Integrating Fly Ash into High-Temperature Ceramic Glazes: Achieving Sustainability, Cost-Effectiveness, and Aesthetic Appeal
Abstract
1. Introduction
2. Literature Review
3. Experimental Part
3.1. Sample Preparation
3.2. Characterization Methods
4. Analysis of Results
4.1. Chemical Composition Analysis Results
4.2. XRD Crystal Phase Analysis Results
4.3. SEM Inspection and Analysis
5. Conclusions
- In high-temperature glazes, the titanium content dictates the level of transparency based on its face phase. When TiO2 is equal to or above 7 wt%, there are pronounced and moderate peaks of rutile and Al2TiO5, which represent the essential threshold for achieving glaze transparency texture [39,41]. The increase in TiO2 is associated with a rise in both the quantity of rutile and the number of crystals.
- Zinc and Ferrum are important factors that can fine-tune the color shades and crystal characteristics. Iron oxide and zinc oxide showed peaks in the tcsy-2 and tcsy-4 samples, accounting for approximately 12% of the cluster. This analysis also suggests that the appearance of dark red and reddish brown glazes does not occur until Fe and Zn reach this ratio [42].
Limitation and Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nations, U. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/zh/documents/treaty/A-RES-70-1 (accessed on 30 June 2025).
- Hansen, J.E.; Pushker, K.; Makiko, S.; George, T.; Joseph, K.; Bauer, S.E.; Reto, R.; Eunbi, J.; Qinjian, J.; Eric, R.; et al. Global Warming Has Accelerated: Are the United Nations and the Public Well-Informed? Environ. Sci. Policy Sustain. Dev. 2025, 67, 6–44. [Google Scholar] [CrossRef]
- Bilgili, M.; Tumse, S.; Nar, S. Comprehensive Overview on the Present State and Evolution of Global Warming, Climate Change, Greenhouse Gasses and Renewable Energy. Arab. J. Sci. Eng. 2024, 49, 14503–14531. [Google Scholar] [CrossRef]
- Communist Party of China (or Chinese Communist Party). ‘Opinion of the Central Committee of the Communist Party of China and the State Council on Comprehensively and Accurately Implementing the New Development Philosophy and Doing a Good Job in Carbon Peaking and Carbon Neutrality Work’. 2021. Available online: https://www.gov.cn/gongbao/content/2021/content_5649728.htm (accessed on 30 June 2025).
- Communist Party of China (or Chinese Communist Party). ‘The 14th Five-Year Plan for the Development of the Raw Materials Industry Issued—Enhancing the Raw Materials Industry’s Capacity to Ensure Supply’. 2022. Available online: https://www.gov.cn/zhengce/2022-01/03/content_5666170.htm (accessed on 30 June 2025).
- Communist Party of China (or Chinese Communist Party). Green Manufacturing Series National Standards Released. 2023. Available online: https://www.miit.gov.cn/jgsj/jns/lszz/art/2023/art_70a2a2c3b0574e5da6fe77fa971ac9a1.html (accessed on 30 June 2025).
