Degradation and Disintegration Behavior of PHBV- and PLA-Based Films Under Composting Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Composting at Laboratory Scale
2.2.2. Disintegration at Laboratory Scale
2.2.3. SEM Characterization
2.2.4. TOC Analysis
3. Results and Discussion
3.1. Biodegradation Tests
3.1.1. PLA-Based Monolayer Film
3.1.2. PHBV-Based Monolayer Film
3.1.3. PLA- and PHA-Based Bilayer Film
3.2. Disintegration Tests
3.3. Surface Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CO2 | Carbon dioxide |
OLA | Oligomeric lactic acid |
PHBV | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) |
PLA | Polylactide/Polylactic acid |
SEM | Scanning electron microscopy |
SUPs | Single-use plastic products |
TOC | Total organic carbon |
References
- Kiessling, T.; Hinzmann, M.; Mederake, L.; Dittmann, S.; Brennecke, D.; Böhm-Beck, M.; Knickmeier, K.; Thiel, M. What Potential Does the EU Single-Use Plastics Directive Have for Reducing Plastic Pollution at Coastlines and Riversides? An Evaluation Based on Citizen Science Data. Waste Manag. 2023, 164, 106–118. [Google Scholar] [CrossRef]
- Leal Filho, W.; Voronova, V.; Barbir, J.; Moora, H.; Kloga, M.; Kliučininkas, L.; Klavins, M.; Tirca, D.-M. An Assessment of the Scope and Effectiveness of Soft Measures to Handle Plastic Pollution in the Baltic Sea Region. Mar. Pollut. Bull. 2024, 209, 117090. [Google Scholar] [CrossRef]
- Lyshtva, P.; Torkelis, A.; Kobets, Y.; Carpio-Vallejo, E.; Dobri, A.; Barbir, J.; Voronova, V.; Denafas, G.; Kliucininkas, L. Characterization of the Municipal Plastic and Multilayer Packaging Waste in Three Cities of the Baltic States. Sustainability 2025, 17, 986. [Google Scholar] [CrossRef]
- Walker, T.R.; Fequet, L. Current Trends of Unsustainable Plastic Production and Micro(Nano)Plastic Pollution. TrAC Trends Anal. Chem. 2023, 160, 116984. [Google Scholar] [CrossRef]
- Balaguer, M.P.; Aliaga, C.; Fito, C.; Hortal, M. Compostability Assessment of Nano-Reinforced Poly(Lactic Acid) Films. Waste Manag. 2016, 48, 143–155. [Google Scholar] [CrossRef]
- Eslami, H.; Grady, M.; Mekonnen, T.H. Biobased and Compostable Trilayer Thermoplastic Films Based on Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) (PHBV) and Thermoplastic Starch (TPS). Int. J. Biol. Macromol. 2022, 220, 385–394. [Google Scholar] [CrossRef]
- Clemente, E.; Domingues, E.; Quinta-Ferreira, R.M.; Leitão, A.; Martins, R.C. European and African Landfilling Practices: An Overview on MSW Management, Leachate Characterization and Treatment Technologies. J. Water Process Eng. 2024, 66, 105931. [Google Scholar] [CrossRef]
- Weng, Y.-X.; Wang, Y.; Wang, X.-L.; Wang, Y.-Z. Biodegradation Behavior of PHBV Films in a Pilot-Scale Composting Condition. Polym. Test. 2010, 29, 579–587. [Google Scholar] [CrossRef]
- Tateiwa, J.; Kimura, S.; Kasuya, K.; Iwata, T. Multilayer Biodegradable Films with a Degradation Initiation Function Triggered by Weakly Alkaline Seawater. Polym. Degrad. Stab. 2022, 200, 109942. [Google Scholar] [CrossRef]
- Kwon, G.; Cho, D.-W.; Park, J.; Bhatnagar, A.; Song, H. A Review of Plastic Pollution and Their Treatment Technology: A Circular Economy Platform by Thermochemical Pathway. Chem. Eng. J. 2023, 464, 142771. [Google Scholar] [CrossRef]
