Field Monitoring and Modeling of the Hygrothermal Performance of a Cross-Laminated Timber and Wood Fiber-Insulated Building Located in a Cold Climate †
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study Building: Cornerspring Montessori School Annex
2.2. Monitoring Instruments
2.3. Properties of Materials Used in Hygrothermal Simulations
2.4. Hygrothermal Simulations and Data Analysis
2.5. Mold Growth Assessment
3. Results
3.1. Monitored Data of Wall and Roof Assemblies
3.1.1. MC of CLT
3.1.2. Effects of Wall Orientation on Monitored Data of WFI
3.1.3. Effects of Wall Height on Monitored Data
3.1.4. Effects of Roof Slope on Monitored Data of Roof Assembly
3.2. Hygrothermal Model Development and Calibration
3.2.1. Hygrothermal Model Development—MC in CLT
3.2.2. Hygrothermal Model Development—Temperature and RH in WFI
3.2.3. Model Calibration
3.3. Mold Growth Assessment Using Calibrated Model
4. Discussion
4.1. Sensitivity Analysis of Model Inputs
4.1.1. Effects of Material Properties on Simulation of T, RH, and MC
4.1.2. Effects of Boundary Conditions on Simulation of T, RH, and MC
4.2. Acceptance Criteria of Hygrothermal Simulation
4.3. Effects of Simulation of RH Discrepancy on Mold Growth Assessment
5. Conclusions
- The hygrothermal model was able to sufficiently represent the hygroscopic materials;
- Under conditions within the study, mold growth assessment demonstrated no risk of degradation or attack;
- Vapor open wall assemblies are greatly influenced by the interior conditions of the building;
- Ventilation within an air cavity behind siding can mitigate risks of mold growth at the exterior surface of the insulation layer;
- WFI and CLT show no moisture or mold risk in the cold climate of Belfast, ME;
- A material property dataset of WFI was developed and is included in the Supplementary Materials to act as an aid for future design considerations and research efforts.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C | Celsius |
CLT | Cross-laminated timber |
EPS | Expanded polystyrene |
M | Measured |
MAE | Mean absolute error |
MC | Moisture content |
ME | Maine |
NREL | National Renewable Energy Laboratory |
NSRDB | National Solar Radiation Database |
RH | Relative humidity |
RMSE | Root-mean square error |
S | Simulated |
SE | Scaled error |
TMY | Typical meteorological year |
WFI | Wood fiber insulation |
WRB | Water-resistive barrier |
WVDRF | Water vapor diffusion resistance factor |
XPS | Extruded polystyrene |
References
- Krzosek, S.; Kłosińska, T. CLT—Material for the measure of the future. Ann. Wars. Univ. Life Sci. 2021, 114, 76–85. [Google Scholar] [CrossRef]
- Mohammad, M.; Gagon, S.; Douglas, B.K.; Podesto, L. Introduction to cross laminated timber. Wood Des. Focus. 2012, 22, 3–12. [Google Scholar]
- Pei, S.; Rammer, D.; Popovski, M.; Williamson, T.; Line, P.; van de Lindt, J.W. An overview of CLT research and implementation in North America. In Proceedings of the World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- WoodWorks. Available online: https://www.woodworks.org/resources/mapping-mass-timber/ (accessed on 25 April 2025).
