30-Year Dynamics of Vegetation Loss in China’s Surface Coal Mines: A Comparative Evaluation of CCDC and LandTrendr Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas and Data
2.2. Change Detection Algorithms of Vegetation
2.2.1. Principles of LandTrendr
2.2.2. Principles of CCDC
2.3. Accuracy Verification
3. Results
3.1. Accuracy Comparison
3.1.1. Identification Accuracy of Loss Year in China’s Surface Coal Mines
3.1.2. Identification Accuracy in Loss Year of Difference Zones
3.2. Spatio-Temporal Characteristics of Vegetation Loss in China’s Surface Coal Mines
3.3. Spatio-Temporal Characteristics of Vegetation Loss Magnitude in China’s Surface Coal Mines
4. Discussion
4.1. Applicability of CCDC and LandTrendr in Different Climatic Conditions
4.2. Mining Induced Vegetation Loss Characteristics of China
4.3. Implications for Future Work
5. Conclusions
- This study provides the first empirical evidence across China’s multiple climate zones demonstrating CCDC’s superior robustness in complex mining environments. CCDC’s overall accuracy for loss year identification (OA = 0.82) significantly exceeded LandTrendr (OA = 0.31). Crucially, CCDC maintains consistent performance across climate gradients, providing critical guidance for selecting climate-adaptive algorithms in global mining environments.
- The cumulative vegetation loss area in China’s surface coal mines (1990–2020) reached 1429.68 km2, showing strong spatial aggregation. Semi-arid zones accounted for 86.76% of the total, reflecting coal distribution constraints. Loss area increased continuously from 2003 to 2013, declining distinctly during 2014–2016 due to policy-driven regulation.
- Vegetation loss magnitude increased significantly along the moisture gradient: semi-arid zone (0.11), semi-humid zone (0.21), and humid region (0.25). This requires regionally differentiated restoration strategies: humid zones need high-magnitude restoration to recover functionality, while lower values in semi-arid zones signal ecological fragility, demanding specific corporate accountability mechanisms.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LandTrendr | Landsat-based detection of Trends in Disturbance and Recovery |
CCDC | Continuous Change Detection and Classification |
NDVI | Normalized Difference Vegetation Index |
Appendix A
Year | C0 | <2003 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | 60 | 98 | 12 | 21 | 58 | 94 | 82 | 377 | 333 | 228 | 427 | 285 | 187 | 153 | 133 | 140 | 241 | 256 | 184 | 98 | 3467 | 0.02 |
<2003 | 23 | 104 | 10 | 1 | 3 | 0 | 0 | 6 | 1 | 3 | 3 | 2 | 10 | 3 | 0 | 3 | 5 | 2 | 7 | 4 | 190 | 0.55 |
2003 | 0 | 0 | 17 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0.77 |
2004 | 0 | 2 | 0 | 6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0.60 |
2005 | 1 | 6 | 0 | 0 | 46 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | 0.78 |
2006 | 1 | 2 | 0 | 0 | 0 | 93 | 6 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 109 | 0.85 |
2007 | 0 | 14 | 2 | 0 | 2 | 2 | 60 | 9 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 93 | 0.65 |
2008 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 41 | 5 | 12 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | 0.60 |
2009 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 4 | 46 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 61 | 0.75 |
2010 | 3 | 1 | 2 | 0 | 2 | 0 | 0 | 3 | 4 | 45 | 7 | 12 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 80 | 0.56 |
2011 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 109 | 4 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 121 | 0.90 |
2012 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 174 | 5 | 8 | 0 | 0 | 1 | 0 | 0 | 0 | 198 | 0.88 |
2013 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 32 | 51 | 12 | 2 | 4 | 1 | 0 | 0 | 0 | 107 | 0.48 |
2014 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 23 | 163 | 5 | 2 | 0 | 2 | 3 | 1 | 204 | 0.80 |
