Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,497)

Search Parameters:
Keywords = native plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4541 KB  
Article
Morphological and Phenological Diversity of Pod Corn (Zea mays Var. Tunicata) from Mexico and Its Functional Traits Under Contrasting Environments
by Teresa Romero-Cortes, Raymundo Lucio Vázquez Mejía, José Esteban Aparicio-Burgos, Martin Peralta-Gil, María Magdalena Armendáriz-Ontiveros, Mario A. Morales-Ovando and Jaime Alioscha Cuervo-Parra
Plants 2026, 15(2), 280; https://doi.org/10.3390/plants15020280 (registering DOI) - 16 Jan 2026
Abstract
Pod corn (Zea mays var. tunicata) bears leafy glumes that enclose kernels, resembling a partial reversion to wild-forms, yet remains poorly characterized in situ in Mexico. We evaluated Mexican accessions at two contrasting locations to quantify morphological/phenological diversity and to assess [...] Read more.
Pod corn (Zea mays var. tunicata) bears leafy glumes that enclose kernels, resembling a partial reversion to wild-forms, yet remains poorly characterized in situ in Mexico. We evaluated Mexican accessions at two contrasting locations to quantify morphological/phenological diversity and to assess functional traits via proximate kernel composition. Standard descriptors captured variation in plant architecture, tassel/ear traits (including glume length), and reproductive timing. Accessions showed strong plasticity and significant accession × environment effects on ear morphology and maturation. Grain yield ranged from 6.32 to 10.78 t ha−1, with peak values comparable to commercial hybrids and above-typical yields reported for native Mexican races (2.7–6.6 t ha−1). Proximate analysis showed that milling with the tunic increased moisture/ash (up to 3.07% vs. 1.80% in dehulled grain), tended to lower fat and protein, and yielded lower crude fiber than dehulled samples (0.78–0.96% vs. 1.59–1.77%); protein varied widely (1.05–6.64%). Thus, the tunic modulates elemental composition, informing processing choices (with vs. without tunic). Our results document a spectrum of morphotypes and highlight developmental diversity and field adaptability. The observed accession × environment responses provide a practical baseline for comparisons with native and improved varieties, and help guide product development strategies. Collectively, these data underscore the high productive potential of pod corn (up to 10.78 t ha−1 under optimal management) and show that including the tunic substantially alters proximate composition, establishing a quantitative foundation for genetic improvement and food applications. Overall, pod corn’s distinctive ear morphology and context-dependent composition reinforce its value for conservation, developmental genetics, and low-input systems. Full article
(This article belongs to the Section Plant Genetic Resources)
28 pages, 5967 KB  
Article
Implantation of Bioreactor-Conditioned Plant-Based Vascular Grafts
by Tai Yin, Nicole Gorbenko, Christina Karras, Samantha E. Nainan, Gianna Imeidopf, Arvind Ramsamooj, Sleiman Ghorayeb and Nick Merna
J. Funct. Biomater. 2026, 17(1), 43; https://doi.org/10.3390/jfb17010043 - 15 Jan 2026
Abstract
Small-diameter synthetic grafts often fail from thrombosis, intimal hyperplasia, and compliance mismatch, highlighting the need for alternatives that better support endothelialization and remodeling. Here, we evaluated multilayer plant-based vascular grafts fabricated from decellularized leatherleaf viburnum reinforced with cross-linked gelatin, seeded with vascular smooth [...] Read more.
Small-diameter synthetic grafts often fail from thrombosis, intimal hyperplasia, and compliance mismatch, highlighting the need for alternatives that better support endothelialization and remodeling. Here, we evaluated multilayer plant-based vascular grafts fabricated from decellularized leatherleaf viburnum reinforced with cross-linked gelatin, seeded with vascular smooth muscle cells and endothelial cells, and conditioned in a perfusion bioreactor to mimic physiological shear stress. Pre-implant assays confirmed effective decellularization, low residual detergent, and mechanical integrity suitable for surgical handling. In a rat abdominal aorta interposition model, plant-based grafts remained patent at 1, 4, and 24 weeks and showed higher survival than silicone controls. Ultrasound imaging demonstrated flow patterns and resistance indices similar to native vessels, and plant-based grafts maintained significantly higher endothelial cell coverage than silicone controls, reaching native-like density by 24 weeks. Histology and biochemical assays showed early collagen and elastin coverage comparable to native aorta and increased collagen by 24 weeks. Scanning electron microscopy showed smooth luminal surfaces with minimal thrombus formation, contrasting with the rougher, thrombus-prone surfaces of silicone grafts. These findings indicate that plant-based grafts support endothelialization, maintain long-term patency, and undergo favorable remodeling in vivo, supporting their potential as a biomimetic alternative for small-diameter arterial repair. Full article
Show Figures

