Sustainable Irrigation Management of Winter Wheat and Effects on Soil Gas Emissions (N2O and CH4) and Enzymatic Activity in the Brazilian Savannah
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Cultural Practices
2.3. Wheat Water Management, Yield, Water Use Efficiency, and Crop Coefficient
2.4. GHG Sampling, Environmental Variables and Soil Enzymes
2.5. Statistical Analysis
3. Results
3.1. Yield, Post-Emergence Irrigation Period, Number of Irrigation Events, Applied Water Depth per Cycle, Water Use Efficiency, and Crop Coefficient
3.2. Daily N2O and CH4 Emissions in Response to Different Soil Water Depletion Levels and Environmental Variables
3.3. Cumulative N2O and CH4 Emissions, Global Warming Potential (GWP), Greenhouse Gas Emission Intensity (GHGI), and Soil Enzymes
4. Discussion
4.1. Effects of AWC Depletion on Yield
4.2. CH4 and N2O Emissions and Environmental Variables
4.3. Global Warming Potential, Greenhouse Gas Emission Intensity (GHGI) and Soil Enzymes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N2O | Nitrous oxide |
CH4 | Methane |
AWC | Available soil water capacity |
WUE | Water use efficiency |
GWP | Global warming potential |
GHGI | Greenhouse gas intensity |
Kc | Crop coefficient |
FC | Field capacity |
PMP | Permanent wilting point |
F | Depletion limit fraction |
ETc | Crop evapotranspiration |
Eto | Reference evapotranspiration |
GHG | Greenhouse gas |
BD | Soil bulk density |
OM | Organic matter |
Y | Yield |
Pr | Rainfall |
I | Irrigation |
Q | Water flux leaving or entering |
∆A | Change in soil water storage |
Hz | Water storage in the 0–50 cm soil layer |
Θ(Z) | Volumetric water content at soil |
∆Z | Thickness of the soil layer between measurement points |
Hzi | Initial water storage |
Hzf | Final water storage |
∆ | Slope of the saturation vapor pressure curve |
Rn | Net radiation |
G | Soil heat flux density |
Y | Psychrometric constant |
T | Mean daily air temperature |
U2 | Wind speed at 2 m height |
es | Saturation vapor pressure |
ea | Actual vapor pressure |
PEIP | Post-emergence irrigation period |
NIR | Number of irrigations |
AWL | Applied water level in cycle |
DAE | Days after emergence |
NH4+ | Ammonium |
NO3− | Nitrate |
WFPS | Water-filled pore space |
References
- EMBRAPA. Visão 2030. O Futuro da Agricultura Brasileira; Embrapa: Brasília, Brasil, 2018; ISBN 978-85-7035-799-1. [Google Scholar]
- Smith, P.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; Mbow, C.; et al. Chapter 11-Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change, IPCC Working Group III Contribution to AR5; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor Golec, R.D.; Jacobs, H.; Flammini, A.; et al. The Contribution of Agriculture, Forestry and Other Land Use Activities to Global Warming, 1990–2012. Glob. Change Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef]
- Organization (W.M.O.). No. 20–28 October 2024. Available online: https://library.wmo.int/records/item/69057-no-20-28-october-2024 (accessed on 27 June 2025).
- SEEG–Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa. Available online: https://seeg.eco.br/ (accessed on 27 June 2025).