2015 | 3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 | 2 | 0 | 0 | 0 | 17 | 150 | 12 | 18 | 5 | 2 | 1 | 216 | 0.69 |
2016 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 13 | 41 | 6 | 1 | 1 | 0 | 64 | 0.64 |
2017 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 3 | 0 | 2 | 0 | 1 | 4 | 5 | 22 | 227 | 17 | 17 | 1 | 303 | 0.75 |
2018 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 0 | 2 | 1 | 1 | 2 | 26 | 195 | 30 | 7 | 273 | 0.71 |
2019 | 5 | 1 | 0 | 0 | 5 | 1 | 2 | 21 | 14 | 13 | 17 | 11 | 6 | 1 | 2 | 2 | 5 | 47 | 266 | 15 | 434 | 0.61 |
2020 | 4 | 7 | 0 | 0 | 0 | 1 | 0 | 5 | 1 | 2 | 4 | 7 | 2 | 4 | 2 | 0 | 0 | 0 | 9 | 86 | 134 | 0.64 |
Total | 107 | 241 | 43 | 31 | 125 | 206 | 158 | 471 | 415 | 315 | 584 | 528 | 287 | 367 | 314 | 230 | 531 | 527 | 520 | 213 | 6213 | |
PA | 0.56 | 0.43 | 0.40 | 0.19 | 0.37 | 0.45 | 0.38 | 0.09 | 0.11 | 0.14 | 0.19 | 0.33 | 0.18 | 0.44 | 0.48 | 0.18 | 0.43 | 0.37 | 0.51 | 0.40 | OA = 0.31 |
Year | C0 | <2005 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | 36 | 35 | 29 | 47 | 69 | 350 | 289 | 190 | 394 | 222 | 159 | 105 | 116 | 114 | 211 | 231 | 170 | 87 | 2854 | 0.01 |
<2005 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 3 | 3 | 1 | 4 | 3 | 0 | 0 | 0 | 0 | 1 | 4 | 24 | / |
2005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | / |
2006 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.00 |
2007 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.00 |
2008 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1.00 |
2009 | 0 | 0 | 0 | 0 | 0 | 4 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 17 | 0.65 |
2010 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0.43 |
2011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 14 | 0.71 |
2012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0.67 |
2013 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 9 | 16 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 31 | 0.52 |
2014 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 62 | 0 | 0 | 0 | 2 | 2 | 1 | 78 | 0.79 |
2015 | 3 | 0 | 0 | 1 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 10 | 75 | 3 | 1 | 2 | 1 | 1 | 102 | 0.74 |
2016 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 1 | 1 | 1 | 0 | 13 | 0.77 |
2017 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 2 | 0 | 0 | 1 | 1 | 21 | 135 | 5 | 3 | 1 | 173 | 0.78 |
2018 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 26 | 84 | 10 | 4 | 136 | 0.62 |
2019 | 4 | 0 | 3 | 1 | 2 | 21 | 14 | 13 | 15 | 7 | 6 | 1 | 2 | 2 | 4 | 47 | 190 | 10 | 342 | 0.56 |
2020 | 1 | 0 | 0 | 1 | 0 | 5 | 1 | 2 | 4 | 7 | 2 | 4 | 2 | 0 | 0 | 0 | 5 | 44 | 78 | 0.56 |
Total | 44 | 35 | 33 | 52 | 73 | 396 | 325 | 212 | 434 | 249 | 199 | 187 | 199 | 152 | 380 | 373 | 384 | 152 | 3879 | |
PA | 0.82 | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.03 | 0.01 | 0.02 | 0.01 | 0.08 | 0.33 | 0.38 | 0.07 | 0.36 | 0.23 | 0.49 | 0.29 | OA = 0.18 |
Year | C0 | <2003 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | 1 | 13 | 5 | 1 | 6 | 10 | 6 | 18 | 11 | 19 | 16 | 42 | 12 | 15 | 8 | 12 | 15 | 16 | 8 | 7 | 241 | 0.00 |
<2003 | 0 | 25 | 5 | 2 | 7 | 10 | 6 | 20 | 11 | 19 | 16 | 43 | 16 | 15 | 8 | 15 | 20 | 18 | 12 | 7 | 289 | 0.08 |
2003 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.50 |
2004 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0.33 |
2005 | 0 | 0 | 0 | 0 | 2 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0.25 |
2006 | 1 | 0 | 0 | 0 | 0 | 10 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0.63 |
2007 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0.54 |
2008 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0.80 |
2009 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0.93 |
2010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 17 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 28 | 0.61 |
2011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0.79 |
2012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 56 | 0.98 |