Graphical abstract

24 pages, 1821 KB  
Article
PepScorer::RMSD: An Improved Machine Learning Scoring Function for Protein–Peptide Docking
by Andrea Giuseppe Cavalli, Giulio Vistoli, Alessandro Pedretti, Laura Fumagalli and Angelica Mazzolari
Int. J. Mol. Sci. 2026, 27(2), 870; https://doi.org/10.3390/ijms27020870 - 15 Jan 2026
Abstract
Over the past two decades, pharmaceutical peptides have emerged as a powerful alternative to traditional small molecules, offering high potency, specificity, and low toxicity. However, most computational drug discovery tools remain optimized for small molecules and need to be entirely adapted to peptide-based [...] Read more.
Over the past two decades, pharmaceutical peptides have emerged as a powerful alternative to traditional small molecules, offering high potency, specificity, and low toxicity. However, most computational drug discovery tools remain optimized for small molecules and need to be entirely adapted to peptide-based compounds. Molecular docking algorithms, commonly employed to rank drug candidates in early-stage drug discovery, often fail to accurately predict peptide binding poses due to their high conformational flexibility and scoring functions not being tailored to peptides. To address these limitations, we present PepScorer::RMSD, a novel machine learning-based scoring function specifically designed for pose selection and enhancement of docking power (DP) in virtual screening campaigns targeting peptide libraries. The model predicts the root-mean-squared deviation (RMSD) of a peptide pose relative to its native conformation using a curated dataset of protein–peptide complexes (3–10 amino acids). PepScorer::RMSD outperformed conventional, ML-based, and peptide-specific scoring functions, achieving a Pearson correlation of 0.70, a mean absolute error of 1.77 Å, and top-1 DP values of 92% on the evaluation set and 81% on an external test set. Our PLANTS-based workflow was benchmarked against AlphaFold-Multimer predictions, confirming its robustness for virtual screening. PepScorer::RMSD and the curated dataset are freely available in Zenodo Full article
Show Figures

Graphical abstract

29 pages, 2836 KB  
Review
Harnessing Endophytic Fungi for Sustainable Agriculture: Interactions with Soil Microbiome and Soil Health in Arable Ecosystems
by Afrin Sadia, Arifur Rahman Munshi and Ryota Kataoka
Sustainability 2026, 18(2), 872; https://doi.org/10.3390/su18020872 - 15 Jan 2026
Abstract
Sustainable food production for a growing population requires farming practices that reduce chemical inputs while maintaining soil as a living, renewable foundation for productivity. This review synthesizes current advances in understanding how endophytic fungi (EFs) interact with the soil microbiome and contribute to [...] Read more.
Sustainable food production for a growing population requires farming practices that reduce chemical inputs while maintaining soil as a living, renewable foundation for productivity. This review synthesizes current advances in understanding how endophytic fungi (EFs) interact with the soil microbiome and contribute to the physicochemical and biological dimensions of soil health in arable ecosystems. We examine evidence showing that EFs enhance plant nutrition through phosphate solubilization, siderophore-mediated micronutrient acquisition, and improved nitrogen use efficiency while also modulating plant hormones and stress-responsive pathways. EFs further increase crop resilience to drought, salinity, and heat; suppress pathogens; and influence key soil properties including aggregation, organic matter turnover, and microbial network stability. Recent integration of multi-omics, metabolomics, and community-level analyses has shifted the field from descriptive surveys toward mechanistic insight, revealing how EFs regulate nutrient cycling and remodel rhizosphere communities toward disease-suppressive and nutrient-efficient states. A central contribution of this review is the linkage of EF-mediated plant functions with soil microbiome dynamics and soil structural processes framed within a translational pipeline encompassing strain selection, formulation, delivery, and field scale monitoring. We also highlight current challenges, including context-dependent performance, competition with native microbiota, and formulation and deployment constraints that limit consistent outcomes under field conditions. By bridging microbial ecology with agronomy, this review positions EFs as biocontrol agents, biofertilizers, and ecosystem engineers with strong potential for resilient, low-input, and climate-adaptive cropping systems. Full article
Show Figures

