Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture
Abstract
1. Introduction
2. Fundamentals of Torrefaction
3. Lignocellulosic Biomass Resource-Feedstock Distribution
3.1. Availability of Biomass Feedstock
3.2. Lignocellulosic Biomass Supply in Europe and Worldwide
4. Lignocellulosic Biomass Torrefaction Impact on Society
4.1. Torrefied Biomass in Renewable Energy Systems
4.2. Torrefied Biomass Applications in Sustainable Agriculture
4.3. Role of Torrefied Biomass in Circular Economy
5. Techno-Economic and Environmental Challenges
6. Environmental Impacts and Life Cycle Assessment
7. Future Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojo, A.O. An overview of lignocellulose and its biotechnological importance in high-value product production. Fermentation 2023, 9, 990. [Google Scholar] [CrossRef]
- Sharma, S.; Tsai, M.-L.; Sharma, V.; Sun, P.-P.; Nargotra, P.; Bajaj, B.K.; Chen, C.-W.; Dong, C.-D. Environment friendly pretreatment approaches for the bioconversion of lignocellulosic biomass into biofuels and value-added products. Environments 2022, 10, 6. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Troncoso, O.P.; Corman-Hijar, J.I.; Torres, F.G. Lignocellulosic biomass for the fabrication of triboelectric nano-generators (TENGs)—A Review. Int. J. Mol. Sci. 2023, 24, 15784. [Google Scholar] [CrossRef]
- Segers, B.; Nimmegeers, P.; Spiller, M.; Tofani, G.; Grojzdek, E.J.; Dace, E.; Kikas, T.; Marchetti, J.M.; Rajić, M.; Yildiz, G. Lignocellulosic biomass valorisation: A review of feedstocks, processes and potential value chains, and their implications for the decision-making process. RSC Sustain. 2024, 2, 3730–3749. [Google Scholar] [CrossRef]
- El-Araby, R. Biofuel production: Exploring renewable energy solutions for a greener future. Biotechnol. Biofuels Bioprod. 2024, 17, 129. [Google Scholar] [CrossRef]
- Thapa, S.; Joshi, D.P.; Pokharel, B. Lignocellulosic biomass and conversion technology. In Biomass, Bioenergy & Bioeconomy; Springer: Berlin/Heidelberg, Germany, 2022; pp. 83–97. [Google Scholar]
- Singh, B.; Korstad, J.; Guldhe, A.; Kothari, R. Emerging feedstocks & clean technologies for lignocellulosic biofuel. Front. Energy Res. 2022, 10, 917081. [Google Scholar] [CrossRef]
- Goyal, H.; Seal, D.; Saxena, R. Bio-fuels from thermochemical conversion of renewable resources: A review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Brethauer, S.; Studer, M.H. Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals—A review. Chimia 2015, 69, 572. [Google Scholar] [CrossRef]
- Mamvura, T.A.; Danha, G. Biomass torrefaction as an emerging technology to aid in energy production. Heliyon 2020, 6, e03531. [Google Scholar] [CrossRef]
- Negi, S.; Jaswal, G.; Dass, K.; Mazumder, K.; Elumalai, S.; Roy, J.K. Torrefaction: A sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Rev. Environ. Sci. Bio/Technol. 2020, 19, 463–488. [Google Scholar] [CrossRef]
- Preradovic, M.; Papuga, S.; Kolundžija, A. Torrefaction: Process review. Period. Polytech. Chem. Eng. 2023, 67, 49–61. [Google Scholar] [CrossRef]
- Ivanovski, M.; Petrovič, A.; Goričanec, D.; Urbancl, D.; Simonič, M. Exploring the properties of the torrefaction process and its prospective in treating lignocellulosic material. Energies 2023, 16, 6521. [Google Scholar] [CrossRef]
- Thengane, S.K.; Kung, K.S.; Gomez-Barea, A.; Ghoniem, A.F. Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Prog. Energy Combust. Sci. 2022, 93, 101040. [Google Scholar] [CrossRef]
- Casau, M.; Dias, M.F.; Matias, J.C.; Nunes, L.J. Residual biomass: A comprehensive review on the importance, uses and potential in a circular bioeconomy approach. Resources 2022, 11, 35. [Google Scholar] [CrossRef]
- Hsiao, C.-J.; Hu, J.-L. Biomass and circular economy: Now and the future. Biomass 2024, 4, 720–739. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wang, X.; Utomo, D.; Gage, E.; Xu, B. Circular bioeconomy and sustainable food systems: What are the possible mechanisms? Clean. Circ. Bioeconomy 2025, 11, 100145. [Google Scholar] [CrossRef]
- van Dijk, M.; Goedegebure, R.; Nap, J.-P. Public acceptance of biomass for bioenergy: The need for feedstock differentiation and communicating a waste utilization frame. Renew. Sustain. Energy Rev. 2024, 202, 114670. [Google Scholar] [CrossRef]
- Rashidi, N.A.; Mohd Yusoff, M.H.; Ahmad Termezi, M.F.; Azmi, N. Sustainable valorization of agricultural biomass: Progress in thermochemical conversion for bioenergy production. Biofuels Bioprod. Biorefining 2025, 1–18. [Google Scholar] [CrossRef]
- Massaro Sousa, L.; Ogura, A.P.; Anchieta, C.G.; Morin, M.; Canabarro, N.I. Biomass Torrefaction for Renewable Energy: From Physicochemical, Bulk Properties, and Flowability to Future Perspectives and Applications. Energy Fuels 2024, 38, 18367–18385. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Zhao, Y.; Xu, L.; Feng, S.; Wang, Z.; Zhang, L.; Shen, B. Effects of torrefaction pretreatment on fuel quality and combustion characteristics of biomass: A review. Fuel 2024, 358, 130314. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Dalai, A.K.; Meda, V. A review of torrefaction technology for upgrading lignocellulosic biomass to solid biofuels. BioEnergy Res. 2021, 14, 645–669. [Google Scholar] [CrossRef]
- Panwar, N.L.; Divyangkumar, N. An overview of recent advancements in biomass torrefaction. Environ. Dev. Sustain. 2024, 1–48. [Google Scholar] [CrossRef]
- Chen, W.-H.; Biswas, P.P.; Chang, J.-S.; Ryšavý, J.; Čespiva, J. A review of comparative life cycle assessment of dry, wet, and microwave torrefaction pathways for sustainable bioenergy systems. Renew. Sustain. Energy Rev. 2025, 219, 115875. [Google Scholar] [CrossRef]
- Fajimi, L.I.; Chrisostomou, J.; Oboirien, B.O. A techno-economic analysis (TEA) of a combined process of torrefaction and gasification of lignocellulose biomass (bagasse) for methanol and electricity production. Biomass Convers. Biorefinery 2024, 14, 12501–12516. [Google Scholar] [CrossRef]
- Banerjee, S.; Pandit, C.; Gundupalli, M.P.; Pandit, S.; Rai, N.; Lahiri, D.; Chaubey, K.K.; Joshi, S.J. Life cycle assessment of revalorization of lignocellulose for the development of biorefineries. Environ. Dev. Sustain. 2024, 26, 16387–16418. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J. More efficient biomass gasification via torrefaction. Energy 2006, 31, 3458–3470. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Sokhansanj, S.; Wright, C.T.; Hess, J.R.; Boardman, R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011, 7, 384–401. [Google Scholar] [CrossRef]