- Yang, H.Y.; Guo, H.L.; Sun, H.J.; Peng, T.J. Surface modification study of CaO-Al2O3-SiO2-Fe2O3 base system high temperature phase reconstruction. Front. Mater. 2023, 9, 1109363. [Google Scholar] [CrossRef]
- Xu, X.; Sang, S.; Li, Y.; Xu, Y.; Wang, Q. Study on the Formation of High-Temperature Glaze Layers on the Surface of Corundum Castable Refractories and Their Resistance to Alkali Erosion. Refract. Mater. 2016, 50, 329–334. [Google Scholar] [CrossRef]
- Yao, Z.; Ji, X.; Sarker, P.K.; Tang, J.; Ge, L.; Xia, M.; Xi, Y. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Zimmer, A.; Bergmann, C.P. Fly ash of mineral coal as ceramic tiles raw material. Waste Manag. 2007, 27, 59–68. [Google Scholar] [CrossRef]
- Hao, L.; Qin, S.; Pang, W.; Li, S.; Lyu, D.; Zheng, X.; Hou, J.; Men, C. Research Progress on the Migration Patterns of Harmful Elements and Environmental Risk Assessment During the Storage and Utilisation of Fly Ash. Silic. Bull. 2025, 44, 151–168. [Google Scholar] [CrossRef]
- Alterary, S.S.; Marei, N.H. Fly ash properties, characterization, and applications: A review. J. King Saud Univ.-Sci. 2021, 33, 101536. [Google Scholar] [CrossRef]
- Vilakazi, A.Q.; Ndlovu, S.; Chipise, L.; Shemi, A. The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations. Sustainability 2022, 14, 1958. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Li, Z.; Yang, M.; Zheng, Y. Study on the Adsorption Performance of a New Modified Fly Ash Material on Heavy Metal-Contaminated Wastewater. Contemp. Chem. Ind. 2024, 53, 1931–1934+1943. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Murali, G.; Avudaiappan, S.; Ozbakkaloglu, T.; Vatin, N.; Karelina, M.; Klyuev, S.; Gholampour, A. Fly Ash-Based Eco-Efficient Concretes: A Comprehensive Review of the Short-Term Properties. Materials 2021, 14, 4264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, C.; Cheng, G.; Von Lau, E. Towards carbon neutrality: A comprehensive study on the utilization and resource recovery of coal-based solid wastes. Int. J. Coal Sci. Technol. 2025, 12, 34. [Google Scholar] [CrossRef]
- Sharma, V.; Dash, S.; Gupta, P. Comprehensive Review of Fly Ash: Environmental Impact and Applications. Environ. Qual. Manag. 2024, 34, e22338. [Google Scholar] [CrossRef]
- Golewski, G.L. Enhancement fracture behavior of sustainable cementitious composites using synergy between fly ash (FA) and nanosilica (NS) in the assessment based on digital image processing procedure. Theor. Appl. Fract. Mech. 2024, 131, 104442. [Google Scholar] [CrossRef]
- Dong, S.; Qiao, J.; Kang, C.; Sun, M.; Yang, S.; Zhao, Y.; Yang, Y.; Sun, W.; Duan, C. A review of coal solid waste-based catalytic materials in wastewater treatment: Preparation and application. Sep. Purif. Technol. 2025, 367, 132800. [Google Scholar] [CrossRef]
- Sewri; Park, S.; Chung, Y.J. A Study on the Ceramic Body and Art Glaze by Using Coal Ash. J. Korean Ceram. Soc. 2009, 46, 548–553. [Google Scholar] [CrossRef]
- Grabias-Blicharz, E.; Franus, W. A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Sci. Total Environ. 2023, 860, 160529. [Google Scholar] [CrossRef]
- Communist Party of China (or Chinese Communist Party). HJ2304-2018; Feasible Technology Guidelines for Pollution Prevention and Control in the Ceramic Industry. China Environment Publishing Group: Beijing, China, 2018.
- Ferreira, C.; Ribeiro, A.; Ottosen, L. Possible applications for municipal solid waste fly ash. J. Hazard. Mater. 2003, 96, 201–216. [Google Scholar] [CrossRef]