2013 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 18 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 50 | 0.36 |
2014 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 60 | 5 | 2 | 0 | 0 | 0 | 0 | 68 | 0.88 |
2015 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 17 | 8 | 0 | 1 | 0 | 0 | 27 | 0.63 |
2016 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 1 | 0 | 0 | 0 | 20 | 0.95 |
2017 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 8 | 1 | 0 | 58 | 0.84 |
2018 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 1 | 0 | 19 | 0.89 |
2019 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 0 | 21 | 1.00 |
2020 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 14 | 0.50 |
Total | 4 | 46 | 6 | 5 | 11 | 25 | 16 | 30 | 30 | 36 | 33 | 127 | 34 | 86 | 31 | 44 | 71 | 45 | 35 | 14 | 729 | |
PA | 0.25 | 0.54 | 0.17 | 0.40 | 0.18 | 0.40 | 0.44 | 0.13 | 0.47 | 0.47 | 0.33 | 0.43 | 0.53 | 0.70 | 0.55 | 0.43 | 0.69 | 0.38 | 0.60 | 0.50 | OA = 0.47 |
Year | C0 | <2003 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | 23 | 60 | 7 | 10 | 23 | 37 | 7 | 9 | 33 | 19 | 17 | 21 | 16 | 33 | 9 | 14 | 15 | 9 | 6 | 4 | 372 | 0.06 |
<2003 | 23 | 79 | 10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 118 | 0.67 |
2003 | 0 | 0 | 16 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0.80 |
2004 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1.00 |
2005 | 1 | 6 | 0 | 0 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51 | 0.86 |
2006 | 0 | 2 | 0 | 0 | 0 | 82 | 4 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 92 | 0.89 |
2007 | 0 | 14 | 2 | 0 | 2 | 2 | 52 | 4 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 0.66 |
2008 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 32 | 4 | 12 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 58 | 0.55 |
2009 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 21 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | 0.72 |
2010 | 3 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 25 | 2 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 0.56 |
2011 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 1 | 88 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93 | 0.95 |
2012 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 117 | 5 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 139 | 0.84 |
2013 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 17 | 2 | 0 | 4 | 0 | 0 | 0 | 0 | 26 | 0.65 |
2014 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 12 | 41 | 0 | 0 | 0 | 0 | 1 | 0 | 58 | 0.71 |
2015 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 6 | 58 | 1 | 17 | 2 | 1 | 0 | 87 | 0.67 |
2016 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 13 | 12 | 4 | 0 | 0 | 0 | 31 | 0.39 |
2017 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 4 | 1 | 43 | 4 | 13 | 0 | 72 | 0.60 |
2018 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 94 | 19 | 3 | 118 | 0.80 |
2019 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 55 | 5 | 71 | 0.77 |
2020 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 35 | 42 | 0.83 |
Total | 59 | 170 | 37 | 16 | 81 | 129 | 69 | 45 | 60 | 67 | 117 | 152 | 54 | 94 | 84 | 34 | 80 | 109 | 101 | 47 | 1605 | |
PA | 0.39 | 0.46 | 0.43 | 0.25 | 0.54 | 0.64 | 0.75 | 0.71 | 0.35 | 0.37 | 0.75 | 0.77 | 0.31 | 0.44 | 0.69 | 0.35 | 0.54 | 0.86 | 0.54 | 0.74 | OA = 0.57 |
Year | C0 | <2003 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | 92 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 2 | 4 | 16 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 122 | 0 |
<2003 | 1 | 218 | 7 | 2 | 4 | 15 | 1 | 11 | 3 | 7 | 8 | 4 | 7 | 7 | 5 | 9 | 10 | 10 | 11 | 9 | 349 | 0.62 |
2003 | 0 | 0 | 33 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 3 | 2 | 4 | 0 | 0 | 0 | 3 | 0 | 49 | 0.67 |
2004 | 0 | 0 | 2 | 26 | 5 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 50 | 0.52 |
2005 | 0 | 0 | 1 | 0 | 106 | 3 | 5 | 3 | 3 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 125 | 0.85 |