- Ganesh, K.A.; Anjana, K.; Hinduja, M.; Sujitha, K.; Dharani, G. Review on Plastic Wastes in Marine Environment—Biodegradation and Biotechnological Solutions. Mar. Pollut. Bull. 2020, 150, 110733. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.-G.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic Wastes Biodegradation: Mechanisms, Challenges and Future Prospects. Sci. Total Environ. 2021, 780, 146590. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Ru, J.; Chen, X.; Dong, X.; Hu, L.; Zhang, J.; Yang, Y. Discovery of a Polyurethane-Degrading Enzyme from the Gut Bacterium of Plastic-Eating Mealworms. J. Hazard. Mater. 2024, 480, 136159. [Google Scholar] [CrossRef]
- Lee, Y.L.; Jaafar, N.R.; Huyop, F.; Bakar, F.D.A.; Rahman, R.A.; Md Illias, R. Functionalization of Amylopectin as a Strategy to Improve Polyethylene Terephthalate Hydrolase-Cross-Linked Enzyme Aggregate (IsPETase-CLEA) in Plastic Degradation. Int. J. Biol. Macromol. 2025, 306, 141492. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Liu, Y.; Gu, Z.; Zhang, L.; Guo, Z. Deconstructing PET: Advances in Enzyme Engineering for Sustainable Plastic Degradation. Chem. Eng. J. 2024, 497, 154183. [Google Scholar] [CrossRef]
- Thew, C.X.E.; Lee, Z.S.; Srinophakun, P.; Ooi, C.W. Recent Advances and Challenges in Sustainable Management of Plastic Waste Using Biodegradation Approach. Bioresour. Technol. 2023, 374, 128772. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.K.; Kumar, M.; Kumar, V.; Sarsaiya, S.; Anerao, P.; Ghosh, P.; Singh, L.; Liu, H.; Zhang, Z.; Awasthi, M.K. A Comprehensive Review on Recent Advancements in Biodegradation and Sustainable Management of Biopolymers. Environ. Pollut. 2022, 307, 119600. [Google Scholar] [CrossRef]
- ISO 13432; Packaging—Requirements for Packaging Recoverable Through Composting and Biodegradation—Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. ISO: Geneva, Switzerland, 2003.
- ISO 14855-1:2012; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 1: General Method. ISO: Geneva, Switzerland, 2012.
- ISO 14855-2; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 2: Gravimetric Determination of Carbon Dioxide Evolved in a Laboratory-Scale Test. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 17556; Plastics—Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved. International Organization for Standardization: Geneva, Switzerland, 2019.
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; Wadsworth, L.C.; Anunciado, M.B.; English, M.E.; Bandopadhyay, S.; Schaeffer, S.M.; DeBruyn, J.M.; Miles, C.A.; et al. In Situ Degradation of Biodegradable Plastic Mulch Films in Compost and Agricultural Soils. Sci. Total Environ. 2020, 727, 138668. [Google Scholar] [CrossRef]
- Lyshtva, P.; Voronova, V.; Barbir, J.; Filho, W.L.; Kröger, S.D.; Witt, G.; Miksch, L.; Saborowski, R.; Gutow, L.; Frank, C.; et al. Degradation of a Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) (PHBV) Compound in Different Environments. Heliyon 2024, 10, e24770. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Auras, R.; Selke, S.; Rubino, M.; Marsh, T. Enhancing the Biodegradation Rate of Poly(Lactic Acid) Films and PLA Bio-Nanocomposites in Simulated Composting through Bioaugmentation. Polym. Degrad. Stab. 2018, 154, 46–54. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Fortunati, E.; Dominici, F.; Rayón, E.; López, J.; Kenny, J.M. PLA-PHB/Cellulose Based Films: Mechanical, Barrier and Disintegration Properties. Polym. Degrad. Stab. 2014, 107, 139–149. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Wang, H.; Dong, X.; Du, J.; Cheng, S.; Ding, Y. Improvement of Mechanical and Barrier Properties of PLA Films via Coated Antimicrobial Polyurethane. Prog. Org. Coat. 2025, 204, 109258. [Google Scholar] [CrossRef]