- Kurzinski, S.; Crovella, P.; Kremer, P. Overview of cross-laminated timber (CLT) and timber structures standards across the world. Mass Timber Constr. J. 2022, 5, 1–13. [Google Scholar]
- Bozsaky, D. Nature based thermal insulation materials from renewable resources-a state-of-the-art review. Slovak J. Civ. Eng. 2019, 27, 52–59. [Google Scholar] [CrossRef]
- Winkler, A. Farostlemezek (Fiberboards); Mezőgazdasági Szaktudás Kiadó: Villány, Hungary, 1999. [Google Scholar]
- O’Brien, L.; Li, L.; Friess, W.; Snow, J.; Herzog, B.; O’Neill, S. Review of bio-based wood fiber insulation for building envelopes: Characteristics and performance assessment. Energy Build. 2025, 328, 115114. [Google Scholar] [CrossRef]
- Veitmans, K.; Grinfelds, U. Wood fiber insulation material. In Proceedings of the Research for Rural Development, Jelgava, Latvia, 18–20 May 2016. [Google Scholar]
- Snow, J.; Herzog, B.; O’Brien, L.; Li, L. Characterization of wood fiber insulation for the development of wood fiber-insulated panels (WIPs) for use in building envelope. BioResources 2024, 19, 6142–6159. [Google Scholar] [CrossRef]
- Asdrubali, F.; Evangelisti, L.; Guattari, C.; Roncone, M.; Milone, D. Experimental analysis of the thermal performance of wood fiber insulating panels. Sustainability 2023, 15, 1963. [Google Scholar] [CrossRef]
- Asli, M.; Sassine, E.; Brachelet, F.; Antczak, E. Hygrothermal behavior of wood fiber insulation, numerical and experimental approach. Heat Mass Transfer. 2021, 57, 1069–1085. [Google Scholar] [CrossRef]
- Callegher, C.Z.; Grazieschi, G.; Wilczynski, E.; Oberegger, U.F.; Pezzutto, S. Assessment of building materials in the European residential building stock: An analysis at EU27 level. Sustainability 2023, 15, 8840. [Google Scholar] [CrossRef]
- International Code Council. Types of Construction. In 2024 International Building Code; International Code Council: Country Club Hills, IL, USA, 2023. [Google Scholar]
- Bastien, D.; Winther-Gaasvig, M.; Andersson, J.Z.; Xiao, Z.; Ge, H. Hygrothermal performance of natural building materials: Simulations and field monitoring of a case study home made of wood fiber insulation and clay. J. Build. Phys. 2023, 47, 249–283. [Google Scholar] [CrossRef]
- Rahim, M.; Djedjig, R.; Wu, D.; Bennacer, R.; EL Ganaoui, M. Experimental investigation of hygrothermal behavior of wooden-frame house under real climate conditions. Energy Built Environ. 2023, 4, 122–129. [Google Scholar] [CrossRef]
- VanDemark, L.; Clevenger, C.; Click, M. Building envelope issues within construction-defect litigation. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2021, 13, 03721003. [Google Scholar] [CrossRef]
- Zhang, X.; Sahlberg, B.; Wieslander, G.; Janson, C.; Gislason, T.; Norback, D. Dampness and moulds in workplace buildings: Associations with incidence and remission of sick building syndrome (SBS) and biomarkers of inflammation in 10 year follow-up study. Sci. Total Environ. 2012, 430, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Rafidiarison, H.; Remond, R.; Mougel, E. Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials. Build. Environ. 2015, 89, 356–368. [Google Scholar] [CrossRef]
- Karacabeyli, E.; Douglas, B. CLT Handbook: Cross-Laminated Timber, U.S. ed.; FPInnovations and Binational Softwood Lumber Council: Point-Claire, QC, Canada, 2013. [Google Scholar]
- Karagiozis, A.; Künzel, H.; Holm, A. WUFI-ORNL/IBP-a North American hygrothermal model. In Proceedings of the Performance of Exterior Envelopes of Whole Buildings VIII, Clearwater Beach, FL, USA, 2–7 December 2001. [Google Scholar]
- Glass, S.V.; Boardman, C.R.; Farkas, N.; Lazarcik, E.Q.D.; Zelinka, S.L. Improved engineering model for water absorption in softwoods. Sci. Technol. Built Environ. 2024, 30, 694–708. [Google Scholar] [CrossRef]
- Freimanis, R.; Vanaga, R.; Balodis, V.; Zundans, Z.; Blumberga, A. Hygrothermal assessment of insulation systems for internal insulation of solid masonry walls under various conditions. Buildings 2023, 13, 2511. [Google Scholar] [CrossRef]
- Pianco, S.; Larcher, M.; Marincioni, V.; Troi, A.; Baglivo, C.; Congedo, P.M. Identifying key parameters through a sensitivity analysis for realistic hygrothermal simulations at wall level supported by monitored data. Build. Environ. 2023, 229, 109969. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Remond, R.; Kharchi, R.; Bennammoun, L.; Ndukwu, M.C.; Rogaume, Y. Modeling, numerical simulation and validation of the hygrothermal transfer through a wooden building wall in Nancy, France. Therm. Sci. Eng. Prog. 2021, 22, 100808. [Google Scholar] [CrossRef]
- Pianco, S.; Larcher, M.; Avellanosa, D.H.; Baglivo, C.; Troi, A.; Congedo, P.M. Hygrothermal simulation challenges: Assessing boundary condition choices in retrofitting historic European buildings. Energy Build. 2023, 297, 113464. [Google Scholar] [CrossRef]
- Berher, J.; Busser, T.; Reddy, S.; Dulikravich, G.S. Evaluation of the reliability of a heat and mass transfer model in hygroscopic material. Int. J. Heat Mass Transfer. 2019, 142, 118258. [Google Scholar] [CrossRef]
- Håkansson, H. Retarded Sorption in Wood: Experimental Study, Analyses and Modeling. Ph.D. Thesis, Lund University, Lund, Sweden, 25 May 1998. [Google Scholar]
- Peuhkuri, R. Moisture Dynamics in Building Envelopes. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, October 2003. [Google Scholar]
- Wang, J.; Mukhopadhyaya, P.; Morris, P.I. Sorption and capillary condensation in wood and the MC of red pine. J. Build. Phys. 2012, 37, 327–347. [Google Scholar] [CrossRef]
- Boardman, C.R.; Glass, S.V. Improving the accuracy of a hygrothermal model for wood-frame walls: A cold-climate study. Buildings 2020, 10, 236. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). U.S. Regional Energy Data: Short-Term Energy Outlook Data Browser; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2025.
- Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J. The national solar radiation data base (NSRDB). Renew. Sustain. Energy Rev. 2018, 89, 51–60. [Google Scholar] [CrossRef]
- ASTM C518-21; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Apparatus. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C1498-04a; Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM C1794-19; Standard Test Methods for Determination of the Water Absorption Coefficient by Partial Immersion. ASTM International: West Conshohocken, PA, USA, 2019.
- Costa-Carrapiço, I.; Croxford, B.; Raslan, R.; González, J.N. Hygrothermal calibration and validation of vernacular dwellings: A genetic algorithm-based optimisation methodology. J. Build. Eng. 2022, 55, 104717. [Google Scholar] [CrossRef]
- Dennis, J.K.; Zou, C.; Short, N.R. Corrosion behavior of zinc and zinc alloy coated steel preservative treated timber. Trans. Inst. Met. Finish. 1995, 75, 96–101. [Google Scholar] [CrossRef]
- Short, N.R.; Dennis, J.K. Corrosion resistance of zinc-alloy coated steel in construction industry environments. Trans. Inst. Met. Finish. 1997, 75, 47–52. [Google Scholar] [CrossRef]
- Glass, S.V.; Zelinka, S.L. Moisture relations and physical properties of wood. In Wood Handbook-Wood as an Engineering Material; United States Forest Products Laboratory: Madison, WI, USA, 2021; pp. 95–116. [Google Scholar]
- Fredriksson, M.; Thybring, E.E. On sorption hysteresis in wood: Separating hysteresis in cell wall water and capillary water in the full moisture range. PLoS ONE 2019, 14, e0225111. [Google Scholar] [CrossRef] [PubMed]
- Ojanen, T.; Laaksonen, J. Hygrothermal performance benefits of cellulose fibre thermal insulation structures. In Proceedings of the 41st IAHS World Congress: Sustainability and Innovation for the Future, Albuferia, Portugal, 13–16 September 2016. [Google Scholar]
- Alev, Ü.; Uus, A.; Teder, M.; Miljan, M.; Kalamees, T. Air leakage and hygrothermal performance of an internally insulated log house. In Proceedings of the 10th Nordic Symposium on Building Physics, Lund, Sweden, 15–19 June 2014. [Google Scholar]
- Andersen, H.V.; Morelli, M.; Hansen, T.K.; Peuhkuri, R. In-situ characterization of the relative humidity at the surface of building materials. J. Phys. Conf. Ser. 2023, 2654, 012043. [Google Scholar] [CrossRef]
- Birjukovs, M.; Apine, I.; Jakovics, A. Establishing material hygrothermal characteristics via long-term monitoring and best-fit numerical models. In Proceedings of the 12th Nordic Symposium on Building Physics, Tallinn, Estonia, 6–9 September 2020. [Google Scholar]
- Latz, S.; Scholzen, F.; Thewes, A.; Maas, S. Comparison of high-performance and conventional internal insulation materials based on hygrothermal analysis using in situ measurements and simulation. Bauphysik 2022, 44, 9–20. [Google Scholar] [CrossRef]
- Boudreaux, P.R.; Salonvaara, M.H.; Florian, A.; Desjarlais, A.O. Comparing Wall Performance Predicted from Hygrothermal Simulations to Wall Performance Measured from Environmental Chamber Experiments; Technical Report No. ORNL/TM-2019/1369; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2019. [CrossRef]