- Yun, H.; Wang, Z.; Wang, R.; Bi, X.; Chen, W.-H. Identification of suitable biomass torrefaction operation envelops for auto-thermal operation. Front. Energy Res. 2021, 9, 636938. [Google Scholar] [CrossRef]
- Orisaleye, J.I.; Jekayinfa, S.O.; Pecenka, R.; Ogundare, A.A.; Akinseloyin, M.O.; Fadipe, O.L. Investigation of the effects of torrefaction temperature and residence time on the fuel quality of corncobs in a fixed-bed reactor. Energies 2022, 15, 5284. [Google Scholar] [CrossRef]
- Safar, M.; Chen, W.-H.; Raclavska, H.; Juchelkova, D.; Prokopova, N.; Rachmadona, N.; Khoo, K.S. Overview of the use of additives in biomass torrefaction processes: Their impact on products and properties. Fuel 2024, 374, 132419. [Google Scholar] [CrossRef]
- Mignogna, D.; Szabó, M.; Ceci, P.; Avino, P. Biomass energy and biofuels: Perspective, potentials, and challenges in the energy transition. Sustainability 2024, 16, 7036. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Ghiasi, B.; Soelberg, N.R.; Sokhansanj, S. Biomass torrefaction process, product properties, reactor types, and moving bed reactor design concepts. Front. Energy Res. 2021, 9, 728140. [Google Scholar] [CrossRef]
- Simonic, M.; Goricanec, D.; Urbancl, D. Impact of torrefaction on biomass properties depending on temperature and operation time. Sci. Total Environ. 2020, 740, 140086. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.C.; Yu, K.L.; Chen, W.-H.; Pillejera, M.K.; Bi, X.; Tran, K.-Q.; Pétrissans, A.; Pétrissans, M. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renew. Sustain. Energy Rev. 2021, 152, 111698. [Google Scholar] [CrossRef]
- Silveira, E.A.; Dutra, R.C.; Vargas, J.l.R.; Oliveira, J.S.; Suarez, P.A.; Ghesti, G.F. Torrefaction of Sericulture Agro-Industrial Waste for Sustainable Waste-to-Resource Solutions. ACS Omega 2025, 10, 27223–27237. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, L.; Yang, X.; Huang, Y.; Liu, C.; Gu, J.; Zheng, Z. Effect of the Torrefaction Temperature on the Structural Properties and Pyrolysis Behavior of Biomass. BioResources 2017, 12, 3425–3447. [Google Scholar] [CrossRef]
- Sarker, T.R.; German, C.S.; Borugadda, V.B.; Meda, V.; Dalai, A.K. Techno-economic analysis of torrefied fuel pellet production from agricultural residue via integrated torrefaction and pelletization process. Heliyon 2023, 9, e16359. [Google Scholar] [CrossRef]
- Zhang, D.; Han, P.; Zheng, H.; Yan, Z. Torrefaction of walnut oil processing wastes by superheated steam: Effects on products characteristics. Sci. Total Environ. 2022, 830, 154649. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Chen, J.; Chen, X.; Jiang, Y.; Jian, J.; Yao, S. Effect of oxidative torrefaction on high temperature combustion process of wood sphere. Fuel 2021, 286, 119379. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Soria-Verdugo, A.; Guil-Pedrosa, J.F.; García-Hernando, N.; Ghoniem, A.F. Evolution of solid residue composition during inert and oxidative biomass torrefaction. Energy 2024, 312, 133486. [Google Scholar] [CrossRef]
- Soria-Verdugo, A.; Cano-Pleite, E.; Panahi, A.; Ghoniem, A.F. Kinetics mechanism of inert and oxidative torrefaction of biomass. Energy Convers. Manag. 2022, 267, 115892. [Google Scholar] [CrossRef]
- Aziz, N.A.M.; Mohamed, H.; Kania, D.; Ong, H.C.; Zainal, B.S.; Junoh, H.; Ker, P.J.; Silitonga, A. Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis. Renew. Sustain. Energy Rev. 2024, 191, 114097. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Borrion, A. Life cycle assessment of electricity generation from sugarcane bagasse hydrochar produced by microwave assisted hydrothermal carbonization. J. Clean. Prod. 2021, 291, 125980. [Google Scholar] [CrossRef]
- Livingston, A.D.; Thomas, B.J. High Energy Efficiency Biomass Conversion Process. U.S. Patent No. 8,388,813, 5 March 2013. [Google Scholar]
- Yang, X.; Zhao, Y.; Zhang, L.; Wang, Z.; Zhao, Z.; Zhu, W.; Ma, J.; Shen, B. Effects of torrefaction pretreatment on the structural features and combustion characteristics of biomass-based fuel. Molecules 2023, 28, 4732. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; Dutta, A. Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction. Biomass Convers. Biorefinery 2016, 6, 139–149. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Fatma, S.; Hameed, A.; Noman, M.; Ahmed, T.; Shahid, M.; Tariq, M.; Sohail, I.; Tabassum, R. Lignocellulosic biomass: A sustainable bioenergy source for the future. Protein Pept. Lett. 2018, 25, 148–163. [Google Scholar] [CrossRef]
- Olugbade, T.O.; Ojo, O.T. Biomass torrefaction for the production of high-grade solid biofuels: A review. BioEnergy Res. 2020, 13, 999–1015. [Google Scholar] [CrossRef]
- Ciolkosz, D.; Wallace, R. A review of torrefaction for bioenergy feedstock production. Biofuels Bioprod. Biorefining 2011, 5, 317–329. [Google Scholar] [CrossRef]
- Rodrigues, A.; Nunes, L.; Godina, R.; Matias, J. Correlation between chemical alterations and energetic properties in Torrefied biomass. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–5. [Google Scholar]
- Oginni, O.; Fadiji, E.; Ajewole, A.; Olumilua, A. An overview of the biomass torrefaction technology and characterization of solid waste fuels. UNIOSUN J. Eng. Environ. Sci. 2024, 6, 64–75. [Google Scholar] [CrossRef]
- Valipour, M.; Mafakheri, F.; Gagnon, B.; Prinz, R.; Bergström, D.; Brown, M.; Wang, C. Integrating bio-hubs in biomass supply chains: Insights from a systematic literature review. J. Clean. Prod. 2024, 467, 142930. [Google Scholar] [CrossRef]
- International Energy Agency (IEA); International Renewable Energy Agency; United Nations Statistics Division (UNSD); World Bank; World Health Organization (WHO). Tracking SDG7: The Energy Progress Report 2025; IEA: Paris, France, 2025. [Google Scholar]
- Global Renewables Outlook-Energy Transformation 2050; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2020; ISBN 978-92-9260-238-3.
- Raimi, D.; Zhu, Y.; Newell, R.G.; Prest, B.C.; Bergman, A. Global Energy Outlook 2023: Sowing the Seeds of an Energy Transition; Resources for the Future: Washington, DC, USA, 2023; pp. 1–44. [Google Scholar]
- Jacobson, R.A.; Jones, S.; de la Torre Ugarte, D.; Kline, K.L. Mapping and Synthesis of International Biomass Supply Assessments; US Department of Energy: Oak Ridge, TN, USA, 2025.