- Román-Ramírez, L.A.; Powders, M.; McKeown, P.; Jones, M.D.; Wood, J. Ethyl Lactate Production from the Catalytic Depolymerisation of Post-Consumer Poly(Lactic Acid). J. Polym. Environ. 2020, 28, 2956–2964. [Google Scholar] [CrossRef]
- Weng, Y.; Dunn, C.B.; Qiang, Z.; Ren, J. Immobilization of Protease K with ZIF-8 for Enhanced Stability in Polylactic Acid Melt Processing and Catalytic Degradation. ACS Appl. Mater. Interfaces 2023, 15, 56957–56969. [Google Scholar] [CrossRef]
- Shi, B.; Palfery, D. Enhanced Mineralization of PLA Meltblown Materials Due to Plasticization. J. Polym. Environ. 2010, 18, 122–127. [Google Scholar] [CrossRef]
- Radu, E.-R.; Panaitescu, D.M.; Nicolae, C.-A.; Gabor, R.A.; Rădiţoiu, V.; Stoian, S.; Alexandrescu, E.; Fierăscu, R.; Chiulan, I. The Soil Biodegradability of Structured Composites Based on Cellulose Cardboard and Blends of Polylactic Acid and Polyhydroxybutyrate. J. Polym. Environ. 2021, 29, 2310–2320. [Google Scholar] [CrossRef]
- Briassoulis, D.; Athanasoulia, I.-G.; Tserotas, P. PHB/PLA Plasticized by Olive Oil and Carvacrol Solvent-Cast Films with Optimised Ductility and Physical Ageing Stability. Polym. Degrad. Stab. 2022, 200, 109958. [Google Scholar] [CrossRef]
- Briassoulis, D.; Tserotas, P.; Hiskakis, M. Mechanical and Degradation Behaviour of Multilayer Barrier Films. Polym. Degrad. Stab. 2017, 143, 214–230. [Google Scholar] [CrossRef]
- Chuakhao, S.; Rodríguez, J.T.; Lapnonkawow, S.; Kannan, G.; Müller, A.J.; Suttiruengwong, S. Formulating PBS/PLA/PBAT Blends for Biodegradable, Compostable Packaging: The Crucial Roles of PBS Content and Reactive Extrusion. Polym. Test. 2024, 132, 108383. [Google Scholar] [CrossRef]
- Kalita, N.K.; Bhasney, S.M.; Mudenur, C.; Kalamdhad, A.; Katiyar, V. End-of-Life Evaluation and Biodegradation of Poly(Lactic Acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline Cellulose (MCC) Polyblends under Composting Conditions. Chemosphere 2020, 247, 125875. [Google Scholar] [CrossRef]
- Peng, W.; Nie, R.; Lü, F.; Zhang, H.; He, P. Biodegradability of PBAT/PLA Coated Paper and Bioplastic Bags under Anaerobic Digestion. Waste Manag. 2024, 174, 218–228. [Google Scholar] [CrossRef]
- Álvarez-Méndez, S.J.; Ramos-Suárez, J.L.; Ritter, A.; Mata González, J.; Camacho Pérez, Á. Anaerobic Digestion of Commercial PLA and PBAT Biodegradable Plastic Bags: Potential Biogas Production and 1H NMR and ATR-FTIR Assessed Biodegradation. Heliyon 2023, 9, e16691. [Google Scholar] [CrossRef]
- Li, H.; Chang, J. In Vitro Degradation of Porous Degradable and Bioactive PHBV/Wollastonite Composite Scaffolds. Polym. Degrad. Stab. 2005, 87, 301–307. [Google Scholar] [CrossRef]
- Tao, J.; Song, C.; Cao, M.; Hu, D.; Liu, L.; Liu, N.; Wang, S. Thermal Properties and Degradability of Poly(Propylene Carbonate)/Poly(β-Hydroxybutyrate-Co-β-Hydroxyvalerate) (PPC/PHBV) Blends. Polym. Degrad. Stab. 2009, 94, 575–583. [Google Scholar] [CrossRef]
- van der Zee, M.; Zijlstra, M.; Kuijpers, L.J.; Hilhorst, M.; Molenveld, K.; Post, W. The Effect of Biodegradable Polymer Blending on the Disintegration Rate of PHBV, PBS and PLA in Soil. Polym. Test. 2024, 140, 108601. [Google Scholar] [CrossRef]
- EN ISO 20200:2016; Plastics—Determination of the Degree of Disintegration of Plastic Materials Under Simulated Composting Conditions in a Laboratory-Scale Test (ISO 20200:2015). European Standards: Brussels, Belgium, 2016. Available online: https://www.en-standard.eu/une-en-iso-20200-2016-plastics-determination-of-the-degree-of-disintegration-of-plastic-materials-under-simulated-composting-conditions-in-a-laboratory-scale-test-iso-20200-2015/ (accessed on 27 October 2022).