2006 | 0 | 8 | 0 | 0 | 6 | 171 | 7 | 3 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 204 | 0.84 |
2007 | 0 | 1 | 0 | 0 | 0 | 4 | 117 | 5 | 1 | 4 | 4 | 1 | 2 | 1 | 2 | 1 | 2 | 0 | 0 | 0 | 145 | 0.81 |
2008 | 3 | 2 | 0 | 0 | 1 | 4 | 15 | 410 | 4 | 2 | 5 | 1 | 0 | 1 | 3 | 2 | 3 | 4 | 5 | 5 | 470 | 0.87 |
2009 | 0 | 4 | 0 | 0 | 1 | 1 | 3 | 13 | 341 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | 4 | 0 | 0 | 1 | 376 | 0.91 |
2010 | 0 | 2 | 0 | 0 | 0 | 3 | 1 | 5 | 36 | 235 | 9 | 10 | 3 | 3 | 3 | 3 | 5 | 2 | 3 | 4 | 327 | 0.72 |
2011 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 17 | 17 | 491 | 23 | 6 | 7 | 6 | 5 | 4 | 4 | 5 | 4 | 597 | 0.82 |
2012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 10 | 25 | 432 | 10 | 8 | 3 | 1 | 6 | 3 | 5 | 0 | 510 | 0.85 |
2013 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 9 | 11 | 36 | 219 | 10 | 2 | 3 | 6 | 8 | 2 | 1 | 308 | 0.71 |
2014 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 12 | 5 | 5 | 4 | 300 | 3 | 1 | 4 | 1 | 2 | 0 | 339 | 0.88 |
2015 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 4 | 5 | 0 | 4 | 9 | 258 | 6 | 9 | 5 | 3 | 1 | 310 | 0.83 |
2016 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 2 | 0 | 2 | 0 | 5 | 6 | 6 | 166 | 7 | 6 | 2 | 2 | 210 | 0.79 |
2017 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 1 | 1 | 3 | 3 | 4 | 15 | 423 | 16 | 10 | 1 | 487 | 0.87 |
2018 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 3 | 1 | 2 | 3 | 7 | 8 | 34 | 428 | 6 | 3 | 501 | 0.85 |
2019 | 4 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 4 | 2 | 1 | 6 | 3 | 6 | 9 | 30 | 453 | 7 | 531 | 0.85 |
2020 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | 1 | 0 | 1 | 0 | 3 | 7 | 8 | 173 | 203 | 0.85 |
Total | 107 | 241 | 43 | 31 | 125 | 206 | 158 | 471 | 415 | 315 | 584 | 528 | 287 | 367 | 314 | 230 | 531 | 527 | 520 | 213 | 6213 | |
PA | 0.86 | 0.90 | 0.77 | 0.84 | 0.85 | 0.83 | 0.74 | 0.87 | 0.82 | 0.75 | 0.84 | 0.82 | 0.76 | 0.82 | 0.82 | 0.72 | 0.80 | 0.81 | 0.87 | 0.81 | OA = 0.82 |
Year | C0 | <2005 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | 37 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 2 | 4 | 8 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 55 | 0.67 |
<2005 | 1 | 34 | 2 | 3 | 1 | 11 | 1 | 6 | 9 | 0 | 10 | 4 | 6 | 4 | 8 | 10 | 13 | 7 | 130 | 0.26 |
2005 | 0 | 0 | 26 | 0 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 37 | 0.70 |
2006 | 0 | 0 | 3 | 35 | 3 | 3 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 52 | 0.67 |
2007 | 0 | 0 | 0 | 2 | 44 | 1 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 55 | 0.80 |
2008 | 0 | 0 | 1 | 4 | 9 | 343 | 1 | 2 | 3 | 1 | 0 | 0 | 2 | 1 | 3 | 3 | 5 | 5 | 383 | 0.90 |
2009 | 0 | 0 | 1 | 1 | 3 | 11 | 276 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 1 | 304 | 0.91 |
2010 | 0 | 1 | 0 | 3 | 1 | 5 | 35 | 152 | 1 | 1 | 3 | 2 | 2 | 3 | 4 | 2 | 3 | 4 | 222 | 0.68 |
2011 | 0 | 0 | 0 | 2 | 2 | 2 | 10 | 12 | 358 | 1 | 6 | 5 | 5 | 5 | 4 | 3 | 5 | 4 | 424 | 0.84 |
2012 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 7 | 24 | 214 | 4 | 4 | 3 | 1 | 5 | 3 | 5 | 0 | 273 | 0.78 |
2013 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8 | 9 | 27 | 151 | 1 | 0 | 3 | 5 | 7 | 2 | 1 | 215 | 0.70 |
2014 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 9 | 5 | 0 | 2 | 154 | 1 | 1 | 2 | 1 | 2 | 0 | 179 | 0.86 |
2015 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 5 | 0 | 2 | 5 | 158 | 1 | 5 | 5 | 3 | 1 | 190 | 0.83 |
2016 | 0 | 0 | 0 | 0 | 2 | 4 | 2 | 0 | 2 | 0 | 5 | 5 | 4 | 106 | 3 | 5 | 2 | 2 | 142 | 0.75 |
2017 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 2 | 1 | 0 | 3 | 2 | 3 | 12 | 295 | 8 | 8 | 1 | 339 | 0.87 |
2018 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 2 | 2 | 7 | 7 | 32 | 297 | 2 | 3 | 357 | 0.83 |
2019 | 4 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 4 | 0 | 1 | 2 | 2 | 4 | 6 | 20 | 326 | 4 | 378 | 0.86 |
2020 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 1 | 0 | 1 | 0 | 2 | 7 | 7 | 119 | 144 | 0.83 |