Figure 1

17 pages, 1325 KB  
Article
Shifts in Composition, Origin, and Distribution of Invasive Alien Plants in Guangxi, China, over 50 Years
by Jia Kong, Cong Hu, Yadong Qie, Chaohao Xu, Aihua Wang, Zhonghua Zhang and Gang Hu
Diversity 2026, 18(1), 44; https://doi.org/10.3390/d18010044 - 14 Jan 2026
Viewed by 24
Abstract
Invasions by alien plants are major global drivers of ecosystem changes and loss of biodiversity. Guangxi is an ecological barrier in southern China that is increasingly being affected by invasive alien plant species. We comprehensively reviewed the literature, compiling and analyzing the long-term [...] Read more.
Invasions by alien plants are major global drivers of ecosystem changes and loss of biodiversity. Guangxi is an ecological barrier in southern China that is increasingly being affected by invasive alien plant species. We comprehensively reviewed the literature, compiling and analyzing the long-term changes in species composition, native range, life forms, municipal-scale patterns, and correlates of invasive alien plant richness in Guangxi at three time points (1973, 2010, and 2023). Over the 50-year period, the number of invasive alien plant species markedly increased from 31 species in 1973 to 84 in 2010 and 158 in 2023; the number of families, genera, and species increased 2.05-, 3.75-, and 5.10-fold, respectively. Species native to North America consistently dominated the invasive flora, followed by those native to Africa. The number of species native to South America and Asia increased in the records from 2010 to 2023. Annual herbaceous plants accounted for the largest proportion of invasive species throughout the study period and showed the largest absolute increase in species number. However, no substantial temporal shifts in the overall life-form composition were detected. At the municipal scale, the invasive alien plant richness exhibited pronounced spatial heterogeneity. The invasive alien plant richness was highest in Guilin and Baise in 1973, in Guilin in 2023, followed by Nanning and Baise. Correlation analyses based on 2023 data revealed a significant positive association between invasive alien plant richness and tourism intensity, whereas relationships between population size, gross domestic product, and climatic variables were weak or nonsignificant. Overall, our results document the continued expansion and the spatial differentiation of invasive alien plants in Guangxi over the 50-year period of 1973–2023. These patterns primarily reflect the accumulation in the number of recorded invasive species under a consistent classification framework and should be interpreted with caution given the potential variation in survey effort among periods and cities. The results provide a descriptive baseline for the provincial-scale monitoring, risk assessment, and management of invasive alien plants. Full article
(This article belongs to the Special Issue Ecology, Distribution, Impacts, and Management of Invasive Plants)
Show Figures

Figure 1

16 pages, 2951 KB  
Article
Antioxidant and Anti-Inflammatory Constituents from the Roots of Anodendron affine: Inhibition of the fMLP-Induced Superoxide Anion Generation and Molecular Docking Studies
by Shih-Jung Cheng, Yuen-Sing Lee, Lin-Yang Cheng, Sin-Min Li and Jih-Jung Chen
Antioxidants 2026, 15(1), 97; https://doi.org/10.3390/antiox15010097 - 12 Jan 2026
Viewed by 130
Abstract
Oxidative stress is a key driver of chronic inflammatory diseases. Anodendron affine is a native Formosan plant species in Taiwan that remains largely underexplored phytochemically and bioactivity. To reveal the bioactive constituents and assess its potential as a source of anti-inflammatory antioxidants, we [...] Read more.
Oxidative stress is a key driver of chronic inflammatory diseases. Anodendron affine is a native Formosan plant species in Taiwan that remains largely underexplored phytochemically and bioactivity. To reveal the bioactive constituents and assess its potential as a source of anti-inflammatory antioxidants, we performed bioactivity-guided fractionation and evaluated the inhibition of superoxide anion (O2•−) generation in formyl-L-methionyl-L-leucyl-L-phenylalanine-stimulated human neutrophils. Molecular docking simulations were employed to model interactions with Formyl peptide receptor 1 (FPR1) and the Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, including neutrophil cytosol factor 1 (p47phox) and NADPH oxidase 2 (NOX2), to propose a theoretical mechanism of action. Phytochemical investigation led to the isolation of two new compounds, methyl 4,5-O-diferuloyl-3-methoxyquinate (1) and 16-pregnen-3,12,20-trione (2), together with four known compounds. Notably, 4-hydroxy-3-prenylbenzoic acid (5) exhibited potent inhibitory activity (IC50 = 17.65 ± 0.97 μM), surpassing the activity of the positive control, ibuprofen (IC50 = 27.85 ± 3.56 μM). Docking studies suggested that anodendrosin H (4) and 4-hydroxy-3-prenylbenzoic acid (5) exhibit high predicted binding affinity to p47phox and NOX2. Based on these results, compounds 1, 4, and 5 from A. affine were identified as potential lead candidates for the development of novel anti-inflammatory therapeutics. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 3rd Edition)
Show Figures