- Dubois, O.; Pirelli, T.; Peressotti, A. Biomass anaerobic digestion and gasification in non-OECD countries—An overview. Substit. Nat. Gas Waste 2019, 343–387. [Google Scholar] [CrossRef]
- Stellingwerf, H.M.; Guo, X.; Annevelink, E.; Behdani, B. Logistics and supply chain modelling for the biobased economy: A systematic literature review and research agenda. Front. Chem. Eng. 2022, 4, 778315. [Google Scholar] [CrossRef]
- Dahmen, N.; Lewandowski, I.; Zibek, S.; Weidtmann, A. Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 2019, 11, 107–117. [Google Scholar] [CrossRef]
- Gérard, M.; Jayet, P.-A. European farmers’ response to crop residue prices and implications for bioenergy policies. Energy Policy 2023, 177, 113561. [Google Scholar] [CrossRef]
- García-Condado, S.; López-Lozano, R.; Panarello, L.; Cerrani, I.; Nisini, L.; Zucchini, A.; Van der Velde, M.; Baruth, B. Assessing lignocellulosic biomass production from crop residues in the European Union: Modelling, analysis of the current scenario and drivers of interannual variability. GCB Bioenergy 2019, 11, 809–831. [Google Scholar] [CrossRef]
- Vera, I.; Hoefnagels, R.; Junginger, M.; van der Hilst, F. Supply potential of lignocellulosic energy crops grown on marginal land and greenhouse gas footprint of advanced biofuels—A spatially explicit assessment under the sustainability criteria of the Renewable Energy Directive Recast. GCB Bioenergy 2021, 13, 1425–1447. [Google Scholar] [CrossRef]
- Uslu, A.; Gomez, N.; Belda, M. Demand for Lignocellulosic Biomass in Europe: Policies, Supply and Demand for Lignocellulosic Biomass; Energy Research CENTRE of the Netherlands: Petten, The Netherlands, 2010; Available online: https://www.elobio.eu/fileadmin/elobio/user/docs/Additional_D_to_WP3-Linocellulosic_biomass.pdf (accessed on 20 August 2025).
- European Union. Regulation (EU) 2018/841 of the European Parliament and of The Council of 30 May 2018 on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry in the 2030 Climate and Energy Framework, and Amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU; Official Journal of the European Union: Luxembourg, 2018; pp. 1–25.
- European Union. Commission Implementing Regulation (EU) 2022/2448 of 13 December 2022 on Establishing Operational Guidance on the Evidence for Demonstrating Compliance with the Sustainability Criteria for Forest Biomass Laid Down in Article 29 of Directive (EU) 2018/2001 of the European Parliament and of the Council; Official Journal of the European Union: Luxembourg, 2022; pp. 4–11.
- European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources; Official Journal of the European Union: Luxembourg, 2018; pp. 82–209.
- Hyvönen, J.; Koivunen, T.; Syri, S. Review of climate strategies in northern Europe: Exposure to potential risks and limitations. Energies 2024, 17, 1538. [Google Scholar] [CrossRef]
- Sasso, C.; Savaresi, A.; Vesa, S. Piecing together the jigsaw: Forests in the EU’s Fit for 55 Package. Rev. Eur. Comp. Int. Environ. Law 2025, 34, 23–34. [Google Scholar] [CrossRef]
- Vizzarri, M.; Pilli, R.; Korosuo, A.; Frate, L.; Grassi, G. The role of forests in climate change mitigation: The EU context. In Climate-Smart Forestry in Mountain Regions; Springer: Berlin/Heidelberg, Germany, 2022; pp. 507–520. [Google Scholar] [CrossRef]
- Camia, A.; Giuntoli, J.; Jonsson, R.; Robert, N.; Cazzaniga, N.E.; Jasinevičius, G.; Avitabile, V.; Grassi, G.; Barredo Cano, J.I.; Mubareka, S.B. The Use of Woody Biomass for Energy Production in the EU; Publications Office of the European Union: Luxembourg, 2021. [CrossRef]
- Korosuo, A.; Pilli, R.; Abad Viñas, R.; Blujdea, V.N.; Colditz, R.R.; Fiorese, G.; Rossi, S.; Vizzarri, M.; Grassi, G. The role of forests in the EU climate policy: Are we on the right track? Carbon Balance Manag. 2023, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Elbersen, W.; Gursel, I.V.; Voogt, J.n.; Meesters, K.; Kulisic, B. To Be or Not to Be a Biobased Commodity: Assessing Requirements and Candidates for Lignocellulosic Based Commodities; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Aboytes-Ojeda, M.; Castillo-Villar, K.K.; Eksioglu, S.D. Modeling and optimization of biomass quality variability for decision support systems in biomass supply chains. Ann. Oper. Res. 2022, 314, 319–346. [Google Scholar] [CrossRef]
- Sun, O.; Fan, N. A review on optimization methods for biomass supply chain: Models and algorithms, sustainable issues, and challenges and opportunities. Process Integr. Optim. Sustain. 2020, 4, 203–226. [Google Scholar] [CrossRef]
- Ba, B.H.; Prins, C.; Prodhon, C. Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective. Renew. Energy 2016, 87, 977–989. [Google Scholar] [CrossRef]
- Cintas, O.; Berndes, G.; Englund, O.; Johnsson, F. Geospatial supply-demand modeling of lignocellulosic biomass for electricity and biofuels in the European Union. Biomass Bioenergy 2021, 144, 105870. [Google Scholar] [CrossRef]
- Rafey, A.; Pal, K.; Pant, K.K. Valorization of rice straw via torrefaction and its effect on the physicochemical properties. Biomass Convers. Biorefin. 2025, 1–20. [Google Scholar] [CrossRef]
- Singara Veloo, K.; Lau, A.; Sokhansanj, S. Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass. Energies 2025, 18, 3464. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Jiya, M.J.; Andrew, A.; Salihu, A.M.; Mamma, E.; Anyanwu, S.K.; Mathew, J.T.; Inobeme, A.; Yisa, B.N.; Saba, J.J. Biomass Valorisation: A Sustainable Approach Towards Carbon Neutrality and Circular Economy. In Biomass Valorization: A Sustainable Approach Towards Carbon Neutrality and Circular Economy; Springer: Berlin/Heidelberg, Germany, 2025; pp. 99–122. [Google Scholar]
- Rehman, A.; Thengane, S.K. Prospects of torrefied biomass as soil amendment for sustainable agriculture. Clean Technol. Environ. Policy 2025, 27, 531–547. [Google Scholar] [CrossRef]
- Kocher, G.S.; Keshani. Recent Development in Thermochemical and Green Processes for Energy Production from Waste Biomaterials. In Biotechnological Advancements in Biomass to Bioenergy Biotransformation: Sustainable Implications in Circular Economy; Tripathi, M., Kaur, S., Eds.; Springer: Singapore, 2025; pp. 279–298. [Google Scholar] [CrossRef]
- Javanmard, A.; Zuki, F.M.; Daud, W.M.A.W.; Patah, M.F.A. Torrefied Biomass as a Platform for Sustainable Energy and Environmental Applications: Process Optimization, Reactor Design, and Functional Material Development. Process Saf. Environ. Prot. 2025, 202, 107643. [Google Scholar] [CrossRef]