- Dong, W.; Chen, Y.; Bao, Y.; Fang, A. A validation of dynamic hygrothermal model with coupled heat and moisture transfer in porous building materials and envelopes. J. Build. Eng. 2020, 32, 101484. [Google Scholar] [CrossRef]
- Frasca, F.; Verticchio, E.; Cornaro, C.; Siani, A.M. Performance assessment of hygrothermal modelling for diagnostics and conservation in an Italian historical church. Build. Environ. 2021, 193, 107672. [Google Scholar] [CrossRef]
- Goto, Y.; Wakili, K.G.; Ostermeyer, Y.; Kalagasidis, A.S.; Wallbaum, H. Hygrothermal performance of a vapor-open envelope for subtropical climate, field test and model validation. Build. Environ. 2016, 110, 55–64. [Google Scholar] [CrossRef]
- Kordziel, S.; Glass, S.V.; Boardman, C.R.; Munson, R.A.; Zelinka, S.; Pei, S.; Tabares-Velasco, P.C. Hygrothermal characterization and modeling of cross-laminated timber in the building envelope. Build. Environ. 2020, 177, 106866. [Google Scholar] [CrossRef]
- Panico, S.; Larcher, M.; Troi, A.; Codreanu, I.; Baglivo, C.; Congedo, P.M. Hygrothermal analysis of a wall isolated from the inside: The potential of dynamic hygrothermal simulation. IOP Conf. Ser. Earth Environ. Sci. 2021, 863, 012053. [Google Scholar] [CrossRef]
- Rahiminejad, M.; Räber, V.; Wakili, K.G.; Geyer, C.; Zöllig, S.; Renfer, C. Wooden basements; hygrothermal performance analysis using in-field measurements and numerical simulations. Build. Environ. 2024, 256, 111475. [Google Scholar] [CrossRef]
- Stöckl, B.; Zirkelbach, D.; Künzel, H.M. Hygrothermal simulation of green roofs–new models and practical application. In Proceedings of the 10th Nordic Symposium on Building Physics, Lund, Sweden, 15–19 June 2014. [Google Scholar]
- Wang, L.; Ge, H.; Wang, J. Model validation and 2-D hygrothermal simulations of wetting and drying behavior of cross-laminated timber. J. Build. Phys. 2023, 46, 737–761. [Google Scholar] [CrossRef]
- Kramer, M.A.; Finch, G.; Hubbs, B.; Teetaert, J. Monitoring of historic structures for whole-building improvements. In Proceedings of the Thermal Performance of Exterior Envelopes of Whole Buildings XI, Clearwater Beach, FL, USA, 5–9 December 2010. [Google Scholar]
- Moujalled, B.; Ouméziane, Y.A.; Moissette, S.; Bart, M.; Lanos, C.; Samri, D. Experimental and numerical evaluation of the hygrothermal performance of a hemp lime concrete building: A long term case study. Build. Environ. 2018, 136, 11–27. [Google Scholar] [CrossRef]
- Mundt-Petersen, S.O.; Harderup, L. Predicting hygrothermal performance in cold roofs using a 1D transient heat and moisture calculation tool. Build. Environ. 2015, 90, 215–231. [Google Scholar] [CrossRef]
- Qin, M.; Belarbi, R.; Aït-Mokhtar, A.; Nilsson, L. Coupled heat and moisture transfer in multi-layer building materials. Constr. Build. Mater. 2009, 23, 967–975. [Google Scholar] [CrossRef]