Total | 44 | 35 | 33 | 52 | 73 | 396 | 325 | 212 | 434 | 249 | 199 | 187 | 199 | 152 | 380 | 373 | 384 | 152 | 3879 | |
PA | 0.84 | 0.97 | 0.79 | 0.67 | 0.60 | 0.87 | 0.85 | 0.72 | 0.82 | 0.86 | 0.76 | 0.82 | 0.79 | 0.70 | 0.78 | 0.80 | 0.85 | 0.78 | OA = 0.81 |
Year | C0 | <2003 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0.18 |
<2003 | 0 | 43 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 4 | 0 | 3 | 1 | 3 | 3 | 1 | 2 | 4 | 71 | 0.61 |
2003 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0.56 |
2004 | 0 | 0 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0.67 |
2005 | 0 | 0 | 0 | 0 | 9 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0.75 |
2006 | 0 | 1 | 0 | 0 | 1 | 20 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0.80 |
2007 | 0 | 0 | 0 | 0 | 0 | 2 | 13 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 20 | 0.65 |
2008 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 32 | 0.78 |
2009 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0.92 |
2010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 27 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 | 0.79 |
2011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 25 | 9 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 40 | 0.63 |
2012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 101 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 105 | 0.96 |
2013 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 26 | 9 | 1 | 0 | 1 | 0 | 0 | 0 | 44 | 0.59 |
2014 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 64 | 2 | 0 | 1 | 0 | 0 | 0 | 71 | 0.90 |
2015 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 26 | 3 | 1 | 0 | 0 | 0 | 32 | 0.81 |
2016 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 34 | 4 | 1 | 0 | 0 | 40 | 0.85 |
2017 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 57 | 4 | 2 | 0 | 66 | 0.86 |
2018 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 34 | 4 | 0 | 42 | 0.81 |
2019 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 27 | 0 | 32 | 0.84 |
2020 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 10 | 12 | 0.83 |
Total | 4 | 46 | 6 | 5 | 11 | 25 | 16 | 30 | 30 | 36 | 33 | 127 | 34 | 86 | 31 | 44 | 71 | 45 | 35 | 14 | 729 | |
PA | 0.50 | 0.93 | 0.83 | 0.80 | 0.82 | 0.80 | 0.81 | 0.83 | 0.77 | 0.75 | 0.76 | 0.80 | 0.76 | 0.74 | 0.84 | 0.77 | 0.80 | 0.76 | 0.77 | 0.71 | OA = 0.77 |
Year | C0 | <2003 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | 53 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 0.95 |
<2003 | 0 | 151 | 7 | 2 | 3 | 10 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 179 | 0.84 |
2003 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 30 | 0.93 |
2004 | 0 | 0 | 1 | 12 | 3 | 1 | 1 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 0.52 |
2005 | 0 | 0 | 1 | 0 | 71 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 76 | 0.93 |
2006 | 0 | 7 | 0 | 0 | 2 | 116 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 127 | 0.91 |
2007 | 0 | 1 | 0 | 0 | 0 | 0 | 60 | 2 | 0 | 2 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 70 | 0.86 |
2008 | 2 | 2 | 0 | 0 | 0 | 0 | 6 | 42 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 55 | 0.76 |
2009 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 47 | 0.89 |
2010 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 4 | 7 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 71 | 0.79 |
2011 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 6 | 2 | 108 | 13 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 133 | 0.81 |
2012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 117 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 132 | 0.89 |
2013 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 42 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 49 | 0.86 |
2014 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 82 | 0 | 0 | 1 | 0 | 0 | 0 | 89 | 0.92 |