- Shi, L.; Hu, Z.; Li, X.; Li, S.; Yi, L.; Wang, X.; Hu, H.; Luo, G.; Yao, H. Gas-pressurized torrefaction of lignocellulosic solid wastes: Low-temperature deoxygenation and chemical structure evolution mechanisms. Bioresour. Technol. 2023, 385, 129414. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Wang, Y.; Liu, Y.; Ruan, R.; He, C.; Yu, Z.; Jiang, L.; Zeng, Z.; Tian, X. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renew. Sustain. Energy Rev. 2019, 107, 20–36. [Google Scholar] [CrossRef]
- Nazos, A.; Politi, D.; Giakoumakis, G.; Sidiras, D. Simulation and optimization of lignocellulosic biomass wet-and dry-torrefaction process for energy, fuels and materials production: A review. Energies 2022, 15, 9083. [Google Scholar] [CrossRef]
- Rashmi, R.; Tripathi, T.; Pandey, S.; Kumar, S. Transforming lignocellulosic biomass into biofuels: Recent innovations in pretreatment and bioconversion techniques. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 1079–1089. [Google Scholar] [CrossRef]
- Álvarez, C.; Duque, A.; Sánchez-Monedero, A.; González, E.J.; González-Miquel, M.; Cañadas, R. Exploring Recent Advances in Lignocellulosic Biomass Waste Delignification Through the Combined Use of Eutectic Solvents and Intensification Techniques. Processes 2024, 12, 2514. [Google Scholar] [CrossRef]
- Wongsiriwittaya, M.; Chompookham, T.; Bubphachot, B. Improvement of higher heating value and hygroscopicity reduction of torrefied rice husk by torrefaction and circulating gas in the system. Sustainability 2023, 15, 11193. [Google Scholar] [CrossRef]
- Yek, P.N.Y.; Cheng, Y.W.; Liew, R.K.; Mahari, W.A.W.; Ong, H.C.; Chen, W.-H.; Peng, W.; Park, Y.-K.; Sonne, C.; Kong, S.H. Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review. Renew. Sustain. Energy Rev. 2021, 151, 111645. [Google Scholar] [CrossRef]
- Bello, R.; Olorunnisola, A.; Omoniyi, T.; Onilude, M. A review of technoeconomic benefits of torrefaction pretreatment technology and application in torrefying sawdust. Sustain. Econ. 2024, 2, 671–678. [Google Scholar] [CrossRef]
- Onyenwoke, C.; Tabil, L.G.; Dumonceaux, T.; Mupondwa, E.; Cree, D.; Li, X.; Onu Olughu, O. Technoeconomic analysis of torrefaction and steam explosion pretreatment prior to pelletization of selected biomass. Energies 2023, 17, 133. [Google Scholar] [CrossRef]
- Gonzales, T.d.S.; Monteiro, S.; Lamas, G.C.; Rodrigues, P.P.; Siqueira, M.B.; Follegatti-Romero, L.A.; Silveira, E.A. Simulation and thermodynamic evaluation of woody biomass waste torrefaction. ACS Omega 2025, 10, 3585–3597. [Google Scholar] [CrossRef]
- Cho, K.; Lee, Y. Life Cycle Assessment of torrefied residual biomass co-firing in coal-fired power plants: Aspects of carbon dioxide emission. Energies 2024, 17, 6165. [Google Scholar] [CrossRef]
- Torres Ramos, R.; Valdez Salas, B.; Montero Alpírez, G.; Coronado Ortega, M.A.; Curiel Álvarez, M.A.; Tzintzun Camacho, O.; Beleño Cabarcas, M.T. Torrefaction under different reaction atmospheres to improve the fuel properties of wheat straw. Processes 2023, 11, 1971. [Google Scholar] [CrossRef]
- Rajaonarivony, R.-K.; Rouau, X.; Commandré, J.-M.; Fabre, C.; Maigret, J.-E.; Falourd, X.; Le Gall, S.; Piriou, B.; Goudenhooft, C.; Durand, S. Fine comminution of torrefied wheat straw for energy applications: Properties of the powder and energy balances of the production route. Sustain. Energy Fuels 2023, 7, 5655–5668. [Google Scholar] [CrossRef]
- Bajcar, M.; Zardzewiały, M.; Saletnik, B.; Zaguła, G.; Puchalski, C.; Gorzelany, J. Torrefaction as a Way to Remove Chlorine and Improve the Energy Properties of Plant Biomass. Energies 2023, 16, 7365. [Google Scholar] [CrossRef]
- Ivanovski, M.; Goričanec, D.; Urbancl, D. The evaluation of torrefaction efficiency for lignocellulosic materials combined with mixed solid wastes. Energies 2023, 16, 3694. [Google Scholar] [CrossRef]
- Çetinkaya, B.; Erkent, S.; Ekinci, K.; Civan, M.; Bilgili, M.E.; Yurdakul, S. Effect of torrefaction on fuel properties of biopellets. Heliyon 2024, 10, e23989. [Google Scholar] [CrossRef]
- de Mattos Carneiro-Junior, J.A.; Teles, E.O.; Fernandes, F.M.; Alves, C.T.; de Melo, S.A.B.V.; Torres, E.A. Torrefaction as a Pre-Treatment of Biomass: A Bibliometric Analysis. Int. J. Innov. Educ. Res. 2021, 9, 289–313. [Google Scholar] [CrossRef]
- Majamo, S.L.; Amibo, T.A. Modeling and optimization of chemical-treated torrefaction of wheat straw to improve energy density by response surface methodology. Biomass Convers. Biorefinery 2024, 14, 21213–21227. [Google Scholar] [CrossRef]
- Guo, S.; Deng, X.; Guo, T.; Gao, L.; Qu, H.; Li, X.; Tian, J. Optimization of biomass torrefaction densification process parameters: Impact on hydrogen-rich syngas generation in the gasification process. Biomass Bioenergy 2025, 195, 107703. [Google Scholar] [CrossRef]
- Nunes, L.J.; Matias, J.C. Biomass torrefaction as a key driver for the sustainable development and decarbonization of energy production. Sustainability 2020, 12, 922. [Google Scholar] [CrossRef]
- Li, J.; Brzdekiewicz, A.; Yang, W.; Blasiak, W. Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl. Energy 2012, 99, 344–354. [Google Scholar] [CrossRef]
- Mpungu, I.L.; Maube, O.; Nziu, P.; Mwasiagi, J.I.; Dulo, B.; Bongomin, O. Optimizing waste for energy: Exploring municipal solid waste variations on torrefaction and biochar production. Int. J. Energy Res. 2024, 2024, 4311062. [Google Scholar] [CrossRef]
- Ribeiro, J.M.C.; Godina, R.; Matias, J.C.d.O.; Nunes, L.J.R. Future perspectives of biomass torrefaction: Review of the current state-of-the-art and research development. Sustainability 2018, 10, 2323. [Google Scholar] [CrossRef]
- Akhtar, J.; Imran, M.; Ali, A.M.; Nawaz, Z.; Muhammad, A.; Butt, R.K.; Jillani, M.S.; Naeem, H.A. Torrefaction and thermochemical properties of agriculture residues. Energies 2021, 14, 4218. [Google Scholar] [CrossRef]
- Van Meerbeek, K.; Muys, B.; Hermy, M. Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renew. Sustain. Energy Rev. 2019, 102, 139–149. [Google Scholar] [CrossRef]
- Banta, M.T.A.; De Leon, R.L. Parametric study of rice husk torrefaction for the development of sustainable solid fuel. Int. J. Smart Grid Clean Energy 2018, 7, 207–217. [Google Scholar] [CrossRef]
- Sarker, T.R.; Azargohar, R.; Dalai, A.K.; Venkatesh, M. Physicochemical and fuel characteristics of torrefied agricultural residues for sustainable fuel production. Energy Fuels 2020, 34, 14169–14181. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Verhoeff, F.; Adell, A.; Boersma, A.; Pels, J.; Lensselink, J.; Kiel, J.; Schukken, H. TorTech: Torrefaction as Key Technology for the Production of (Solid) Fuels from Biomass and Waste; ECN-E--11-039; ECN Biomass, Coal and Environmental Research: Petten, The Netherlands, 2011; 82p. [Google Scholar]