- Zhong, Y.; Li, J.; Xiong, H. Effect of Deficit Irrigation on Soil CO2 and N2O Emissions and Winter Wheat Yield. J. Clean. Prod. 2021, 279, 123718. [Google Scholar] [CrossRef]
- Abubakar, S.A.; Hamani, A.K.M.; Chen, J.; Sun, W.; Wang, G.; Gao, Y.; Duan, A. Optimizing N-Fertigation Scheduling Maintains Yield and Mitigates Global Warming Potential of Winter Wheat Field in North China Plain. J. Clean. Prod. 2022, 357, 131906. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of Irrigation and Fertilization Regimes on Greenhouse Gas Emissions from Soil of Mulching Cultivated Maize (Zea mays L.) Field in the Upper Reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- Harrison-Kirk, T.; Thomas, S.M.; Clough, T.J.; Beare, M.H.; van der Weerden, T.J.; Meenken, E.D. Compaction Influences N2O and N2 Emissions from 15N-Labeled Synthetic Urine in Wet Soils during Successive Saturation/Drainage Cycles. Soil Biol. Biochem. 2015, 88, 178–188. [Google Scholar] [CrossRef]
- Chaer, G.M.; Mendes, I.C.; Dantas, O.D.; Malaquias, J.V.; dos Reis Junior, F.B.; Oliveira, M.I.L. Evaluating C Trends in Clayey Cerrado Oxisols Using a Four-Quadrant Model Based on Specific Arylsulfatase and β-Glucosidase Activities. Appl. Soil Ecol. 2023, 183, 104742. [Google Scholar] [CrossRef]
- Borase, D.N.; Nath, C.P.; Hazra, K.K.; Senthilkumar, M.; Singh, S.S.; Praharaj, C.S.; Singh, U.; Kumar, N. Long-Term Impact of Diversified Crop Rotations and Nutrient Management Practices on Soil Microbial Functions and Soil Enzymes Activity. Ecol. Indic. 2020, 114, 106322. [Google Scholar] [CrossRef]
- De Carvalho, A.M.; Ramos, M.L.G.; da Silva, V.G.; de Sousa, T.R.; Malaquias, J.V.; Ribeiro, F.P.; de Oliveira, A.D.; Marchão, R.L.; da Fonseca, A.C.P.; Dantas, R.d.A. Cover Crops Affect Soil Mineral Nitrogen and N Fertilizer Use Efficiency of Maize No-Tillage System in the Brazilian Cerrado. Land 2024, 13, 693. [Google Scholar] [CrossRef]
- Cao, Y.; Cai, H. Effects of Growth Stage-Based Limited Irrigation Management on Soil CO2 and N2O Emissions, Winter Wheat Yield and Nutritional Quality. Agronomy 2022, 12, 952. [Google Scholar] [CrossRef]
- De Brito, R.R.; Filho, H.G.; Saad, J.C.C.; Oliveira, S.R.M. Produtividade do Feijoeiro Sob Diferentes Potenciais Matriciais e Fatores de Depleção da Água no Solo. Nativa 2015, 3, 109–114. [Google Scholar] [CrossRef]
- Antonini, J.C.D.A.; Müller, A.; Oliveira, A.; Ribeiro, F.P.; Chagas, J.H.; Sussel, A.; Malaquias, J.; Santos, M.V.A.D.; Albrecht, J.C. Winter Wheat Irrigation Parameters in the Brazilian Cerrado. Aust. J. Crop Sci. 2024, 18, 99–106. [Google Scholar] [CrossRef]
- Bernardo, S.; Soares, A.A.; Mantovani, E.C. Manual de Irrigação, 9th ed.; UFV: Madrid, Spain, 2019. [Google Scholar]
- Da Silva, F.A.M.; Evangelista, B.A.; Malaquias, J.V.; de Oliveira, A.D.; Muller, A.G. Análise Temporal de Variáveis Climáticas Monitoradas Entre 1974 e 2013 na Estação Principal da Embrapa Cerrados; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Allen, R.G. Crop Evapotranspiration. FAO Irrig. Drain. Pap. 1998, 56, 60–64. [Google Scholar]
- Shahrokhnia, M.H.; Sepaskhah, A.R. Single and Dual Crop Coefficients and Crop Evapotranspiration for Wheat and Maize in a Semi-Arid Region. Theor. Appl. Climatol. 2013, 114, 495–510. [Google Scholar] [CrossRef]
- Vieira, P.V.D.; de Freitas, P.S.L.; da Silva, A.L.B.R.; Hashiguti, H.T.; Rezende, R.; Junior, C.A.F. Determination of Wheat Crop Coefficient (Kc) and Soil Water Evaporation (Ke) in Maringa, PR, Brazil. Afr. J. Agric. Res. 2016, 11, 4551–4558. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gong, S.; Xu, D.; Juan, S.; Zhao, Y. Evapotranspiration, Crop Coefficient and Yield for Drip-Irrigated Winter Wheat with Straw Mulching in North China Plain. Field Crops Res. 2018, 217, 218–228. [Google Scholar] [CrossRef]
- Pereira, R.A.A.; Silva, E.H.F.M.; Gonçalves, A.O.; Vianna, M.S.; Silva, T.J.A.; Fenner, W.; Vieira, P.V.D.; Marin, F.R. Winter Wheat Evapotranspiration and Irrigation Requirements across Tropical and Sub-Tropical Producing Regions in Brazil. Theor. Appl. Climatol. 2023, 151, 375–388. [Google Scholar] [CrossRef]
- De Mori, C.; Ignaczak, J.C. Aspectos Econômicos do Complexo Agroindustrial do Trigo; Embrapa: Brasília, Brazil, 2011. [Google Scholar]
- Sistema IBGE de Recuperação Automática-SIDRA. Available online: https://sidra.ibge.gov.br/home/lspa/brasil (accessed on 27 June 2025).