2015 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 74 | 2 | 3 | 0 | 0 | 0 | 88 | 0.84 |
2016 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 26 | 0 | 0 | 0 | 0 | 28 | 0.93 |
2017 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 71 | 4 | 0 | 0 | 82 | 0.87 |
2018 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 97 | 0 | 0 | 102 | 0.95 |
2019 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 1 | 2 | 3 | 7 | 100 | 3 | 121 | 0.83 |
2020 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 44 | 47 | 0.94 |
Total | 59 | 170 | 37 | 16 | 81 | 129 | 69 | 45 | 60 | 67 | 117 | 152 | 54 | 94 | 84 | 34 | 80 | 109 | 101 | 47 | 1605 | |
PA | 0.90 | 0.89 | 0.76 | 0.75 | 0.88 | 0.90 | 0.87 | 0.93 | 0.70 | 0.84 | 0.92 | 0.77 | 0.78 | 0.87 | 0.88 | 0.76 | 0.89 | 0.89 | 0.99 | 0.94 | OA = 0.86 |
References
- Soulard, C.E.; Acevedo, W.; Stehman, S.V.; Parker, O.P. Mapping extent and change in surface mines within the United States for 2001 to 2006. Land Degrad. Dev. 2016, 27, 248–257. [Google Scholar] [CrossRef]
- Miller, S.M.; Michalak, A.M.; Detmers, R.G.; Hasekamp, O.P.; Bruhwiler, L.M.P.; Schwietzke, S. China’s coal mine methane regulations have not curbed growing emissions. Nat. Commun. 2019, 10, 303. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Zhang, C.Y.; Xu, Y.L.; Xing, J.H.; Hu, J.Y. Evaluating the Impact of Human Activities on Vegetation Restoration in Mining Areas Based on the GTWR. ISPRS Int. J. Geo-Inf. 2024, 13, 132. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.Z.; Yang, W.L. Dynamic assessment of the eco-environmental effects of open-pit mining: A case study in a coal mining area (Inner Mongolia, western China). Sustainability 2025, 17, 5078. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Osanloo, M.; Azimi, Y. Evaluation of positive and negative impacts of mining on sustainable development by a semi-quantitative method. J. Clean. Prod. 2022, 366, 132955. [Google Scholar] [CrossRef]
- Silvia, F.; Talia, V.; Matteo, M.D. Coal mining and policy responses: Are externalities appropriately addressed? A meta-analysis. Environ. Sci. Policy 2021, 126, 39–47. [Google Scholar] [CrossRef]
- Xu, Y.L.; Li, J.; Zhang, C.Y.; Raval, S.; Guo, L.; Yang, F. Dynamics of carbon sequestration in vegetation affected by large-scale surface coal mining and subsequent restoration. Sci. Rep. 2024, 14, 13479. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; He, Z.X.; Shi, H.D.; Zhao, Y.; Liu, J.B.; Liu, A.; Li, L.; Zhu, R.F. Drivers of vegetation cover and carbon sink dynamics in abandoned Shaoyang city open-pit coal mines. Sustainability 2025, 17, 7816. [Google Scholar] [CrossRef]
- Li, H.K.; Xu, F.; Li, Q. Remote sensing monitoring of land damage and restoration in rare earth mining areas in 6 counties in southern Jiangxi based on multisource sequential images. J. Environ. Manag. 2020, 267, 110653. [Google Scholar] [CrossRef] [PubMed]
- Lobo, F.L.; Costa, M.P.F.; Novo, E.M.L.M. Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens. Environ. 2015, 157, 170–184. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, J.M.; Zhang, M.; Tang, Q. Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020. Resour. Policy 2021, 74, 102331. [Google Scholar] [CrossRef]
- Xiao, W.; Guo, J.W.; He, T.T.; Lei, K.G.; Deng, X.Y. Assessing the ecological impacts of open-pit coal mining in Qinghai-Tibet Plateau-a case study in Muli coal field, China. Ecol. Indic. 2023, 153, 110454. [Google Scholar] [CrossRef]
- Yang, H.F.; Chen, W. Spatio-temporal pattern of urban vegetation carbon sink and driving mechanisms of human activities in Huaibei, China. Environ. Sci. Pollut. Res. 2022, 29, 31957–31971. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Li, F.Y.; Li, J.; Zhang, K.; Ran, W.Y.; Du, M.H.; Guo, J.T.; Hou, G.F. Assessing the effect, attribution, and potential of vegetation restoration in open-pit coal mines’ dumping sites during 2003–2020 utilizing remote sensing. Ecol. Indic. 2023, 155, 111003. [Google Scholar] [CrossRef]