- Vasileiadou, A. From Organic wastes to Bioenergy, Biofuels, and value-added products for urban sustainability and circular economy: A review. Urban Sci. 2024, 8, 121. [Google Scholar] [CrossRef]
- Lee, K.-T.; Chen, W.-H.; Sarles, P.; Park, Y.-K.; Ok, Y.S. Recover energy and materials from agricultural waste via thermochemical conversion. One Earth 2022, 5, 1200–1204. [Google Scholar] [CrossRef]
- Van der Stelt, M.; Gerhauser, H.; Kiel, J.H.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Song, C.; Zhang, C.; Zhang, S.; Lin, H.; Kim, Y.; Ramakrishnan, M.; Du, Y.; Zhang, Y.; Zheng, H.; Barceló, D. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. Sci. Total Environ. 2020, 749, 141972. [Google Scholar] [CrossRef] [PubMed]
- Nunes, L.; Matias, J.; Catalão, J. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sustain. Energy Rev. 2014, 40, 153–160. [Google Scholar] [CrossRef]
- Liang, K. Energy Utilization of Agricultural Waste: From Waste Management to Energy Production. J. Energy Biosci. 2024, 15, 147–159. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; Santo Pereira, A.d.E.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, X.; Wang, Y.; Chen, S. Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia Environ. Sci. 2016, 31, 12–17. [Google Scholar] [CrossRef]
- Vaskalis, I.; Skoulou, V.; Stavropoulos, G.; Zabaniotou, A. Towards circular economy solutions for the management of rice processing residues to bioenergy via gasification. Sustainability 2019, 11, 6433. [Google Scholar] [CrossRef]
- Berenguer, C.V.; Perestrelo, R.; Pereira, J.A.; Câmara, J.S. Management of agri-food waste based on thermochemical processes towards a circular bioeconomy concept: The case study of the Portuguese industry. Processes 2023, 11, 2870. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manag. 2016, 181, 484–497. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Cano, F.J.; Reyes-Vallejo, O.; Sánchez-Albores, R.M.; Sebastian, P.J.; Cruz-Salomón, A.; Hernández-Cruz, M.d.C.; Montejo-López, W.; González Reyes, M.; Serrano Ramirez, R.d.P.; Torres-Ventura, H.H. Activated biochar from pineapple crown biomass: A high-efficiency adsorbent for organic dye removal. Sustainability 2025, 17, 99. [Google Scholar] [CrossRef]
- Baldi, H.D. Characterization of Novel Torrefied Biomass and Biochar Amendments. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2019. [Google Scholar]
- Cano, F.J.; Sánchez− Albores, R.; Ashok, A.; Escorcia− García, J.; Cruz− Salomón, A.; Reyes− Vallejo, O.; Sebastian, P.; Velumani, S. Carica papaya seed− derived functionalized biochar: An environmentally friendly and efficient alternative for dye adsorption. J. Mater. Sci. Mater. Electron. 2025, 36, 663. [Google Scholar] [CrossRef]
- Ogura, T.; Date, Y.; Masukujane, M.; Coetzee, T.; Akashi, K.; Kikuchi, J. Improvement of physical, chemical and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Sci. Rep. 2016, 6, 28011. [Google Scholar] [CrossRef]
- Waheed, A.; Xu, H.; Qiao, X.; Aili, A.; Yiremaikebayi, Y.; Haitao, D.; Muhammad, M. Biochar in sustainable agriculture and climate mitigation: Mechanisms, challenges, and applications in the circular bioeconomy. Biomass Bioenergy 2025, 193, 107531. [Google Scholar] [CrossRef]
- Li, S.; Tasnady, D. Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives. C J. Carbon Res. 2023, 9, 67. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lin, B.-J.; Lin, Y.-Y.; Chu, Y.-S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.-S.; Ho, S.-H.; Culaba, A.B.; et al. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y.; et al. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 109876. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Xue, J.; Zhang, L. Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: A global meta-analysis. Sustainability 2020, 12, 3436. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Y.; Luo, M.; Zhuang, Y.; Wang, J.; Chai, S.; Liu, J.; Zhang, Z.; Li, Y.; Chen, P.; et al. Mitigating nitrous oxide emissions from agricultural soils with biochar: A scientometric and visual analysis. Agronomy 2025, 15, 1115. [Google Scholar] [CrossRef]
- Rittl, T.F.; Oliveira, D.M.; Canisares, L.P.; Sagrilo, E.; Butterbach-Bahl, K.; Dannenmann, M.; Cerri, C.E. High application rates of biochar to mitigate N2O emissions from a N-fertilized tropical soil under warming conditions. Front. Environ. Sci. 2021, 8, 611873. [Google Scholar] [CrossRef]
- Arora, V.; Singh, C.; Sidhu, A.; Thind, S. Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture. Agric. Water Manag. 2011, 98, 563–568. [Google Scholar] [CrossRef]
- Reis Portilho, G.; Resende de Castro, V.; de Cássia Oliveira Carneiro, A.; Cola Zanuncio, J.; José Vinha Zanuncio, A.; Gabriella Surdi, P.; Gominho, J.; de Oliveira Araújo, S. Potential of briquette produced with torrefied agroforestry biomass to generate energy. Forests 2020, 11, 1272. [Google Scholar] [CrossRef]
- Haddad, N.; Al Tawaha, A.R.; Alassaf, R.; Alkhoury, W.; Abusalem, M.; Al-Sharif, R. Sustainable agriculture in jordan–a review for the potential of biochar from agricultural waste for soil and crop improvement. J. Ecol. Eng. 2024, 25, 190–202. [Google Scholar] [CrossRef]
- Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic biomass valorization for bioethanol production: A circular bioeconomy approach. BioEnergy Res. 2022, 15, 1820–1841. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Sharma, Y.C. Advancements in biomass valorization in integrated biorefinery systems. Biofuels Bioprod. Biorefining 2024, 18, 2078–2090. [Google Scholar] [CrossRef]
- Bharathi, S.D.; Dilshani, A.; Khaitan, P.; Rishivanthi, S.; Jacob, S. Perspectives and role of lignocellulosic biorefinery in strengthening a circular economy. In Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 175–202. [Google Scholar]
- Petrovič, A.; Hochenauer, C.; Zazijal, M.; Gruber, S.; Rola, K.; Čuček, L.; Goričanec, D.; Urbancl, D. Torrefaction and hydrothermal carbonization of waste from the paper industry: Effects of atmosphere choice and pretreatment with natural acidic reagent on fuel properties. Therm. Sci. Eng. Prog. 2024, 51, 102623. [Google Scholar] [CrossRef]
- Singh, E.; Mishra, R.; Kumar, A.; Shukla, S.K.; Lo, S.-L.; Kumar, S. Circular economy-based environmental management using biochar: Driving towards sustainability. Process Saf. Environ. Prot. 2022, 163, 585–600. [Google Scholar] [CrossRef]
