The Impact of Digital Supply Chain Management on Enterprise Total Factor Productivity: Evidence from a Quasi-Natural Experiment in China
Abstract
1. Introduction
2. Literature Review
2.1. Digital Supply Chain Management and Firm Productivity
2.2. Mediating Mechanisms and Moderating Factors
2.3. Research Gaps and Contributions
3. Theoretical Framework and Hypotheses
3.1. The Direct Effect of DSCM on Total Factor Productivity
3.2. The Dynamic Effect of DSCM Implementation
3.3. The Heterogeneous Effects of DSCM
3.4. The Mediating Mechanisms of DSCM
4. Data and Methods
4.1. Research Design, Data, and Sample
4.2. Variable Measurement
4.3. Empirical Models
5. Results
5.1. Descriptive Statistics and Parallel Trends Test
5.1.1. Descriptive Statistics
5.1.2. Parallel Trends Test
5.2. The Main Effect of DSCM on TFP
5.3. Robustness of the Baseline Finding
5.3.1. Addressing Selection Bias with PSM-DID
5.3.2. Alternative TFP Measurement
5.3.3. Placebo Test
5.4. Unpacking the Mechanisms: Mediation Analysis
5.5. Heterogeneity Analysis: The Boundary Conditions
5.5.1. The Role of Industry Supply Chain Dependence
5.5.2. The Role of Firm-Level Absorptive Capacity
5.6. Dynamic Evolution of the Treatment Effect
6. Discussion
6.1. Interpretation of Key Findings
6.2. Theoretical and Practical Implications
6.3. Connecting Productivity to Sustainability Outcomes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, J.; Zheng, P.; Xie, Y.; Du, Z.; Li, X. Research on the Impact of Climate Change on Green and Low-Carbon Development in Agriculture. Ecol. Indic. 2025, 170, 113090. [Google Scholar] [CrossRef]
- Guo, L.; Xu, L. The Effects of Digital Transformation on Firm Performance: Evidence from China’s Manufacturing Sector. Sustainability 2021, 13, 12844. [Google Scholar] [CrossRef]
- Xin, B.; Qu, Y. Effects of Smart City Policies on Green Total Factor Productivity: Evidence from a Quasi-Natural Experiment in China. Int. J. Environ. Res. Public Health 2019, 16, 2396. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and Supply Chain Management Integration: A Systematic Review of the Literature. Supply Chain Manag. Int. J. 2019, 25, 241–254. [Google Scholar] [CrossRef]
- Ben-Daya, M.; Hassini, E.; Bahroun, Z. Internet of Things and Supply Chain Management: A Literature Review. Int. J. Prod. Res. 2019, 57, 4719–4742. [Google Scholar] [CrossRef]
- Nguyen, T.; Zhou, L.; Spiegler, V.; Ieromonachou, P.; Lin, Y. Big Data Analytics in Supply Chain Management: A State-of-the-Art Literature Review. Comput. Oper. Res. 2018, 98, 254–264. [Google Scholar] [CrossRef]
- Nowicka, K. Digital Innovation in the Supply Chain Management. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2019, 63, 202–214. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Li, Y. The Impact of the Digital Economy on the Total Factor Productivity of Manufacturing Firms: Empirical Evidence from China. Technol. Forecast. Soc. Change 2024, 207, 123604. [Google Scholar] [CrossRef]
- Liu, J.; Wang, G. Supply Chain Stability and Enterprises’ Total Factor Productivity: From the Perspective of Development Sustainability. Sustainability 2024, 16, 10265. [Google Scholar] [CrossRef]
- Lenny Koh, S.C.; Saad, S.; Arunachalam, S. Competing in the 21st Century Supply Chain through Supply Chain Management and Enterprise Resource Planning Integration. Int. J. Phys. Distrib. Logist. Manag. 2006, 36, 455–465. [Google Scholar] [CrossRef]
- Pundir, A.K.; Jagannath, J.D.; Ganapathy, L. Improving Supply Chain Visibility Using Iot-Internet of Things. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 156–162. [Google Scholar] [CrossRef]
- Rialti, R.; Marzi, G.; Silic, M.; Ciappei, C. Ambidextrous Organization and Agility in Big Data Era: The Role of Business Process Management Systems. BPMJ 2018, 24, 1091–1109. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, W.; Wu, H. How Does Digital Transformation Drive Green Total Factor Productivity? Evidence from Chinese Listed Enterprises. J. Clean. Prod. 2023, 406, 136954. [Google Scholar] [CrossRef]