- Chop, H.; Arnold, B.J. Utilization of Coal Wastes for the Production of Ceramic Materials: A Review. Min. Metall. Explor. 2025, 42, 1001–1023. [Google Scholar] [CrossRef]
- Alves, C.L.; Mueller, J.d.O.M.; de Noni, A., Jr.; Heinrich, S. Challenges and opportunities for increase sustainability and energy efficiency in ceramic tile industry. Int. J. Appl. Ceram. Technol. 2025, 22, e15097. [Google Scholar] [CrossRef]
- Haiying, Z.; Youcai, Z.; Jingyu, Q. Utilization of municipal solid waste incineration (MSWI) fly ash in ceramic brick: Product characterization and environmental toxicity. Waste Manag. 2011, 31, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Quesada, E.; Villaquirán-Caicedo, M.A.; Gutiérrez, R.M.d. New glass-ceramic from ternary–quaternary mixtures based on Colombian industrial wastes: Blast furnace slag, cupper slag, fly ash and glass cullet. Boletín Soc. Española Cerámica Vidr. 2022, 61, 284–299. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Gunduz, O.; Tulyaganov, D.U. Synthesis of Bulk-Nucleated Glass-Ceramics and Porous Glass-Ceramic Composites through Utilization of Fly Ashes. Ceramics 2024, 7, 1014–1029. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, S.; Zhao, Z.; Wang, Z.; Zheng, S.; Wang, X. Preparation and characterization of whisker-reinforced ceramics from coal fly ash. Ceram. Int. 2017, 43, 1–11. [Google Scholar] [CrossRef]
- Karasu, B.; Kaya, G.; Aydasgil, A.; Kurama, H. Use of tuncbilek thermal power plant’s fly ash in stoneware glazes as a colouring agent. In Euro Ceramics Viii, Pts 1–3; Mandal, H., Ovecoglu, L., Eds.; Key Engineering Materials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2004; Volume 264–268, pp. 2501–2504. [Google Scholar]
- Gould, R.E.; Toole, M.G. Preliminary Experiments for the Development of a Continuous Electric Ceramic Kiln for High-Temperature Burning. Trans. Electrochem. Soc. 1936, 70, 111. [Google Scholar] [CrossRef]
- Xu, J.; Ren, F.; Liu, C.; Tang, C.; Han, S.; Chen, Y.; Song, Y.; Lin, J. Effect of Glaze Composition on the Impact Resistance of Glass Lining of Glass-Lined Vessels. J. Phys. Conf. Ser. 2020, 1676, 012016. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Li, X.; Chen, W.; Bai, M.; Li, X.; Wang, Y. Effect of CaF2−, TiO2− and P2O5− on crystallization and properties of CaO-Al2O3-SiO2-ZrO2-based glass-ceramic glaze. Ceram. Int. 2024, 50, 14139–14150. [Google Scholar] [CrossRef]
- Suvaci, E.; Yildiz, B. Roles of CaO, MgO and SiO2 on crystallization and microstructure development in diopside-based glass-ceramic glazes under industrial fast-firing condition. J. Aust. Ceram. Soc. 2017, 53, 75–81. [Google Scholar] [CrossRef]
- Feng, M.; Chen, M.H.; Yu, Z.D.; Chen, Z.X.; Chen, J.H.; Zhu, S.L.; Wang, F.H. Crystallization and wear behavior of SiO2-Al2O3-ZrO2-Ba(Sr, Ca)O glass-ceramics added with Cr2O3 by different methods. Ceram. Int. 2019, 45, 22617–22624. [Google Scholar] [CrossRef]
- Sun, S.J.; Ding, H.; Ao, W.H.; Liu, Y.G.; Chang, L.; Zhang, J.M. Preparation of a CaCO3-TiO2 composite based opaque glaze: Insight into the mechanism of opacification and glaze yellowing inhibition. J. Eur. Ceram. Soc. 2020, 40, 6171–6180. [Google Scholar] [CrossRef]
- Romero, M.; Rincón, J.M.; Acosta, A. Effect of iron oxide content on the crystallisation of a diopside glass-ceramic glaze. J. Eur. Ceram. Soc. 2002, 22, 883–890. [Google Scholar] [CrossRef]