- Devaraja, U.M.A.; Dissanayake, C.L.W.; Gunarathne, D.S.; Chen, W.-H. Oxidative torrefaction and torrefaction-based biorefining of biomass: A critical review. Biofuel Res. J. 2022, 9, 1672–1696. [Google Scholar] [CrossRef]
- Novian Cahyanti, M. Sustainable Energy Carriers for Renewable Energy Systems: Exploring the Potential of Torrefied Lignocellulosic Biomass. Ph.D. Thesis, Estonian University of Life Sciences, Tartu, Estonia, 2024. [Google Scholar]
- Woźniak, A.; Kuligowski, K.; Świerczek, L.; Cenian, A. Review of lignocellulosic biomass pretreatment using physical, thermal and chemical methods for higher yields in bioethanol production. Sustainability 2025, 17, 287. [Google Scholar] [CrossRef]
- Ortiz-Barajas, D.L.; Arévalo-Prada, J.A.; Fenollar, O.; Rueda-Ordóñez, Y.J.; Torres-Giner, S. Torrefaction of coffee husk flour for the development of injection-molded green composite pieces of polylactide with high sustainability. Appl. Sci. 2020, 10, 6468. [Google Scholar] [CrossRef]
- Choi, J.-H.; Ahn, M.R.; Yoon, C.-H.; Lim, Y.-S.; Kim, J.R.; Seong, H.; Jung, C.-D.; You, S.-M.; Kim, J.; Kim, Y. Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue. J. Bioresour. Bioprod. 2025, 10, 51–61. [Google Scholar] [CrossRef]
- Latiza, R.J.P.; Rubi, R.V. Circular economy integration in 1G+ 2G sugarcane bioethanol production: Application of carbon capture, utilization and storage, closed-loop systems, and waste valorization for sustainability. Appl. Sci. Eng. Prog. 2025, 18, 7448. [Google Scholar]
- Parlato, M.C.; Pezzuolo, A. From field to building: Harnessing bio-based building materials for a circular bioeconomy. Agronomy 2024, 14, 2152. [Google Scholar] [CrossRef]
- Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Pant, K.K.; Aminabhavi, T.M. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresour. Technol. 2022, 343, 126151. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, Ö.; Roy, P.; Zeng, T. Downstream torrefaction of wood pellets in a rotary kiln reactor—Impact on solid biofuel properties and torr-gas quality. Processes 2022, 10, 1912. [Google Scholar] [CrossRef]
- Piersa, P.; Unyay, H.; Szufa, S.; Lewandowska, W.; Modrzewski, R.; Ślężak, R.; Ledakowicz, S. An extensive review and comparison of modern biomass torrefaction reactors vs. biomass pyrolysis—Part 1. Energies 2022, 15, 2227. [Google Scholar] [CrossRef]
- Niu, Y.; Lv, Y.; Lei, Y.; Liu, S.; Liang, Y.; Wang, D.; Hui, S.e. Biomass torrefaction: Properties, applications, challenges, and economy. Renew. Sustain. Energy Rev. 2019, 115, 109395. [Google Scholar] [CrossRef]
- Han, J.; Yu, D.; Wu, J.; Yu, X.; Liu, F.; Xu, M. Effects of torrefaction on ash-related issues during biomass combustion and co-combustion with coal. Part 3: Ash slagging behavior. Fuel 2023, 339, 126925. [Google Scholar] [CrossRef]
- Han, J.; Yu, D.; Wu, J.; Yu, X.; Liu, F.; Xu, M. Effects of torrefaction on ash-related issues during biomass combustion and co-combustion with coal. Part 2: Ash fouling behavior. Fuel 2023, 334, 126777. [Google Scholar] [CrossRef]
- Manouchehrinejad, M.; Bilek, E.T.; Mani, S. Techno-economic analysis of integrated torrefaction and pelletization systems to produce torrefied wood pellets. Renew. Energy 2021, 178, 483–493. [Google Scholar] [CrossRef]
- Onsree, T.; Jaroenkhasemmeesuk, C.; Tippayawong, N. Techno-economic assessment of a biomass torrefaction plant for pelletized agro-residues with flue gas as a main heat source. Energy Rep. 2020, 6, 92–96. [Google Scholar] [CrossRef]
- Abelha, P.; Kiel, J. Techno-economic assessment of biomass upgrading by washing and torrefaction. Biomass Bioenergy 2020, 142, 105751. [Google Scholar] [CrossRef]
- Czerwinska, J.; Szufa, S.; Unyay, H.; Wielgosinski, G. Emission of Total Volatile Organic Compounds from the Torrefaction Process: Meadow Hay, Rye, and Oat Straw as Renewable Fuels. Energies 2025, 18, 4154. [Google Scholar] [CrossRef]
- Li, S. Reviewing air pollutants generated during the pyrolysis of solid waste for biofuel and biochar production: Toward cleaner production practices. Sustainability 2024, 16, 1169. [Google Scholar] [CrossRef]
- Kumar, B.; Mendoza-Martinez, C.; Ferenczi, T.; Nagy, G.; Koós, T.; Szamosi, Z. An experimental study to investigate the impact of solar drying on emission products of woody biomass in the torrefaction process. Energy Ecol. Environ. 2025, 10, 307–323. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.-H.; Ho, S.-H. Economic feasibility analysis and environmental impact assessment for the comparison of conventional and microwave torrefaction of spent coffee grounds. Biomass Bioenergy 2023, 168, 106652. [Google Scholar] [CrossRef]
- Bello, S.; Salim, I.; Méndez-Trelles, P.; Rodil, E.; Feijoo, G.; Moreira, M.T. Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA). Holzforschung 2018, 73, 105–115. [Google Scholar] [CrossRef]
- Gerbinet, S.; Léonard, A. Use of Life Cycle Assessment to determine the environmental impact of thermochemical conversion routes of lignocellulosic biomass: State of the art. In Proceedings of the 2nd International Conference on Life Cycle Approaches, Lille, France, 6–7 November 2012. [Google Scholar]
- Morales, M.; Quintero, J.; Conejeros, R.; Aroca, G. Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance. Renew. Sustain. Energy Rev. 2015, 42, 1349–1361. [Google Scholar] [CrossRef]
- Wong, A.; Zhang, H.; Kumar, A. Life cycle assessment of renewable diesel production from lignocellulosic biomass. Int. J. Life Cycle Assess. 2016, 21, 1404–1424. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M. Recent advancements in the life cycle analysis of lignocellulosic biomass. Curr. Sustain./Renew. Energy Rep. 2020, 7, 100–107. [Google Scholar] [CrossRef]
- Barros Lovate Temporim, R.; Cavalaglio, G.; Petrozzi, A.; Coccia, V.; Iodice, P.; Nicolini, A.; Cotana, F. Life cycle assessment and energy balance of a polygeneration plant fed with lignocellulosic biomass of Cynara cardunculus L. Energies 2022, 15, 2397. Energies 2022, 15, 2397. [Google Scholar] [CrossRef]
- Augusto, A.S.; Braz, C.G.; Cecílio, D.M.; Mateus, M.M.; Matos, H.A. Life Cycle Assessment of bio-oil produced through lignocellulosic biomass liquefaction. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023; Volume 52, pp. 2423–2428. [Google Scholar]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework 2006, ICS: 13.020.10 13.020.60. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines 2006, ICS: 13.020.10 13.020.60. International Organization for Standardization: Geneva, Switzerland, 2006.