- Directive-2019/904-EN-SUP Directive-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2019/904/oj/eng (accessed on 4 August 2025).
- Regulation-EU-2025/40-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2025/40/oj/eng (accessed on 4 August 2025).
- Bernabé Vírseda, I.; de la Orden, M.U.; Martínez Urreaga, J. Effects of Chitosan Thin Barrier Layers on the Oxygen Permeability and Optical Properties of Poly(Lactic Acid) and Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Multilayers. Carbohydr. Polym. Technol. Appl. 2025, 11, 100918. [Google Scholar] [CrossRef]
- ISO 19679:2020; Plastics—Determination of Aerobic Biodegradation of Non-Floating Plastic Materials in a Seawater/Sediment Interface—Method by Analysis of Evolved Carbon Dioxide. ISO: Geneva, Switzerland, 2020.
- ISO 10694:1995; Soil Quality—Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1995.
- Kunioka, M.; Ninomiya, F.; Funabashi, M. Biodegradation of Poly(Lactic Acid) Powders Proposed as the Reference Test Materials for the International Standard of Biodegradation Evaluation Methods. Polym. Degrad. Stab. 2006, 91, 1919–1928. [Google Scholar] [CrossRef]
- Kalita, N.K.; Sarmah, A.; Bhasney, S.M.; Kalamdhad, A.; Katiyar, V. Demonstrating an Ideal Compostable Plastic Using Biodegradability Kinetics of Poly(Lactic Acid) (PLA) Based Green Biocomposite Films under Aerobic Composting Conditions. Environ. Chall. 2021, 3, 100030. [Google Scholar] [CrossRef]
- Lyshtva, P.; Voronova, V.; Kuusik, A.; Kobets, Y. Assessing the Biodegradation Characteristics of Poly(Butylene Succinate) and Poly(Lactic Acid) Formulations Under Controlled Composting Conditions. AppliedChem 2025, 5, 17. [Google Scholar] [CrossRef]
- La Fuente Arias, C.I.; González-Martínez, C.; Chiralt, A. Biodegradation Behavior of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Containing Phenolic Compounds in Seawater in Laboratory Testing Conditions. Sci. Total Environ. 2024, 944, 173920. [Google Scholar] [CrossRef]
- Pantani, R.; Sorrentino, A. Influence of Crystallinity on the Biodegradation Rate of Injection-Moulded Poly(Lactic Acid) Samples in Controlled Composting Conditions. Polym. Degrad. Stab. 2013, 98, 1089–1096. [Google Scholar] [CrossRef]
- Brdlík, P.; Borůvka, M.; Běhálek, L.; Lenfeld, P. The Influence of Additives and Environment on Biodegradation of PHBV Biocomposites. Polymers 2022, 14, 838. [Google Scholar] [CrossRef] [PubMed]
- El-Taweel, S.H.; Al-Hamdi, A. Starch as a Successful Biodegradable Nucleating Agent in Biodegradable PHBV/PHO Blends. J. Therm. Anal. Calorim. 2024, 149, 1351–1364. [Google Scholar] [CrossRef]