- Conab-Histórico Mensal Trigo. Available online: http://antigo.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-trigo (accessed on 27 June 2025).
- Albrecht, J.C. Cultivar Trigo BRS 264: Precocidade, Qualidade Industrial e Altos Rendimentos Para o Cerrado do Brasil Central; Embrapa: Brasília, Brazil, 2021. [Google Scholar]
- Cardoso, M.R.D.; Marcuzzo, F.F.N.; Barros, J.R. Classificação Climática de Köppen-Geiger para o Estado de Goiás e o Distrito Federal. Acta Geográfica 2014, 8, 40–55. [Google Scholar] [CrossRef]
- Dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; de Araujo Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brasil, 2018; ISBN 978-85-7035-817-2. [Google Scholar]
- Diocléa Almeida Seabra Silva. Agronomia: Elo da Cadeia Produtiva 6, 1st ed.; Atena Editora: Paraná, Brazil, 2019; ISBN 978-85-7247-825-0. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; FAO Irrigation and Drainage Paper No. 33; Food and Agriculture Organization of the United Nations: Roma, Itália, 1979. [Google Scholar]
- Reichardt, K.; Timm, L.C. Solo, Planta e Atmosfera: Conceitos, Processos e Aplicações; Manole: São Paulo, Brasil, 2004. [Google Scholar]
- Libardi, P.L. Dinâmica da Água no Solo; Edusp: Florida, FL, USA, 2005. [Google Scholar]
- de Oliveira, A.D.; Ribeiro, F.P.; de Figueiredo, C.C.; Muller, A.G.; Vitoria Malaquias, J.; dos Santos, I.L.; de Sá, M.A.C.; Soares, J.P.G.; dos Santos, M.V.A.; de Carvalho, A.M. Effects of Soil Management, Rotation and Sequence of Crops on Soil Nitrous Oxide Emissions in the Cerrado: A Multi-Factor Assessment. J. Environ. Manag. 2023, 348, 119295. [Google Scholar] [CrossRef]
- Mehmood, F.; Wang, G.; Gao, Y.; Liang, Y.; Chen, J.; Si, Z.; Ramatshaba, T.S.; Zain, M.; Shafeeq-ur-rahman; Duan, A. Nitrous Oxide Emission from Winter Wheat Field as Responded to Irrigation Scheduling and Irrigation Methods in the North China Plain. Agric. Water Manag. 2019, 222, 367–374. [Google Scholar] [CrossRef]
- Hambridge, J. QuikChem Method 12-107-04-1-J: Determination of Nitrate in 2M KCl Soil Extracts by Flow Injection Analysis; Lachat Instruments: Milwaukee, WI, USA, 2007. [Google Scholar]
- Hambridge, J. QuikChem Method 12-107-06-2-F: Determination of Ammonia (Salicylate) in 2 M KCl Soil Extracts by Flow Injection Analysis (High Throughput); Lachat Instruments: Milwaukee, WI, USA, 2007. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G.; Paulocesarteixeira, C.G.K.D. Manual de Métodos de Análise de Solo; Embrapa: Brasília, DF, Brasil, 2017; ISBN 978-85-7035-771-7. [Google Scholar]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 775–833. ISBN 978-0-89118-865-0. [Google Scholar]
- Diniz, A.R.; da Silva, C.F.; Pereira, M.G.; Balieiro, F.C.; da Silva, E.V.; dos Santos, F.M. Microbial Biomass and Enzyme Activity of Soil Under Clonal Rubber Tree Plantations. Floresta E Ambiente 2020, 27, e20171138. [Google Scholar] [CrossRef]
- Guo, D.; Ou, Y.; Zhou, X.; Wang, X.; Zhao, Y.; Li, J.; Xiao, J.; Hao, Z.; Wang, K. Response of Soil Enzyme Activities to Natural Vegetation Restorations and Plantation Schemes in a Landslide-Prone Region. Forests 2022, 13, 880. [Google Scholar] [CrossRef]