Figure 1

17 pages, 1810 KB  
Article
Nutrients and Bioactive Compounds in Peruvian Pacay (Inga feuilleei D.C.)
by Mario Cotacallapa-Sucapuca, Rosa M. Cámara, María Ciudad-Mulero, Genciana Serruto-Medina, Romualdo Vilca-Curo, Claudia Arribas, Mercedes M. Pedrosa, Patricia Morales and Montaña Cámara
Foods 2026, 15(2), 278; https://doi.org/10.3390/foods15020278 - 12 Jan 2026
Viewed by 197
Abstract
Pacay (Inga feuilleei D.C.) is a species native to Peru. To the author’s knowledge, the only information found in the literature reference of the chemical composition of the pacay’s edible part (fruit) corresponds to the Peruvian table of food composition of the [...] Read more.
Pacay (Inga feuilleei D.C.) is a species native to Peru. To the author’s knowledge, the only information found in the literature reference of the chemical composition of the pacay’s edible part (fruit) corresponds to the Peruvian table of food composition of the Ministry of Health. Considering the lack of information on this important plant, this study aims to (1) compare the nutritional profiles of the Limeña and Corriente varieties, (2) evaluate the distribution of bioactive compounds across the fruit’s principal fractions (pulp, seed, and peel/mesocarp), and (3) determine the antioxidant capacity and bioactives associated with each fraction. Results showed clear differences both between plant tissues and between genotypes. The edible part showed high amounts of carbohydrates (84–87%), seeds are rich in protein (18–21%), and peels are rich in fiber (around 34%). Amylopectin was the majority starch fraction (86%) found in pacay seeds. All pacay fractions stand out for their high content of total polyphenols, being higher in the case of the peel (1843 mg GAE/100 g). Hydroxycinnamic acids content (40–136 mg FAE/100 g) was higher than the flavonols (18–50 mg GAE/100 g), and both were present in higher amounts in the case of the seed fraction. These findings could be important to enhance the knowledge about this species and its revalorization as functional ingredients to be used in food formulation. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

23 pages, 1157 KB  
Review
Unifying Phytochemistry, Analytics, and Target Prediction to Advance Dendropanax morbifera Bioactive Discovery
by SuHyun Kim, Damhee Lee, Kyujeong Won, Jinseop Lee, Wooseop Lee, Woohyeon Roh and Youngjun Kim
Life 2026, 16(1), 100; https://doi.org/10.3390/life16010100 - 11 Jan 2026
Viewed by 233
Abstract
Dendropanax morbifera (DM; “Hwangchil”) is an evergreen tree native to southern Korea and Jeju Island, traditionally used for detoxification, anti-inflammatory, immunomodulatory, and neuroprotective purposes. Recent studies indicate that DM extracts and their constituents exhibit a broad range of biological activities, including antioxidant, anti-inflammatory, [...] Read more.
Dendropanax morbifera (DM; “Hwangchil”) is an evergreen tree native to southern Korea and Jeju Island, traditionally used for detoxification, anti-inflammatory, immunomodulatory, and neuroprotective purposes. Recent studies indicate that DM extracts and their constituents exhibit a broad range of biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, antidiabetic, hepatoprotective, and neuroprotective effects. Phytochemical investigations have revealed a chemically diverse profile comprising phenolic acids, flavonoids, diterpenoids, triterpenoids—most notably dendropanoxide—and polyacetylenes, with marked variation in compound distribution across plant parts. Despite this progress, translational application remains constrained by the lack of standardized extraction protocols, substantial variability in high-performance liquid chromatography (HPLC) methodologies, and limited mechanistic validation of reported bioactivities. This review proposes an integrated framework that links extraction strategies tailored to compound class and plant part with standardized C18 reverse-phase HPLC conditions to enhance analytical reproducibility. In parallel, in silico target prediction using SwissTargetPrediction is applied as a hypothesis-generating approach to prioritize potential molecular targets for subsequent experimental validation. By emphasizing methodological harmonization, critical evaluation of evidence levels, and systems-level consideration of multi-compound interactions, this review aims to clarify structure–activity relationships, support pharmacokinetic and safety assessment, and facilitate the rational development of DM-derived materials for medical, nutritional, and cosmetic applications. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

