 | 38.602 | 4.829 | 0.000 |
IRS × PT | 4 | 417.965 | 104.491 | 13.071 | 0.000 |
IRS × P | 22 | 372.314 | 16.923 | 2.117 | 0.003 |
PT × P | 22 | 145.490 | 6.613 | 0.827 | 0.690 |
IRS × PT × P | 44 | 46.223 | 1.051 | 0.131 | 1.000 |
Residuals | 214 | 1710.720 | 7.994 | ||
ANOVA of Plant Height in Al-SahwaAl-Fuhaihil (Thadiq) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 20,569.996 | 10,284.998 | 1294.455 | 0.000 |
PT | 2 | 419.856 | 209.928 | 26.421 | 0.000 |
P | 11 | 3400.137 | 309.103 | 38.903 | 0.000 |
IRS × PT | 4 | 217.794 | 54.448 | 6.853 | 0.000 |
IRS × P | 22 | 3508.005 | 159.455 | 20.069 | 0.000 |
PT × P | 22 | 95.358 | 4.334 | 0.546 | 0.953 |
IRS × PT × P | 44 | 55.729 | 1.267 | 0.159 | 1.000 |
Residuals | 216 | 1716.213 | 7.945 |
ANOVA of Plant Height in Al-Tamiryyat (Al-Jouf) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 19.727 | 9.864 | 7.339 | 0.001 |
PT | 2 | 8.001 | 4.001 | 2.977 | 0.053 |
P | 11 | 61.624 | 5.602 | 4.168 | 0.000 |
IRS × PT | 4 | 11.388 | 2.847 | 2.118 | 0.080 |
IRS × P | 22 | 40.004 | 1.818 | 1.353 | 0.141 |
PT × P | 22 | 22.663 | 1.030 | 0.766 | 0.765 |
IRS × PT × P | 44 | 48.274 | 1.097 | 0.816 | 0.787 |
Residuals | 216 | 290.302 | 1.344 | ||
ANOVA of Plant Height in Al-Sahwa (Al-Madina) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 178.844 | 89.422 | 95.814 | 0.000 |
PT | 2 | 37.664 | 18.832 | 20.178 | 0.000 |
P | 11 | 81.565 | 7.415 | 7.945 | 0.000 |
IRS × PT | 4 | 57.089 | 14.272 | 15.293 | 0.000 |
IRS × P | 22 | 80.219 | 3.646 | 3.907 | 0.000 |
PT × P | 22 | 42.741 | 1.943 | 2.082 | 0.004 |
IRS × PT × P | 44 | 71.296 | 1.620 | 1.736 | 0.005 |
Residuals | 214 | 199.723 | 0.933 | ||
ANOVA of Plant Height in Al-SahwaAl-Fuhaihil (Thadiq) | |||||
Source of Variation | df | Sum of Squares | Mean Square | F-Value | p-Value |
IRS | 2 | 190.234 | 95.117 | 220.978 | 0.000 |
PT | 2 | 3.242 | 1.621 | 3.766 | 0.025 |
P | 11 | 41.083 | 3.735 | 8.677 | 0.000 |
IRS × PT | 4 | 4.786 | 1.196 | 2.780 | 0.028 |
IRS × P | 22 | 67.975 | 3.090 | 7.178 | 0.000 |
PT × P | 22 | 17.998 | 0.818 | 1.901 | 0.011 |
IRS × PT × P | 44 | 35.506 | 0.807 | 1.875 | 0.002 |
Residuals | 216 | 92.974 | 0.430 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzat, S.; Gaiballa, A.; Majrashi, M.A.; Alasmary, Z.; Ibrahim, H.M.; Harbi, M.A.; Abldubise, A.; Alqahtani, M.A.; Alghamdi, A.G. Assessment of the Effect of Applying Sustainable Irrigation Systems on the Growth of Three Selected Rangelands’ Plants in Semi-Arid Areas of Saudi Arabia. Sustainability 2025, 17, 9098. https://doi.org/10.3390/su17209098
Ezzat S, Gaiballa A, Majrashi MA, Alasmary Z, Ibrahim HM, Harbi MA, Abldubise A, Alqahtani MA, Alghamdi AG. Assessment of the Effect of Applying Sustainable Irrigation Systems on the Growth of Three Selected Rangelands’ Plants in Semi-Arid Areas of Saudi Arabia. Sustainability. 2025; 17(20):9098. https://doi.org/10.3390/su17209098
Chicago/Turabian StyleEzzat, Sahar, Abdelaziz Gaiballa, Mosaed A. Majrashi, Zafer Alasmary, Hesham M. Ibrahim, Meshal Abdullah Harbi, Abdullah Abldubise, Munirah Ayid Alqahtani, and Abdulaziz G. Alghamdi. 2025. "Assessment of the Effect of Applying Sustainable Irrigation Systems on the Growth of Three Selected Rangelands’ Plants in Semi-Arid Areas of Saudi Arabia" Sustainability 17, no. 20: 9098. https://doi.org/10.3390/su17209098
APA StyleEzzat, S., Gaiballa, A., Majrashi, M. A., Alasmary, Z., Ibrahim, H. M., Harbi, M. A., Abldubise, A., Alqahtani, M. A., & Alghamdi, A. G. (2025). Assessment of the Effect of Applying Sustainable Irrigation Systems on the Growth of Three Selected Rangelands’ Plants in Semi-Arid Areas of Saudi Arabia. Sustainability, 17(20), 9098. https://doi.org/10.3390/su17209098