- Teixeira, S.; Bernardin, A.M. Development of TiO2 white glazes for ceramic tiles. Dye Pigment 2009, 80, 292–296. [Google Scholar] [CrossRef]
- Ke, S.J.; Cheng, X.S.; Wang, Q.H.; Wang, Y.M.; Pan, Z.D. Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles. Ceram. Int. 2014, 40, 8891–8895. [Google Scholar] [CrossRef]
- Kim, I.J.; Gauckler, L.G. Formation, Decomposition and Thermal Stability of Al2TiO5 Ceramics. J. Ceram. Sci. Technol. 2012, 3, 49–59. [Google Scholar] [CrossRef]
- Zhou, X.J.; Zhang, X.Z.; Zou, C.H.; Chen, R.H.; Cheng, L.L.; Han, B.T.; Liu, H.F. Insight into the Effect of Counterions on the Chromatic Properties of Cr-Doped Rutile TiO2-Based Pigments. Materials 2022, 15, 2049. [Google Scholar] [CrossRef]
- Konvicka, T.; Solc, Z.; Mosner, P.; Kalendová, A. Comparison of various analytic methods in the study of the reaction between zinc oxide and Fe(III) oxide. J. Therm. Anal. Calorim. 1998, 54, 845–853. [Google Scholar] [CrossRef]
FA% | Spodumene% | KAlSi3O8% | SiO2% | Fe2O3% | TiO2% | |
---|---|---|---|---|---|---|
tcsy-1 | 27.03 | 18.02 | 22.52 | 22.52 | 0.90 | 9.01 |
tcsy-2 | 27.52 | 18.35 | 22.94 | 22.94 | 3.67 | 4.59 |
tcsy-3 | 27.78 | 18.52 | 23.15 | 23.15 | 1.85 | 5.56 |
tcsy-4 | 27.03 | 18.02 | 22.52 | 22.52 | 2.70 | 7.21 |
tcsy-5 | 29.13 | 19.42 | 24.27 | 24.27 | 2.91 | 0 |
Number | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO | TiO2 | Cr2O3 | MnO | Fe2O3 | NiO | CuO | ZnO | Rb2O | SrO | ZrO2 | Nb2O5 | BaO | PtO2 | PbO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tcsy-1 | 1.012 | 0.326 | 15.86 | 63.161 | 0.402 | 0.042 | 3.255 | 1.470 | 9.716 | 2.277 | 0.016 | 0.014 | 0.078 | 0.066 | 0.022 | 0.020 | 0.011 | 1.998 | 0.242 | 0.012 | |||
tcsy-2 | 1.159 | 0.327 | 16.561 | 66.135 | 0.370 | 0.050 | 3.222 | 1.444 | 4.926 | 0.046 | 4.381 | 0.187 | 0.068 | 0.021 | 0.019 | 0.009 | 0.860 | 0.204 | 0.012 | ||||
tcsy-3 | 0.989 | 0.385 | 16.768 | 65.150 | 0.356 | 0.055 | 3.718 | 1.284 | 7.053 | 0.053 | 2.658 | 0.011 | 0.019 | 0.086 | 0.068 | 0.015 | 0.019 | 0.011 | 1.122 | 0.165 | 0.013 | ||
tcsy-4 | 1.241 | 0.358 | 16.194 | 62.756 | 0.313 | 0.138 | 3.478 | 1.379 | 7.584 | 0.021 | 4.195 | 0.009 | 0.164 | 0.077 | 0.023 | 0.018 | 0.011 | 1.805 | 0.235 | ||||
tcsy-5 | 1.293 | 0.362 | 18.216 | 69.569 | 0.359 | 0.038 | 0.095 | 3.754 | 1.509 | 0.504 | 0.029 | 0.062 | 3.805 | 0.144 | 0.067 | 0.014 | 0.018 | 0.007 | 0.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Chen, M.; Wang, K.; Wang, T.; Wang, L. Integrating Fly Ash into High-Temperature Ceramic Glazes: Achieving Sustainability, Cost-Effectiveness, and Aesthetic Appeal. Sustainability 2025, 17, 8017. https://doi.org/10.3390/su17178017
Du Y, Chen M, Wang K, Wang T, Wang L. Integrating Fly Ash into High-Temperature Ceramic Glazes: Achieving Sustainability, Cost-Effectiveness, and Aesthetic Appeal. Sustainability. 2025; 17(17):8017. https://doi.org/10.3390/su17178017
Chicago/Turabian StyleDu, Yixuan, Minxuan Chen, Kaibao Wang, Tianyu Wang, and Legeng Wang. 2025. "Integrating Fly Ash into High-Temperature Ceramic Glazes: Achieving Sustainability, Cost-Effectiveness, and Aesthetic Appeal" Sustainability 17, no. 17: 8017. https://doi.org/10.3390/su17178017
APA StyleDu, Y., Chen, M., Wang, K., Wang, T., & Wang, L. (2025). Integrating Fly Ash into High-Temperature Ceramic Glazes: Achieving Sustainability, Cost-Effectiveness, and Aesthetic Appeal. Sustainability, 17(17), 8017. https://doi.org/10.3390/su17178017