- O’Brien, L.; Li, L.; Herzog, B.; Snow, J. The hygrothermal performance and durability of a one-story cross-laminated timber and wood fiber insulation school building located in Belfast, Maine. In Proceedings of the 14th World Conference on Timber Engineering 2025, Brisbane, Australia, 22–26 June 2025. [Google Scholar] [CrossRef]
Instrument | Parameter(s) | Accuracy | Resolution | Range | Manufacturer | Model |
---|---|---|---|---|---|---|
T&RH | Temperature | ±0.3 °C | 0.1 °C | −40 to 120 °C | Omnisense | A-1 Humisense |
Relative Humidity | ±2.0% | 1% | 0 to 100% | |||
MC | MC | - | 0.1% | - | A-2Moisture | |
Weather station | Temperature (Interior) | ±0.3 °C | 0.1 °C | 0 to 60 °C | Davis | Vantage Vue, Wireless |
Relative Humidity (Interior) | ±2% | 1% | 1 to 100% | |||
Barometric Pressure | ±10 Pa | 10 Pa | 54,000 to 110,000 Pa | |||
Temperature (Exterior) | ±0.1 °C | 0.5 °C | −40 to 65 °C | |||
Relative Humidity (Exterior) | ±2% | 1% | 1 to 100% | |||
Dewpoint | ±1 °C | 1 °C | −76 to 54 °C | |||
Wind Speed | ±1 m/s | 0.5 m/s | 0 to 89 m/s | |||
Wind Direction | 3° | 1° | 1 to 360° | |||
Precipitation | ±4% | 0.2 mm | 0 to 6553 mm, daily |
Material | Density | Thermal Conductivity | Porosity | Water Vapor Diffusion Resistance | Specific Heat Capacity |
---|---|---|---|---|---|
(kg/m3) | (W/mK) | (m3/m3) | (-) | (J/kgK) | |
CLT b | 426 | 0.1013 | 0.836 | 291 | 1237 |
WFI c | 140 | 0.0346 a | 0.905 | 2.4 | 2100 e |
WRB e | 210 | 2.3 | 0.001 | 85 | 2300 |
Siding b | 426 | 0.1013 | 0.836 | 291 | 1237 |
ZIP System d (Roof Decking) | 607 | 0.101 | 0.950 | 211 | 1880 |
ZIP System d (Roof Membrane) | 130 | 2.3 | 0.001 | 2526 | 2300 |
Location | Metric | Data Type | Initial Model | Calibrated Model | ||||
---|---|---|---|---|---|---|---|---|
Ave | RMSE | MAE | Ave. | RMSE | MAE | |||
P1 | Temperature (°C) | M | 19.2 | 3.38 | 2.56 | 19.2 | 2.32 | 1.84 |
S | 21.7 | 19.5 | ||||||
Relative Humidity (%) | M | 57.2 | 14.5 | 13.9 | 57.2 | 10.6 | 9.7 | |
S | 43.4 | 47.5 | ||||||
P2 | Temperature (°C) | M | 15.3 | 1.68 | 1.31 | 15.3 | 1.90 | 1.51 |
S | 15.8 | 14.4 | ||||||
Relative Humidity (%) | M | 66.0 | 8.92 | 7.94 | 66.0 | 6.08 | 5.09 | |
S | 59.1 | 62.4 | ||||||
P3 | Temperature (°C) | M | 11.4 | 3.18 | 2.41 | 11.4 | 3.23 | 2.39 |
S | 10.4 | 14.4 | ||||||
Relative Humidity (%) | M | 73.4 | 4.50 | 3.51 | 73.4 | 4.50 | 3.74 | |
S | 74.0 | 75.6 | ||||||
Scaled Error | 6.91 | 5.90 |
Assembly | Location | Metric | Averaged Results | Calibrated Model | |||
---|---|---|---|---|---|---|---|
M | S | RMSE | MAE | SE | |||
North Wall | P1 | T (°C) | 19.2 | 19.5 | 2.32 | 1.84 | 5.90 |
RH (%) | 57.2 | 47.5 | 10.6 | 9.7 | |||
P2 | T (°C) | 15.3 | 14.4 | 1.90 | 1.51 | ||
RH (%) | 66.0 | 62.4 | 6.08 | 5.09 | |||
P3 | T (°C) | 11.4 | 14.4 | 3.23 | 2.39 | ||
RH (%) | 73.4 | 75.6 | 4.50 | 3.74 | |||
MC | MC (%) | 10.1 | 8.20 | 2.07 | 4.26 | ||
South Wall | P1 | T (°C) | 18.5 | 18.9 | 3.09 | 2.54 | 8.28 |
RH (%) | 58.0 | 48.2 | 10.7 | 9.7 | |||
P2 | T (°C) | 15.8 | 15.3 | 2.78 | 2.14 | ||
RH (%) | 62.0 | 58.5 | 5.44 | 4.39 | |||
P3 | T (°C) | 12.7 | 15.3 | 5.87 | 3.82 | ||
RH (%) | 66.6 | 68.6 | 4.99 | 4.05 | |||
MC | MC (%) | 11.2 | 8.39 | 2.99 | 4.88 | ||