16 pages, 3592 KB  
Article
Woody Vegetation of Murundus Fields in a Forestry-Dominated Landscape on Brazilian Savanna
by Ana Carolina Costa Santos, Wanessa Rejane de Almeida, Guilherme Ramos Demetrio, Daniel Oliveira Reis, Amadeu Manoel dos Santos-Neto, Rhainer Guillermo Ferreira, Henrique Venâncio and Jean Carlos Santos
Forests 2026, 17(1), 86; https://doi.org/10.3390/f17010086 - 9 Jan 2026
Viewed by 134
Abstract
Murundus fields (wetland earth-mounds) represent a relatively understudied physiognomy in the Cerrado biome. This study aimed to evaluate the composition, life history, phytosociology, endemism, and conservation status of woody plant species in murundus fields in a forestry-dominated landscape in the Brazilian savanna. We [...] Read more.
Murundus fields (wetland earth-mounds) represent a relatively understudied physiognomy in the Cerrado biome. This study aimed to evaluate the composition, life history, phytosociology, endemism, and conservation status of woody plant species in murundus fields in a forestry-dominated landscape in the Brazilian savanna. We established 40 plots, each measuring 50 × 20 m, where all live shrub-arboreal plants with a trunk diameter at the base of ≥1 cm and a height > 0.5 m were identified. Using these data, we calculated the absolute and relative values of density, dominance, and frequency, as well as the importance value index. In addition, we estimated Shannon’s and Simpson’s diversity indices and Pielou’s equability index. Our findings included 155 species, 69 genera, and 38 families in the study area. The invasive exotic species Pinus caribaea Morelet showed the highest importance value, followed by Jacaranda caroba (Vell.) DC., Miconia albicans (Sw.) Steud., Erythroxylum suberosum A.St.-Hil., and Miconia fallax DC. The pronounced presence of P. caribaea is a matter of concern and highlights the need for control measures, given its potential to hinder the regeneration of native species. We identified species occurring in various Cerrado phytophysiognomies, suggesting that murundus fields function as transitional habitats. This study underscores the importance of conserving species within the inadequately studied Cerrado physiognomy. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

17 pages, 2645 KB  
Article
Identification of a GA-Related Cis-Element Regulating Male Peduncle Elongation in Papaya
by Julie Nguyen-Edquilang, Jingjing Yue and Ray Ming
Plants 2026, 15(2), 209; https://doi.org/10.3390/plants15020209 - 9 Jan 2026
Viewed by 191
Abstract
Papaya (Carica papaya L.) is a tropical trioecious crop with males, hermaphrodites, and females. There is a sequence difference between male and hermaphrodite SHORT VEGETATIVE PHASE (CpSVP), making SVP a strong candidate gene controlling peduncle length in papaya. To study [...] Read more.
Papaya (Carica papaya L.) is a tropical trioecious crop with males, hermaphrodites, and females. There is a sequence difference between male and hermaphrodite SHORT VEGETATIVE PHASE (CpSVP), making SVP a strong candidate gene controlling peduncle length in papaya. To study the spatial and temporal expression and function of CpSVP in Arabidopsis, we constructed a translation fusion structure based on the native promoter of SVP in papaya. In the 2kb promoter, strong GUS staining was observed in the floral organs and pedicels. In the 1kb promoter, there is no GUS expression in the floral organs, and it is barely detectable in pedicels. Removal of a GA responsive P-box cis-element in the 1kb promoter enhanced expression in the floral organs and pedicels, and elongated pedicels. In the transgenic Arabidopsis plants expressing the male CpSVP allele, there was an increase in pedicel length, but not in the plants expressing the hermaphrodite CpSVP allele. CpSVP-Y is capable of pedicel elongation, with no defects in reproductive organs. These findings imply that CpSVP-Y and this P-box play a major role in peduncle elongation but not sex determination in papaya. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