- Bottoni, P.; Gessa, N.; Massa, G.; Pareschi, R.; Selim, H.; Arcuri, E. Intelligent Smart Contracts for Innovative Supply Chain Management. Front. Blockchain 2020, 3, 535787. [Google Scholar] [CrossRef]
- Qiu, Y. The Reconfiguration of Global Value Chains in the Digital Economy: Recent Trends and China’s New Agenda. In China’s New Development Strategies; Palgrave Macmillan: Singapore, 2022; pp. 267–294. ISBN 978-981-19-3008-9. [Google Scholar]
- Yu, W.; Chavez, R.; Jacobs, M.A.; Feng, M. Data-Driven Supply Chain Capabilities and Performance: A Resource-Based View. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 371–385. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J. Big Data Analytics Capability in Supply Chain Agility: The Moderating Effect of Organizational Flexibility. MD 2019, 57, 2092–2112. [Google Scholar] [CrossRef]
- Lee, R. The Effect of Supply Chain Management Strategy on Operational and Financial Performance. Sustainability 2021, 13, 5138. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and Estimation of Stochastic Frontier Production Function Models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Subramanian, N.; Dora, M. Circular Economy and Digital Capabilities of SMEs for Providing Value to Customers: Combined Resource-Based View and Ambidexterity Perspective. J. Bus. Res. 2022, 142, 32–44. [Google Scholar] [CrossRef]
- Coyle, D.; McHale, J.; Bournakis, I.; Mei, J.-C. Recent Trends in Firm-Level Total Factor Productivity in the UK: New Measures, New Puzzles. Economica 2024, 91, 1320–1348. [Google Scholar] [CrossRef]
- Shahab, S.; Allam, Z. Reducing Transaction Costs of Tradable Permit Schemes Using Blockchain Smart Contracts. Growth Change 2020, 51, 302–308. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Rock, D.; Syverson, C. The Productivity J-Curve: How Intangibles Complement General Purpose Technologies. Am. Econ. J. Macroecon. 2021, 13, 333–372. [Google Scholar] [CrossRef]
- Siachou, E.; Vrontis, D.; Trichina, E. Can Traditional Organizations Be Digitally Transformed by Themselves? The Moderating Role of Absorptive Capacity and Strategic Interdependence. J. Bus. Res. 2021, 124, 408–421. [Google Scholar] [CrossRef]
- Ma, J.-Y.; Shi, L.; Kang, T.-W. The Effect of Digital Transformation on the Pharmaceutical Sustainable Supply Chain Performance: The Mediating Role of Information Sharing and Traceability Using Structural Equation Modeling. Sustainability 2023, 15, 649. [Google Scholar] [CrossRef]
- Xue, Q.; He, J.; Li, Z.; Jiang, X. Mechanisms of Supply Chain Finance Operation on Digital Platforms: An Economic Perspective on Information Disclosure. Int. J. Logist. Res. Appl. 2025, 17, 1–20. [Google Scholar] [CrossRef]
- Hellegers, P.; Zeng, D.; Zilberman, D. Technology Adoption and the Impact on Average Productivity. Econ. Innov. New Technol. 2010, 20, 659–680. [Google Scholar] [CrossRef]
- CSMAR. Available online: https://data.csmar.com/ (accessed on 13 August 2025).
- Qian, C.; Wang, H.; Geng, X.; Yu, Y. Rent Appropriation of Knowledge-Based Assets and Firm Performance When Institutions Are Weak: A Study of Chinese Publicly Listed Firms. Strateg. Manag. J. 2017, 38, 892–911. [Google Scholar] [CrossRef]
- Korobkin, D.M.; Fomenkov, S.A.; Zlobin, A.R.; Vereshchak, G.A.; Golovanchikov, A.B. The Formation of Metrics of Innovation Potential and Prospects. In Cyber-Physical Systems Engineering and Control; Kravets, A.G., Bolshakov, A.A., Shcherbakov, M.V., Eds.; Studies in Systems, Decision and Control; Springer Nature: Cham, Switzerland, 2023; Volume 477, pp. 17–29. ISBN 978-3-031-33158-9. [Google Scholar]
- Zou, L.; Li, W.; Wu, H.; Liu, J.; Gao, P. Measuring Corporate Digital Transformation: Methodology, Indicators and Applications. Sustainability 2024, 16, 4087. [Google Scholar] [CrossRef]