Roof Panel | R1 | T (°C) | 18.6 | 18.7 | 3.72 | 3.70 | 5.93 |
RH (%) | 56.7 | 57.8 | 4.6 | 3.9 | |||
R2 | T (°C) | 16.5 | 16.5 | 3.76 | 3.66 | ||
RH (%) | 60.2 | 65.1 | 4.39 | 3.79 | |||
R3 | T (°C) | 14.1 | 14.5 | 3.86 | 3.61 | ||
RH (%) | 63.8 | 71.8 | 4.19 | 3.58 | |||
R4 | T (°C) | 11.4 | 12.4 | 5.13 | 3.46 | ||
RH (%) | 66.3 | 75.1 | 2.87 | 2.08 | |||
Int | MC (%) | 9.9 | 7.21 | 1.30 | 1.10 | ||
Mid | MC (%) | 8.7 | 8.90 | 0.99 | 0.81 | ||
Ext | MC (%) | 9.9 | 10.2 | 1.13 | 0.92 |
Assembly | Position | Measured (2 Years) | Simulation (5 Years) | ||
---|---|---|---|---|---|
Maximum Mold Growth Index | Pass/Fail | Maximum Mold Growth Index | Pass/Fail | ||
North Wall | Interior Surface | - | - | 0.00 | Pass |
P1 | 0.00 | Pass | 0.00 | Pass | |
P2 | 0.00 | Pass | 0.00 | Pass | |
P3 | 0.06 | Pass | 0.56 | Pass | |
South wall | Interior Surface | - | - | 0.00 | Pass |
P1 | 0.00 | Pass | 0.00 | Pass | |
P2 | 0.00 | Pass | 0.00 | Pass | |
P3 | 0.00 | Pass | 0.05 | Pass | |
Roof | Interior Surface | - | - | 0.00 | Pass |
R1 | 0.00 | Pass | 0.00 | Pass | |
R2 | 0.00 | Pass | 0.00 | Pass | |
R3 | 0.00 | Pass | 0.00 | Pass | |
R4 | 0.03 | Pass | 0.92 | Pass |
Measurement | Error Type | All | Laboratory | Building | |
---|---|---|---|---|---|
Temperature (°C) | MAE | Min. | 0.2 | 0.2 | 0.24 |
Max. | 2.01 | 0.3 | 2.01 | ||
RMSE | Min. | 0.11 | 0.11 | 0.29 | |
Max. | 9.27 | 1.53 | 9.27 | ||
Other a | Min. | 1.2 | 1.2 | 2 | |
Max. | 5 | 5 | 3 | ||
Relative Humidity (%) | MAE | Min. | 0.89 | 3.38 | 0.89 |
Max. | 16.5 | 8 | 16.5 | ||
RMSE | Min. | 0.97 | 0.97 | 1 | |
Max. | 16.7 | 9.3 | 16.7 | ||
Other a | Min. | 5 | 5 | 5 | |
Max. | 30 | 30 | 15 | ||
Moisture Content (%) | MAE | Min. | - | - | - |
Max. | - | - | - | ||
RMSE | Min. | 0.1 | 1 | 0.1 | |
Max. | 4.7 | 4.7 | 0.5 | ||
Other | Min. | - | - | - | |
Max. | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Brien, L.; Li, L.; Herzog, B.; Snow, J.; Friess, W.A. Field Monitoring and Modeling of the Hygrothermal Performance of a Cross-Laminated Timber and Wood Fiber-Insulated Building Located in a Cold Climate. Sustainability 2025, 17, 7879. https://doi.org/10.3390/su17177879
O’Brien L, Li L, Herzog B, Snow J, Friess WA. Field Monitoring and Modeling of the Hygrothermal Performance of a Cross-Laminated Timber and Wood Fiber-Insulated Building Located in a Cold Climate. Sustainability. 2025; 17(17):7879. https://doi.org/10.3390/su17177879
Chicago/Turabian StyleO’Brien, Liam, Ling Li, Benjamin Herzog, Jacob Snow, and Wilhelm A. Friess. 2025. "Field Monitoring and Modeling of the Hygrothermal Performance of a Cross-Laminated Timber and Wood Fiber-Insulated Building Located in a Cold Climate" Sustainability 17, no. 17: 7879. https://doi.org/10.3390/su17177879
APA StyleO’Brien, L., Li, L., Herzog, B., Snow, J., & Friess, W. A. (2025). Field Monitoring and Modeling of the Hygrothermal Performance of a Cross-Laminated Timber and Wood Fiber-Insulated Building Located in a Cold Climate. Sustainability, 17(17), 7879. https://doi.org/10.3390/su17177879