28 pages, 4190 KB  
Article
Effect of Two Calcium Levels and a Chicken Manure-Based Soil Amendment on Tomato Hybrid Performance
by Carlos David Carretillo Moctezuma, Abraham Francisco Aponte Herrera, José Terrones Salgado, Edgar Pérez Arriaga, Flaviano Godínez-Jaimes, María Guzmán Martínez, José Francisco Díaz-Nájera, Ramón Reyes Carreto, José C. García-Preciado and Juan Antonio Chamú-Baranda
Crops 2026, 6(1), 11; https://doi.org/10.3390/crops6010011 - 8 Jan 2026
Viewed by 139
Abstract
Calcium (Ca) is essential for tomato (Solanum lycopersicum L.) fruit quality and for preventing physiological disorders such as blossom-end rot. However, high total soil Ca does not necessarily translate into plant-available Ca due to factors such as soil pH and limited mobility. [...] Read more.
Calcium (Ca) is essential for tomato (Solanum lycopersicum L.) fruit quality and for preventing physiological disorders such as blossom-end rot. However, high total soil Ca does not necessarily translate into plant-available Ca due to factors such as soil pH and limited mobility. This study evaluated soil Ca availability and the effect of a chicken manure-based soil amendment on the growth and yield of four tomato genotypes (Pony Express F1, Palomo F1, Toro F1, and Perseo F1) grown on a loam–clay–sand soil containing 4886 ppm Ca. In the first cycle, conducted in a shade house, two Ca application levels (0% and 25% of the crop’s requirement) were tested. The 0% treatment outperformed the 25% treatment regarding yield-related traits, indicating that native soil Ca met crop demand; application of 25% Ca reduced total fruit weight and fruit number by 19.7% and 5.9%, respectively, while the 0% treatment produced 40.8% more first-quality fruits. Perseo F1 (Perseo) produced the highest yield of first-quality fruits (20.61 t ha−1), exceeding Pony Express F1 (Pony express), Palomo F1 (Palomo), and Toro F1 (Toro) by 10.8%, 6.6%, and 51.4%, respectively. In a second cycle under open-field conditions, incorporation of the chicken manure amendment significantly enhanced growth and yield: treated plants reached a 0.85 m height 58 days after transplanting, and overall yield increased to 70.08 t ha−1 compared with 50.30 t ha−1 in the control (21.9% increase). These results indicate that, while native soil Ca can satisfy crop requirements under the studied conditions, soil amendment under field conditions substantially improves plant performance and commercial yield potential. Full article
Show Figures