- Cen, K.; Chen, F.; Chen, D.; Gan, Z.; Zhuang, X.; Zhang, H. Life cycle assessment of torrefied cornstalk pellets combustion heating system. Fuel 2022, 320, 123968. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.-H.; Ho, S.-H. Elemental loss, enrichment, transformation and life cycle assessment of torrefied corncob. Energy 2022, 242, 123019. [Google Scholar] [CrossRef]
- Yun, H.; Clift, R.; Bi, X. Environmental and economic assessment of torrefied wood pellets from British Columbia. Energy Convers. Manag. 2020, 208, 112513. [Google Scholar] [CrossRef]
- Ubando, A.T.; Rivera, D.R.T.; Chen, W.-H.; Culaba, A.B. Life cycle assessment of torrefied microalgal biomass using torrefaction severity index with the consideration of up-scaling production. Renew. Energy 2020, 162, 1113–1124. [Google Scholar] [CrossRef]
- Manna, D.; Chowdhury, R.; Kuittinen, S.; Pappinen, A.; Debnath, B.; Pati, S.; Saha, I.; De, S.; Hassan, M.K. Environmental sustainability assessment of mustard straw torrefaction: Insights from thermo-kinetics, product distribution analysis, product characterization and life cycle assessment. Biomass Bioenergy 2025, 201, 108110. [Google Scholar] [CrossRef]
- Sofán-Germán, S.J.; Doria-Oviedo, M.E.; Rhenals-Julio, J.D.; Mendoza-Fandiño, J.M. Life Cycle Assessment of Biomass Waste and Coal Co-Firing: Advancing Circular Economy in Energy Production. Recycling 2025, 10, 151. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, J.; Wang, Y.; Hao, K. Microwave torrefaction of biomass waste: Fuel property evaluation and life cycle impact. Next Energy 2025, 9, 100380. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, W.; Chen, W.-H.; Ho, S.-H.; Pétrissans, A.; Pétrissans, M. Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process. Energy 2022, 240, 122470. [Google Scholar] [CrossRef]
- Kung, K.S.; Ghoniem, A.F. A decentralized biomass torrefaction reactor concept. Part II: Mathematical model and scaling law. Biomass Bioenergy 2019, 125, 204–211. [Google Scholar] [CrossRef]
- Haseli, Y. Methods for Biomass Torrefaction with Carbon Dioxide Capture. U.S. Patent No. 10,167,428, 1 January 2019. [Google Scholar]
- Chen, D.; Cen, K.; Gan, Z.; Zhuang, X.; Ba, Y. Comparative study of electric-heating torrefaction and solar-driven torrefaction of biomass: Characterization of property variation and energy usage with torrefaction severity. Appl. Energy Combust. Sci. 2022, 9, 100051. [Google Scholar] [CrossRef]
- Naveed, M.H.; Gul, J.; Khan, M.N.A.; Naqvi, S.R.; Štěpanec, L.; Ali, I. Torrefied biomass quality prediction and optimization using machine learning algorithms. Chem. Eng. J. Adv. 2024, 19, 100620. [Google Scholar] [CrossRef]
- Kota, K.B.; Shenbagaraj, S.; Sharma, P.K.; Sharma, A.K.; Ghodke, P.K.; Chen, W.-H. Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel 2022, 324, 124663. [Google Scholar] [CrossRef]
- Kolapkar, S.S.; Zinchik, S.; Burli, P.; Lin, Y.; Hartley, D.S.; Klinger, J.; Handler, R.; Bar-Ziv, E. Integrated torrefaction-extrusion system for solid fuel pellet production from mixed fiber-plastic wastes: Techno-economic analysis and life cycle assessment. Fuel Process. Technol. 2022, 226, 107094. [Google Scholar] [CrossRef]
- Khan, S.; Irshad, S.; Mehmood, K.; Hasnain, Z.; Nawaz, M.; Rais, A.; Gul, S.; Wahid, M.A.; Hashem, A.; Abd_Allah, E.F. Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants 2024, 13, 166. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Ohoro, C.R.; Ojukwu, V.E.; Oniye, M.; Shaikh, W.A.; Biswas, J.K.; Seth, C.S.; Mohan, G.B.M.; Chandran, S.A.; Rangabhashiyam, S. Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold. Iscience 2025, 28, 111524. [Google Scholar] [CrossRef]
- ISO 17225-8:2023; Solid Biofuels—Fuel Specifications and Classes. Part 8: Graded Thermally Treated and Densified Biomass Fuels for Commercial and Industrial Use 2023, ICS: 27.190 75.160.40. International Organization for Standardization: Geneva, Switzerland, 2023.
- Chiguano-Tapia, B.; Diaz, E.; de la Rubia, M.A.; Mohedano, A.F. Co-Hydrothermal Carbonization of Swine Manure and Soybean Hulls: Synergistic Effects on the Potential Use of Hydrochar as a Biofuel and Soil Improver. Sustainability 2025, 17, 5022. [Google Scholar] [CrossRef]
- Goyal, I.; Prasad, A.; Kumar, S.; Ojha, D.K. Techno-economic analysis of integrated torrefaction and pelleting process. Int. J. Green Energy 2025, 22, 1407–1413. [Google Scholar] [CrossRef]
- Squire, C.V.; Lou, J.; Hilde, T.C. The viability of co-firing biomass waste to mitigate coal plant emissions in Indonesia. Commun. Earth Environ. 2024, 5, 423. [Google Scholar] [CrossRef]
- Wei, F.; Sang, S.; Liu, S.; Zhao, J.-P.; Zhao, X.-Y.; Cao, J.-P. BECCS carbon-negative technologies based on biomass thermochemical conversion: A review of critical pathways and research advances. Fuel 2025, 390, 134743. [Google Scholar] [CrossRef]
Parameters | Normal Range/Value | Effects/Remarks | References |
---|---|---|---|
Temperature range | 200–300 °C | Optimal temperature range for mild pyrolysis or torrefaction. High temperature increases carbon content, reduces solid yield. | [30] |
Residence time | 10–90 min | Longer residence time increases devolatilization and improves calorific value | [31] |
Atmosphere | Inert (N2, Ar, CO) or limited O2 | Inert atmosphere prevents combustion, and higher solid yield. Limited O2 leads to partial oxidation. | [32] |
Heating rate | <50 °C/min | Low heating rate enables uniform heating. | [33] |
Calorific value (HHV) | 18–24 MJ/Kg | Torrefied biomass yields higher heating value than raw biomass. | [34] |
Energy yield | ~50–80% | Represents a balance between energy density gain and mass loss. Energy yield decreases with increasing temperature and time. | [35] |
Solid yield | 60–80 wt% (dry torrefaction) 10–98 wt% | Solid yield is reduced with severity of torrefaction. | [36] |
Solid products | Biocoal/biochar | Increased hydrophobicity, energy density, grindability. | [36,37] |
Condensable products | water, organics (acid, alcohols, ketones, aldehydes, sugars) | Downstream processing for potential uses. | [38] |
Non-condensable gases | CO2, CO, CH4, H2 | Energy recovery systems. | [39] |
Torrefaction Method | Operating Conditions | Fuel Properties | Process Information | Suitability | References |
---|---|---|---|---|---|
Wet torrefaction (HTC) | 160–250 °C aqueous or slurry | Uniform heating; improved ash; hydrophobic char after drying | Dewatering/drying step; effluent management required | High moisture/slurry feed stocks | [25] |
Dry inert | 200–300 °C N2, Ar | High HHV, hydrophobic, grindable, mass yield falls with severity | Mature and widely piloted; drying/heating integration is required | Co-firing pretreatment; pellatization feed | [25] |
Dry oxidative | 200–300 °C Controlled O2 | Faster kinetics; excessive O2; partial oxidation; lower solid and C yield. | Does not require inert gas; potential auto thermal operation, need tight O2 control | When N2 supply is expensive/limited; quick pretreatment before gasification/combustion | [43] |
Microwave assisted torrefaction (MAT) | 200–300 °C Microwave heating | Fast HHV; lab studies; tunable volatiles and high solid yields | Scale-up limited by field uniformity, CAPEX for microwave systems | Decentralized, quick cycle pretreatments | [45] |
Microwave assisted HTC (MAHTC) | HTC with microwave heating | Faster process, char suitable for power | Reactor design and penetration depth challenge at scale-up | Regions with low carbon electricity; effluent treatment | [46] |
Impact Area | Societal Benefits | References |
---|---|---|
Waste valorization | Transforming agricultural/forestry residues to value-added materials—e.g., biofuels, biochar, biocoal | [81] |