- Aurangzaib, M.; Ahmad, Z.; Jalil, M.I.; Nawaz, M.F.; Shaheen, M.R.; Ahmad, M.; Hussain, A.; Ejaz, M.K.; Tabassum, M.A. Exogenous Application of Silicon Can Help Augment Drought Tolerance in Wheat (Triticum aestivum L.) by Enhancing Morpho-Physiological and Antioxidant Potential 2021. Res. Sq. 2021, 1–21. [Google Scholar] [CrossRef]
- Agami, R.A.; Alamri, S.A.M.; Abd El-Mageed, T.A.; Abousekken, M.S.M.; Hashem, M. Role of Exogenous Nitrogen Supply in Alleviating the Deficit Irrigation Stress in Wheat Plants. Agric. Water Manag. 2018, 210, 261–270. [Google Scholar] [CrossRef]
- Adrees, M.; Khan, Z.S.; Ali, S.; Hafeez, M.; Khalid, S.; ur Rehman, M.Z.; Hussain, A.; Hussain, K.; Shahid Chatha, S.A.; Rizwan, M. Simultaneous Mitigation of Cadmium and Drought Stress in Wheat by Soil Application of Iron Nanoparticles. Chemosphere 2020, 238, 124681. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Mohammadi, R.; Etminan, A.; Shooshtari, L.; Maleki-Tabrizi, N.; Poczai, P. Effects of Drought Stress on Some Agronomic and Morpho-Physiological Traits in Durum Wheat Genotypes. Sustainability 2020, 12, 5610. [Google Scholar] [CrossRef]
- Soares, G.F.; Ribeiro Júnior, W.Q.; Pereira, L.F.; de Lima, C.A.; dos Soares, D.S.; Muller, O.; Rascher, U.; Ramos, M.L.G. Characterization of Wheat Genotypes for Drought Tolerance and Water Use Efficiency. Sci. Agric. 2020, 78, e20190304. [Google Scholar] [CrossRef]
- Beshara, A.T.; Borham, T.I.; El-Hassanin, A.S.; Saied, M.M. Impact of Soil Moisture Depletion and Splitting the Recommended Nitrogen Fertilizer Rate on Water Requirements and Water Use Efficiencies of Wheat Crop in North Delta. Egypt. J. Soil Sci. 2013, 53, 249–266. [Google Scholar] [CrossRef]
- Amer, M.M.; Aiad, M.A.; El-Sanat, G.M.A. Impact of Different Soil Moisture Depletion, Nitrogen and Biofertilizer Application Levels on Yield-Water Productivity of Wheat and Sunflower at North Delta. Res. Gate 2025, 4. [Google Scholar] [CrossRef]
- Mahamed, M.B.; Sarobol, E.; Hordofa, T.; Kaewrueng, S.; Verawudh, J. Effects of Soil Moisture Depletion at Different Growth Stages on Yield and Water Use Efficiency of Bread Wheat Grown in Semi Arid Conditions in Ethiopia. Agric. Nat. Resour. 2011, 45, 201–208. [Google Scholar]
- Chen, Z.; Chen, F.; Zhang, H.; Liu, S. Effects of Nitrogen Application Rates on Net Annual Global Warming Potential and Greenhouse Gas Intensity in Double-Rice Cropping Systems of the Southern China. Environ. Sci. Pollut. Res. 2016, 23, 24781–24795. [Google Scholar] [CrossRef]
- Mehmood, F.; Wang, G.; Gao, Y.; Liang, Y.; Zain, M.; Rahman, S.U.; Duan, A. Impacts of Irrigation Managements on Soil CO2 Emission and Soil CH4 Uptake of Winter Wheat Field in the North China Plain. Water 2021, 13, 2052. [Google Scholar] [CrossRef]
- dos Santos, I.L.; de Oliveira, A.D.; de Figueiredo, C.C.; Malaquias, J.V.; dos Santos Júnior, J.D.D.G.; Ferreira, E.A.B.; de Sá, M.A.C.; de Carvalho, A.M. Soil N2O Emissions from Long-Term Agroecosystems: Interactive Effects of Rainfall Seasonality and Crop Rotation in the Brazilian Cerrado. Agric. Ecosyst. Environ. 2016, 233, 111–120. [Google Scholar] [CrossRef]