Figure 1

17 pages, 5062 KB  
Article
Secondary Metabolite Enhancement of Pokeweed (Phytolacca americana L.) Calli Using Drought and Salinity Stress Under In Vitro Condition
by Worasitikulya Taratima, Narissara Janket, Attachai Trunjaruen, Nisarat Tungpairojwong, Monthira Monthatong, Pitakpong Maneerattanarungroj and Prathan Luecha
Stresses 2026, 6(1), 1; https://doi.org/10.3390/stresses6010001 - 6 Jan 2026
Viewed by 131
Abstract
The pokeweed (Phytolacca americana L.) plant is native to North America and contains bioactive compounds with medicinal potential, particularly phenolics and saponins. This study enhanced the production of secondary metabolites in pokeweed callus cultures using sodium chloride (NaCl) and polyethylene glycol (PEG) [...] Read more.
The pokeweed (Phytolacca americana L.) plant is native to North America and contains bioactive compounds with medicinal potential, particularly phenolics and saponins. This study enhanced the production of secondary metabolites in pokeweed callus cultures using sodium chloride (NaCl) and polyethylene glycol (PEG) as elicitors under aseptic conditions. Pokeweed seeds were cultured on Murashige and Skoog (MS) medium for 8 weeks. Fully expanded leaves from the second to third position from the shoot were excised and induced to form calli on MS medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 5 weeks. Fully developed calli were elicited with PEG6000 at concentrations of 0, 1.25, 2.5, and 5% (w/v) in combination with NaCl at concentrations of 0, 100, 200, and 300 mM for 15 days. Callus growth was recorded, followed by drying and extraction using methanol (MeOH) for biochemical analysis. Calli elicited with 2.5% PEG and 300 mM NaCl exhibited the highest total phenolic content (TPC) (21.063 µg GAE/mg DW) and total flavonoid content (TFC) (1.927 µg QUE/mg DW). The highest antioxidant activities determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric ion reducing antioxidant potential (FRAP) assays were 0.998, 1.574, and 0.998 µg TE/mg DW, respectively. The elicitation of pokeweed calli with 300 mM NaCl yielded the highest amount of Esculentoside A (EsA) (15.753 µg/mg DW). All the elicitor treatments significantly enhanced metabolite accumulation compared to the control group (p < 0.05). The findings indicated that elicitation with PEG and NaCl effectively enhanced the production of secondary metabolites in P. americana callus cultures. This study offers a promising alternative approach for utilizing P. americana in pharmaceutical and medicinal applications. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

25 pages, 681 KB  
Review
Drought-Resilience in Mexican Drylands: Integrative C4 Grasses and Forage Shrubs
by Ma. Enriqueta Luna-Coronel, Héctor Gutiérrez-Bañuelos, Daniel García-Cervantes, Alejandro Espinoza-Canales, Luis Cuauhtémoc Muñóz-Salas and Francisco Javier Gutiérrez-Piña
Grasses 2026, 5(1), 2; https://doi.org/10.3390/grasses5010002 - 6 Jan 2026
Viewed by 216
Abstract
Grassland-based livestock systems across Mexico’s arid and semi-arid belt are increasingly exposed to drought, degrading forage reliability, and soil function. This review synthesizes evidence on native C4 grasses and forage shrubs as complementary building blocks of drought-resilient swards. We searched Web of Science, [...] Read more.
Grassland-based livestock systems across Mexico’s arid and semi-arid belt are increasingly exposed to drought, degrading forage reliability, and soil function. This review synthesizes evidence on native C4 grasses and forage shrubs as complementary building blocks of drought-resilient swards. We searched Web of Science, Scopus, CAB Abstracts and key grey sources (USDA/NRCS Plant Guides, USFS FEIS, Tropical Forages, SNICS) for 1990–2025 studies in English/Spanish. Dominant native grasses (Bouteloua spp., Hilaria belangeri, Digitaria californica, Trichloris crinita, Sporobolus airoides, Panicum hallii) provide high warm-season digestibility and structural cover via C4 physiology, basal/intercalary meristems, and deep/fibrous roots. Forage shrubs (Atriplex canescens, Desmanthus bicornutus, Leucaena leucocephala, Flourensia cernua, Prosopis spp.) bridge the dry-season protein/energy gap and create “resource islands” that enhance infiltration, provided anti-nutritional risks (mimosine/DHP, tannins, salts/oxalates, terpenoids) are managed by dose and diet mixing. We integrate these findings into a Resistance–Recovery–Persistence framework and translate them into operations: (i) site-matching rules for species/layouts, (ii) PLS (pure live seed)-based seed specifications and establishment protocols, (iii) grazing TIDD (timing–intensity–distribution–duration) with a practical monitoring dashboard (CP targets, stubble/cover thresholds, NDVI/SPEI triggers). Remaining bottlenecks are seed quality/availability and uneven extension; policy alignment on PLS procurement and regional seed increase can accelerate adoption. Mixed native grass–shrub systems are a viable, scalable pathway to strengthening drought resilience in Mexican rangelands. Full article
(This article belongs to the Special Issue Advances in Grazing Management)
Show Figures