- Almeida-Filho, R.; Shimabukuro, Y.E. Digital processing of a Landsat-TM time series for mapping and monitoring degraded areas caused by independent gold miners, Roraima State, Brazilian Amazon. Remote Sens. Environ. 2002, 79, 42–50. [Google Scholar] [CrossRef]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Joshi, D.R.; Clay, D.E.; Henebry, G.M. Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sens. Environ. 2020, 238, 111017. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.G.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, S.G.; Liu, M.C.; Peng, X.P.; Liao, X.; Wang, Z.; Gao, H.Q. A systematic framework for continuous monitoring of land use and vegetation dynamics in multiple heterogeneous mine sites. Remote Sens. Ecol. Conserv. 2022, 8, 793–807. [Google Scholar] [CrossRef]
- Yang, Y.J.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.L.; Wang, Z.Y. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Liu, Y.X.; Xie, M.M.; Liu, J.Y.; Wang, H.H.; Chen, B. Vegetation disturbance and recovery dynamics of different surface mining sites via the LandTrendr algorithm: Case study in Inner Mongolia, China. Land 2022, 11, 856. [Google Scholar] [CrossRef]
- Arévalo, P.; Bullock, E.L.; Woodcock, C.E.; Olofsson, P. A suite of tools for continuous land change monitoring in google earth engine. Front. Clim. 2020, 2, 576740. [Google Scholar] [CrossRef]
- Xiao, W.; Deng, X.Y.; He, T.T.; Chen, W. Mapping annual land disturbance and reclamation in a surface coal mining region using google earth engine and the LandTrendr algorithm: A case study of the Shengli coalfield in Inner Mongolia, China. Remote Sens. 2020, 12, 1612. [Google Scholar] [CrossRef]
- Xiao, W.; Deng, X.Y.; He, T.T.; Guo, J.W. Using POI and time series Landsat data to identify and rebuilt surface mining, vegetation disturbance and land reclamation process based on Google Earth Engine. J. Environ. Manag. 2023, 327, 116920. [Google Scholar] [CrossRef]
- Taku, M.; Narumasa, T. Comparative Global Assessment and Optimization of LandTrendr, CCDC, and BFAST Algorithms for Enhanced Urban Land Cover Change Detection Using Landsat Time Series. Remote Sens. 2025, 17, 2402. [Google Scholar]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.Q.; Kennedy, R.E. Demystifying LandTrendr and CCDC temporal segmentation. Int. J. Appl. Earth Obs. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.C.; Zhang, C.Y.; Xie, H.Z.; Zhang, C.Y.; Du, M.H.; Wang, Y.Y. Applicability Analysis of LandTrendr and CCDC Algorithms for Vegetation Damage Identification in Shendong Coal Base. Metal Mine 2023, 01, 55–64. [Google Scholar] [CrossRef]
- Liu, Q.H.; Liu, L.S.; Zhang, Y.L.; Wang, Z.F.; Guo, R.Z. Seasonal fluctuations of marsh wetlands in the headwaters of the Brahmaputra, Ganges, and Indus Rivers, Tibetan Plateau based on the adapted LandTrendr model. Ecol. Indic. 2023, 152, 110360. [Google Scholar] [CrossRef]
- Liu, W.J.; Guan, H.D.; Hesp, P.A.; Batelaan, O. Remote sensing delineation of wildfire spatial extents and post-fire recovery along a semi-arid climate gradient. Ecol. Inform. 2023, 78, 102304. [Google Scholar] [CrossRef]
- Tu, Y.W.; Liao, K.P.; Chen, Y.X.; Jiao, H.B.; Chen, G.S. Optimized Parameters for Detecting Multiple Forest Disturbance and Recovery Events and Spatiotemporal Patterns in Fast-Regrowing Southern China. Remote Sens. 2024, 16, 2240. [Google Scholar] [CrossRef]