- D’Amario, J.; Limsukon, W.; Bher, A.; Auras, R. Impact of Hydrolysis Pretreatment on the Compostability of Biodegradable Poly(Caprolactone) and Poly(Lactic Acid) Films. RSC Appl. Polym. 2025, 3, 711–721. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Chaganti, S.R.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Padamati, R.B.; O’cOnnor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G.M.; Kenny, J.M.; Puglia, D. Effect of Cellulose and Lignin on Disintegration, Antimicrobial and Antioxidant Properties of PLA Active Films. Int. J. Biol. Macromol. 2016, 89, 360–368. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and New Opportunities on Barrier Performance of Biodegradable Polymers for Sustainable Packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Eissenberger, K.; Ballesteros, A.; De Bisschop, R.; Bugnicourt, E.; Cinelli, P.; Defoin, M.; Demeyer, E.; Fürtauer, S.; Gioia, C.; Gómez, L.; et al. Approaches in Sustainable, Biobased Multilayer Packaging Solutions. Polymers 2023, 15, 1184. [Google Scholar] [CrossRef]
- Fernandes, M.; Salvador, A.; Alves, M.M.; Vicente, A.A. Factors Affecting Polyhydroxyalkanoates Biodegradation in Soil. Polym. Degrad. Stab. 2020, 182, 109408. [Google Scholar] [CrossRef]
- Liu, S.; Ma, L.; Liu, Y.; Li, L.; Yang, B.; Li, Z.; Wen, G. Impact of Photocatalysis, Carriers and Environmental Factors on Microorganisms in the Intimate Coupling of Photocatalysis and Biodegradation System: A Review. J. Environ. Chem. Eng. 2024, 12, 113136. [Google Scholar] [CrossRef]
- Iswahyudi, I.; Syafiuddin, A.; Garfansa, M.P.; Boopathy, R. Sources and Impact of Microplastics in Compost and Approaches for Enhancing Their Biodegradation. Bioresour. Technol. Rep. 2025, 29, 102072. [Google Scholar] [CrossRef]
- Tolga, S.; Kabasci, S.; Duhme, M. Progress of Disintegration of Polylactide (PLA)/Poly(Butylene Succinate) (PBS) Blends Containing Talc and Chalk Inorganic Fillers under Industrial Composting Conditions. Polymers 2021, 13, 10. [Google Scholar] [CrossRef]
- Arrieta, M.P.; López, J.; Rayón, E.; Jiménez, A. Disintegrability under Composting Conditions of Plasticized PLA–PHB Blends. Polym. Degrad. Stab. 2014, 108, 307–318. [Google Scholar] [CrossRef]
Polymer Type | Composition | Sample Name | Film Thickness (mm) | TDS (%) | TVS (%) | TOC (%) |
---|---|---|---|---|---|---|
Monolayer | PLA 99% + 1% OLA | PLA-1OLA | 0.5 mm | 99.86 | >99.9 | 50 |
PHBV 95% + 5% OLA | PHBV-5OLA | 0.25 mm | 99.19 | >99.9 | 58 | |
Bilayer | 99 w% PLA + 1 w% OLA // 95 w% PHBV + 5 w% OLA | PLA-1OLA/PHBV-5OLA | 0.35 mm | 99.41 | >99.9 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyshtva, P.; Kuusik, A.; Voronova, V. Degradation and Disintegration Behavior of PHBV- and PLA-Based Films Under Composting Conditions. Sustainability 2025, 17, 8657. https://doi.org/10.3390/su17198657
Lyshtva P, Kuusik A, Voronova V. Degradation and Disintegration Behavior of PHBV- and PLA-Based Films Under Composting Conditions. Sustainability. 2025; 17(19):8657. https://doi.org/10.3390/su17198657
Chicago/Turabian StyleLyshtva, Pavlo, Argo Kuusik, and Viktoria Voronova. 2025. "Degradation and Disintegration Behavior of PHBV- and PLA-Based Films Under Composting Conditions" Sustainability 17, no. 19: 8657. https://doi.org/10.3390/su17198657
APA StyleLyshtva, P., Kuusik, A., & Voronova, V. (2025). Degradation and Disintegration Behavior of PHBV- and PLA-Based Films Under Composting Conditions. Sustainability, 17(19), 8657. https://doi.org/10.3390/su17198657