Renewable energy | Improves fuel quality by increasing fuel energy density, hydrophobicity, grindability, combustion energy; cleaner energy with reduced CO2 emissions | [82] |
Circular economy | Promotes resource recovery, waste utilization, near zero waste, sustainable product development. | [83] |
Climate challenge mitigation | Creates low-carbon fuels, reduces GHG emissions, renewable energy production, and reduces reliance on fossil fuels. | [83] |
Sustainable agriculture | Biochar improves for soil enhancement, water retention, nutrient cycling, and ensures long–term carbon sequestration. | [84] |
Economic development | Enables commercialization of biofuels and bio products, supporting green circular economy. | [85] |
Environmental protection | Mitigates pollution by burning biomass waste, lowering emissions, biomass valorization, and process parameter optimization | [86] |
Feedstock | Torrefaction Strategy and Conditions | Outcomes | Application | References |
---|---|---|---|---|
Wheat straw | Oxidative vs. inert torrefaction. 230–305 °C, 20–60 min | HHV increased 19.4 MJ/Kg. mass yield 44%, energy yield 62%, grindability improved. | Upgraded solid biofuel for co-firing. | [98] |
Wheat straw | Inert torrefaction (N2) 220–280 °C, 10 min | Improved grindability and flowability at 280 °C | Improved fuel properties. | [99] |
Miscanthus, wheat straw, willow | Dry torrefaction(N2) 220–300 °C, 60 min | Improved HHV | Cleaner co-firing fuel. | [100] |
Miscanthus, hops, MSW, and blends | 250–350 °C, 30–60 min | Improved HHV | Solid fuels with 88% less GHG emissions. | [101] |
Rose oil waste, pine saw dust | Torrefaction prior to co-pelletization | Increased HHV, energy density, hydrophobicity. Mass yield 70–78%, energy yield 73–102% | Torrefied co-pellets. | [102] |
Forest residues and wood chip residues | Torrefaction post-pelletization | Increased HHV mass yield 60–80%, energy yield 80–95% | Improved fuel quality without binders, better combustion. | [103] |
Wheat straw | Chemically treated torrefaction; RSM optimization | HHV 25.05 MJ/Kg mass yield 60% | Process optimization to maximize densification. | [104] |
Forest waste | Aspen plus® software V12.1 plant level simulation 225–275 °C, 20–60 min | Improved HHV, scale-up insights obtained. | Commercial level scale-up information obtained. | [96] |
Mixed wood | Densification after torrefaction, process optimization | Improved pellet quality and gasification performance, syngas production | Pre-gasification upgrade. | [105] |
Feedstock and Process | LCA Software/ Method | LCA Numeric Highlights | Hotspots/Challenges | Mitigation Plans | References |
---|---|---|---|---|---|
Corn stalk; torrefied pellets for heating | LCA with 5 stages—biomass collection to combustion heating; CML, IPCC 100a. | High net energy output/input ratio, positive energy balance, increased fuel energy and greenhouse gas reduction (85–95% less emission); total GWP = 175.806 kg CO2 eq | Upstream farming inputs; dominate energy use. | Improve end use efficiency; transparently apply system expansion/credits; reduce fertilizer intensity/logistic energy | [177] |
Residual wood and wood chips; co-fired with coal after torrefaction; dry torrefaction | SimaPro; IPCC 2021, and GWP 20. LCA biomass harvesting, torrefaction, pelletization processes, and CO2 emissions. | Manufacturing emissions at 270 °C; 0.01423 wood chips and 0.04207 kg CO2 eq/day vs. 100% coal; 270 °C optimal; 310 °C degrade benefits | Drying energy, low mass yield at high severity; logistics; higher co-firing ratio, greater proportion of coal replacement. | Target 230–270 °C; maximize co-firing within boiler limits; cut drying energy; site near feedstock | [97] |
Corncob; dry torrefaction | openLCA 1.10.3. software, ecoinvent 3.4 with CML2001: cradle-to-gate approach | Lowest impact at 200 °C; optimal trade-off 250 °C (upgrade vs. impact) | High severity ≥ 250 °C improves energy density; process energy | Prefer light-mild severity; process heat recovery; meet fuel specs with minimal energy | [178] |
British Columbia torrefied wood pellets | GHGenius database ((S&T)2 Consultants Inc. 2017) Ecoinvent database. Cradle-to-gate (harvest to pellet product) values environmental, energetic, and economic (3E) metrics. | ≥85% GHG reduction vs. coal at endues; supply chain emission offset; ≤15% savings. Great for overseas market (shipping logistics); torrefied pellets required 85% less energy than original biomass. | Transport and drying major contributor; reduction cost and carbon price | Low carbon drying, optimize rail/ship logistics; prioritize coal displacement; policy support for cost gap | [179] |
Microalgal biomass Chlorella vulgaris; torrefaction (severity index); up-scaling | Simapro 8.5.2 LCA software with Ecoinvent database. Environmental impact analysis of the production to torrefied biomass | GWP falls by 128% (open pond) and 91% (PBR) on scale-up; net-negative GWP achievable at pilot-scale open pond (biogenic uptake) | Cultivation energy dominated; severity (temperature) drives GWP more | Favor open ponds weather feasible; scale-up; minimize electricity; optimize severity | [180] |
Mustard straw; dry torrefaction | SimaPro V 9.1 software with Eco-invent version 3. ReCiPe 2016 Midpoint (H) method cradle-to-gate approach. | Directional; impact of increased rise in temperature; Main factor contributing to emission-transportation. | Transport distance; high severity energy demand | Site plant close to fields; mild severity; valorize vapors for drying | [181] |
Coconut and rice husk co-firing with coal | SimaPro 9.5.0.0 Ecoinvent 3.9; ReCiPe 2016 with cradle-to-grave approach | Coal highest acidification 164.08 Kg SO2 eq and eutrophication 8.82 Kg SO2 eq; Biomass blends and reduced emissions | Transport distances; coal biomass ratio optimization | Higher biomass ratio; optimized logistics; promote sustainable and circular energy blends | [182] |
Chinese medicine residue microwave assisted torrefaction | Open LCA v2.4.1 with eco-invent 3.4 and CML 2001; cradle-to-grave approach | First LCA analysis on this residue; GWP value 0.01–0.08 kg CO2 eq less than conventional torrefaction; acidification potential 9.45 × 10−6−6.78 × 10−5 (kg SO2 eq) | Emission composition; new feedstock uncertainties; heat regulation | Tailored emission control; integrate heat regulation | [183] |
Rice straw; Dry torrefaction (inert N2) | openLCA; eco-invent 3.4. ReCiPe, and CML2001 (multi end-point impact category) | Impact displayed positive correlation with torrefaction temperature; light-mild severity; GWP- 0.1469–0.2707 kg CO2/1 Kg rice straw | Process severity; heat input for torrefaction | Operate at mild severity (200–250 °C); integrate heat recovery | [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasekharan Nair, S.; John, V.; Geetha Bai, R.; Kikas, T. Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture. Sustainability 2025, 17, 7738. https://doi.org/10.3390/su17177738
Chandrasekharan Nair S, John V, Geetha Bai R, Kikas T. Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture. Sustainability. 2025; 17(17):7738. https://doi.org/10.3390/su17177738
Chicago/Turabian StyleChandrasekharan Nair, Salini, Vineetha John, Renu Geetha Bai, and Timo Kikas. 2025. "Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture" Sustainability 17, no. 17: 7738. https://doi.org/10.3390/su17177738
APA StyleChandrasekharan Nair, S., John, V., Geetha Bai, R., & Kikas, T. (2025). Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture. Sustainability, 17(17), 7738. https://doi.org/10.3390/su17177738