- Han, S.; Lee, S. Quantified Comparison and Analysis of Different Productivity Measurements. J. Asian Archit. Build. Eng. 2008, 7, 309–316. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wood, J. Can Digital Transformation Enhance Total Factor Productivity? Evidence from Chinese Listed Manufacturing Firms. J. Prod. Anal. 2025. [Google Scholar] [CrossRef]
- Shiba, K.; Kawahara, T. Using Propensity Scores for Causal Inference: Pitfalls and Tips. J. Epidemiol. 2021, 31, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Bach, M.P.; Zoroja, J.; Vukšić, V.B. Determinants of Firms’ Digital Divide: A Review of Recent Research. Procedia Technol. 2013, 9, 120–128. [Google Scholar] [CrossRef]
- Bonhomme, S.; Lamadon, T.; Manresa, E. Discretizing Unobserved Heterogeneity. ECTA 2022, 90, 625–643. [Google Scholar] [CrossRef]
- Stoianova, O.; Lezina, T.; Ivanova, V. The Framework for Assessing Company’s Digital Transformation Readiness. SUJES 2020, 36, 243–265. [Google Scholar] [CrossRef]
- Hofmann, E.; Sertori, Y. Financial Spillover Effects in Supply Chains: Do Customers and Suppliers Really Benefit? Logistics 2020, 4, 6. [Google Scholar] [CrossRef]
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
TFP (lnTFP) | 18,927 | 9.875 | 1.234 | 6.432 | 13.122 |
Treat × Post | 18,927 | 0.056 | 0.230 | 0 | 1 |
Innovation (lnPatents) | 18,927 | 1.892 | 1.543 | 0 | 7.891 |
Cost Efficiency (OPM) | 18,927 | 0.088 | 0.121 | −0.543 | 0.654 |
Firm Size (lnAssets) | 18,927 | 22.543 | 1.456 | 19.876 | 26.432 |
Leverage | 18,927 | 0.453 | 0.211 | 0.054 | 0.987 |
Firm Age (lnAge) | 18,927 | 2.876 | 0.654 | 1.098 | 4.123 |
SOE (Dummy) | 18,927 | 0.345 | 0.475 | 0 | 1 |
Capital Intensity | 18,927 | 0.312 | 0.187 | 0.021 | 0.876 |
(1) | |
---|---|
Variables | lnTFP |
Treat × Post | 0.141 *** |
(0.032) | |
Firm Size | 0.057 *** |
(0.015) | |
Leverage | −0.089 ** |
(0.04) | |
Firm Age | 0.021 |
(0.018) | |
SOE | −0.045 * |
(0.025) | |
Capital Intensity | −0.155 *** |
(0.05) | |
Constant | 2.454 *** |
(0.112) | |
Observations | 18,927 |
R2 | 0.677 |
Firm Fixed Effects | Yes |
Year Fixed Effects | Yes |
(1) | (2) | (3) | |
---|---|---|---|
Variables | PSM-DID | Olley-Pakes TFP | Placebo Test |
lnTFP | lnTFP_OP | lnTFP | |
Treat × Post | 0.152 *** | 0.138 *** | 0.002 |
(0.035) | (0.033) | (0.018) | |
Controls | Yes | Yes | Yes |
Firm Fixed Effects | Yes | Yes | Yes |
Year Fixed Effects | Yes | Yes | Yes |
Observations | 12,540 | 18,927 | 18,927 |
R2 | 0.681 | 0.655 | 0.677 |
(1) | (2) | (3) | |
---|---|---|---|
Variables | Innovation | Cost Efficiency | lnTFP |
Treat × Post | 0.399 *** | 0.016 ** | 0.061 ** |
(0.092) | (0.007) | (0.029) | |
Innovation | / | / | 0.123 *** |
/ | / | (0.02) | |
Cost Efficiency | / | / | 1.875 *** |
/ | / | (0.45) | |
Controls and FEs | Yes | Yes | Yes |
Observations | 18,927 | 18,927 | 18,927 |
(1) | (2) | |
---|---|---|
Variables | High SC Dependence | High R&D Intensity |
lnTFP | lnTFP | |
Treat × Post | 0.095 ** | 0.081 ** |
(0.04) | (0.041) | |
Treat×Post×Moderator | 0.112 ** | 0.123 *** |
(0.055) | (0.045) | |
Controls and FEs | Yes | Yes |
Observations | 18,927 | 18,927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Gao, C.; Tan, Y.; Du, Z. The Impact of Digital Supply Chain Management on Enterprise Total Factor Productivity: Evidence from a Quasi-Natural Experiment in China. Sustainability 2025, 17, 7813. https://doi.org/10.3390/su17177813
Yan J, Gao C, Tan Y, Du Z. The Impact of Digital Supply Chain Management on Enterprise Total Factor Productivity: Evidence from a Quasi-Natural Experiment in China. Sustainability. 2025; 17(17):7813. https://doi.org/10.3390/su17177813
Chicago/Turabian StyleYan, Jingyang, Chao Gao, Yinan Tan, and Zhimin Du. 2025. "The Impact of Digital Supply Chain Management on Enterprise Total Factor Productivity: Evidence from a Quasi-Natural Experiment in China" Sustainability 17, no. 17: 7813. https://doi.org/10.3390/su17177813
APA StyleYan, J., Gao, C., Tan, Y., & Du, Z. (2025). The Impact of Digital Supply Chain Management on Enterprise Total Factor Productivity: Evidence from a Quasi-Natural Experiment in China. Sustainability, 17(17), 7813. https://doi.org/10.3390/su17177813