- Rumpf, S.B.; Gravey, M.; Brönnimann, O.; Luoto, M.; Cianfrani, C.; Mariethoz, G.; Guisan, A. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 2022, 376, 1119–1122. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.D.; Benevides, P.; Caetano, M.; Campagnolo, M. Continuous forest loss monitoring in a dynamic landscape of Central Portugal with Sentinel-2 data. Int. J. Appl. Earth Obs. 2024, 130, 103913. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, L.; Tang, F.; Zhao, S.Y.; Huang, N.; Zheng, K.Y. Mapping spatial and temporal distribution information of plantations in Guangxi from 2000 to 2020. Front. Ecol. Evol. 2023, 11, 1201161. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.W.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Zipper, C.E.; Shen, Y.Y.; Miao, H.; Donovan, P.F. Identification of the disturbance and trajectory types in mining areas using multitemporal remote sensing images. Sci. Total Environ. 2018, 644, 916–927. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, Y.; Li, J.; Jiang, H.Y.; Zhao, L.K. Unsupervised monitoring of vegetation in a surface coal mining region based on NDVI time series. Environ. Sci. Pollut. Res. 2022, 29, 26539–26548. [Google Scholar] [CrossRef]
- Ding, N.; Li, M. Mapping forest abrupt disturbance events in southeastern China—Comparisons and tradeoffs of Landsat time series analysis algorithms. Remote Sens. 2023, 15, 5408. [Google Scholar] [CrossRef]
- Hou, D.; Liang, Z.X. Dynamic supervision strategy of green mining of coal enterprises in China based on evolutionary game. Coal Eng. 2020, 52, 186–191. [Google Scholar]
- Shi, X.P.; Rioux, B.; Galkin, P. Unintended consequences of China’s coal capacity cut policy. Energy Policy 2018, 113, 478–486. [Google Scholar] [CrossRef]
Parameter Name | Data Type | Value | Parameter Description |
---|---|---|---|
maxSegments | Integer | 6 | The maximum number of segments in time-series segmentation. |
spikeThreshold | Floating point | 0.9 | The threshold for suppressing spikes (1.0 indicates no suppression). |
vertexCountOvershoot | Integer | 3 | The number of vertices by which the initial model can overshoot. |
preventOneYearRecovery | Boolean | True | Whether to prevent events of recovery within one year. |
recoveryThreshold | Floating point | 0.5 | If a segment’s recovery rate is faster than 1/recovery threshold (per year), that segment is not allowed. |
pvalThreshold | Floating point | 0.05 | If the p-value of the fitted model exceeds this threshold, the current model is discarded. |
bestModelProportion | Floating point | 0.75 | The model with the highest proportion of vertices having p-values is selected from among the models with the lowest p-values, up to this specified proportion. |
minObservationsNeeded | Integer | 9 | The minimum number of observations required to execute the fitted model. |
Parameter Name | Data Type | Value | Parameter Description |
---|---|---|---|
NumSegments | Integer | 10 | Time-series fitting |
min Observations | Integer | 6 | The minimum number of observations to trigger a breakpoint |
chiSquareProbability | Float | 0.99 | The chi-square probability threshold for change detection [0, 1] |
minNumOfYearsScaler | Float | 1.33 | The minimum year for applying the new fitting |
dateFormat | Integer | 1 | The type of date used for model fitting |
maxIterations | Integer | 10,000 | Maximum number of iterations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xu, Y.; Xie, H.; Zhang, H.; Guo, L.; Li, J.; Zhang, C. 30-Year Dynamics of Vegetation Loss in China’s Surface Coal Mines: A Comparative Evaluation of CCDC and LandTrendr Algorithms. Sustainability 2025, 17, 9011. https://doi.org/10.3390/su17209011
Liu W, Xu Y, Xie H, Zhang H, Guo L, Li J, Zhang C. 30-Year Dynamics of Vegetation Loss in China’s Surface Coal Mines: A Comparative Evaluation of CCDC and LandTrendr Algorithms. Sustainability. 2025; 17(20):9011. https://doi.org/10.3390/su17209011
Chicago/Turabian StyleLiu, Wanxi, Yaling Xu, Huizhen Xie, Han Zhang, Li Guo, Jun Li, and Chengye Zhang. 2025. "30-Year Dynamics of Vegetation Loss in China’s Surface Coal Mines: A Comparative Evaluation of CCDC and LandTrendr Algorithms" Sustainability 17, no. 20: 9011. https://doi.org/10.3390/su17209011
APA StyleLiu, W., Xu, Y., Xie, H., Zhang, H., Guo, L., Li, J., & Zhang, C. (2025). 30-Year Dynamics of Vegetation Loss in China’s Surface Coal Mines: A Comparative Evaluation of CCDC and LandTrendr Algorithms. Sustainability, 17(20), 9011. https://doi.org/10.3390/su17209011