Figure 1

24 pages, 5920 KB  
Article
Genome- and Transcriptome-Wide Characterization of AP2/ERF Transcription Factor Superfamily Reveals Their Relevance in Stylosanthes scabra Vogel Under Water Deficit Stress
by Cínthia Carla Claudino Grangeiro Nunes, Agnes Angélica Guedes de Barros, Jéssica Barboza da Silva, Wilson Dias de Oliveira, Flávia Layse Belém Medeiros, José Ribamar Costa Ferreira-Neto, Roberta Lane de Oliveira-Silva, Eliseu Binneck, Reginaldo de Carvalho and Ana Maria Benko-Iseppon
Plants 2026, 15(1), 158; https://doi.org/10.3390/plants15010158 - 4 Jan 2026
Viewed by 417
Abstract
Stylosanthes scabra, a legume native to the Brazilian semiarid region, exhibits remarkable drought tolerance and represents a valuable model for studying molecular adaptation in legumes. Transcription factors of the AP2/ERF superfamily play central roles in plant development and stress response. This study [...] Read more.
Stylosanthes scabra, a legume native to the Brazilian semiarid region, exhibits remarkable drought tolerance and represents a valuable model for studying molecular adaptation in legumes. Transcription factors of the AP2/ERF superfamily play central roles in plant development and stress response. This study aimed to identify and characterize AP2/ERF genes in Stylosanthes scabra and to analyze their transcriptional response to root dehydration. Candidate genes were identified through a Hidden Markov Model (HMM) search using the AP2 domain profile (PF00847), followed by validation of conserved domains, physicochemical characterization, prediction of subcellular localization, phylogenetic and structural analyses, and functional annotation. A total of 295 AP2/ERF proteins were identified and designated as SscAP2/ERF, most of which were predicted to be localized in the nucleus. These proteins exhibited a wide range of molecular weights and isoelectric points, reflecting structural diversity, and were classified into four subfamilies: AP2, ERF, DREB, and RAV. Functional annotation revealed predominant roles in DNA binding and transcriptional regulation, while promoter analysis identified numerous stress-related cis-elements. A total of 32 transcripts were differentially expressed under 24 h of water deficit, and four selected genes had their expression patterns validated by qPCR. These findings provide new insights into the AP2/ERF gene subfamily in Stylosanthes scabra and lay the groundwork for future biotechnological approaches to enhance stress tolerance in legumes. Full article
Show Figures

Graphical abstract

16 pages, 1458 KB  
Review
Cenchrus setaceus as an Invasive Weed: Invasiveness, Distribution, and Management (A Review)
by Sima Sohrabi, Antonia M. Rojano-Delgado, Javid Gherekhloo, Candelario Palma-Bautista and Rafael De Prado
Agronomy 2026, 16(1), 125; https://doi.org/10.3390/agronomy16010125 - 4 Jan 2026
Viewed by 194
Abstract
Invasive alien plants (IAPs) disrupt biodiversity, ecosystem functions, rural livelihoods, and human health/well-being. Hence, the negative impact of Cenchrus setaceus (syn. Pennisetum setaceum) as an invasive weed poses many concerns in terms of environmental and socio-economic impact. The abundance in previous research [...] Read more.
Invasive alien plants (IAPs) disrupt biodiversity, ecosystem functions, rural livelihoods, and human health/well-being. Hence, the negative impact of Cenchrus setaceus (syn. Pennisetum setaceum) as an invasive weed poses many concerns in terms of environmental and socio-economic impact. The abundance in previous research on invasion ecology, weed biology, and the management of C. setaceus establishes the chance to carry out an in-depth evaluation of this invasive alien species for a cohesive understanding, closely linked to policy development. This systematic review aims to provide a comprehensive evaluation of previous research, identify knowledge gaps, and incorporate recent practical research findings on C. setaceus to elucidate management options. Standard methods were used to collect the literary evidence on multiple thematic aspects linked with its traits and management. Results revealed the substantial negative impacts of C. setaceus on ecosystems, ascribed to multiple physiological, biochemical, and ecological features. Further, a multitude of plant traits such as rapid seed distribution and efficient reproductive strategies imposed serious challenges in the control of C. setaceus. Deployment of integrated control methods for at least three years in depleting seed bank conjunction by planting native grass may help in its confinement. In conclusion, policy measures like strict biosecurity/legal regulations, explicit elucidation of weed biology, early detection and response, ecological modeling, and long-term monitoring with community participation can expand the horizon of C. setaceus control and help achieve its sustainable management. Full article
(This article belongs to the Topic Plant Invasion: 2nd Edition)
Show Figures

Figure 1

Back to TopTop