- Shah, A.; Huang, J.; Han, T.; Khan, M.N.; Tadesse, K.A.; Daba, N.A.; Khan, S.; Ullah, S.; Sardar, M.F.; Fahad, S.; et al. Impact of Soil Moisture Regimes on Greenhouse Gas Emissions, Soil Microbial Biomass, and Enzymatic Activity in Long-Term Fertilized Paddy Soil. Environ. Sci. Eur. 2024, 36, 120. [Google Scholar] [CrossRef]
- Jonsson, L.M.; Dighton, J.; Lussenhop, J.; Koide, R.T. The Effect of Mixing Ground Leaf Litters to Soil on the Development of Pitch Pine Ectomycorrhizal and Soil Arthropod Communities in Natural Soil Microcosm Systems. Soil Biol. Biochem. 2006, 38, 134–144. [Google Scholar] [CrossRef]
- Jang, I.; Lee, S.; Zoh, K.D.; Kang, H. Methane Concentrations and Methanotrophic Community Structure Influence the Response of Soil Methane Oxidation to Nitrogen Content in a Temperate Forest. Soil Biol. Biochem. 2011, 43, 620–627. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheng, J.; Wang, Z.; Chen, L.; Zheng, J. Nitrous Oxide and Methane Emissions from a Chinese Wheat–Rice Cropping System under Different Tillage Practices during the Wheat-Growing Season. Soil Tillage Res. 2015, 146, 261–269. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, Z.; Fan, M.; Zhang, W.; Chen, X.; Jiang, R. Integrated Soil–Crop System Management: Reducing Environmental Risk While Increasing Crop Productivity and Improving Nutrient Use Efficiency in China. J. Environ. Qual. 2011, 40, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, H.; Li, G.; Wu, J.; Gong, Y.; Wei, X.; Lu, Y. Responses of CH4 Flux and Microbial Diversity to Changes in Rainfall Amount and Frequencies in a Wet Meadow in the Tibetan Plateau. Catena 2021, 202, 105253. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.; Li, H.; Wang, L.; Wu, S.; Wu, W.; Meng, F. Mitigation of Greenhouse Gas Emissions through Optimized Irrigation and Nitrogen Fertilization in Intensively Managed Wheat–Maize Production. Sci. Rep. 2020, 10, 5907. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.E.; Massheder, J.; Rey, A. Exchange of Greenhouse Gases between Soil and Atmosphere: Interactions of Soil Physical Factors and Biological Processes. Eur. J. Soil Sci. 2003, 54, 779–791. [Google Scholar] [CrossRef]
- de Figueiredo, C.C.; de Oliveira, A.D.; dos Santos, I.L.; Ferreira, E.A.B.; Malaquias, J.V.; de Sá, M.A.C.; de Carvalho, A.M.; dos Santos, J.; dos Santos, J.D.D.G., Jr. Relationships between Soil Organic Matter Pools and Nitrous Oxide Emissions of Agroecosystems in the Brazilian Cerrado. Sci. Total Environ. 2018, 618, 1572–1582. [Google Scholar] [CrossRef]
- Campanha, M.M.; de Oliveira, A.D.; Marriel, I.E.; Gontijo Neto, M.M.; Malaquias, J.V.; Landau, E.C.; de Albuquerque Filho, M.R.; Ribeiro, F.P.; de Carvalho, A.M. Effect of Soil Tillage and N Fertilization on N2O Mitigation in Maize in the Brazilian Cerrado. Sci. Total Environ. 2019, 692, 1165–1174. [Google Scholar] [CrossRef]
- De Carvalho, A.M.; de Oliveira, A.D.; Coser, T.R.; de Sousa, T.R.; de Lima, C.A.; Ramos, M.L.G.; Malaquias, J.V.; de Gonçalves, A.D.M.A.; Ribeiro Júnior, W.Q. N2O Emissions from Sugarcane Fields under Contrasting Watering Regimes in the Brazilian Savannah. Environ. Technol. Innov. 2021, 22, 101470. [Google Scholar] [CrossRef]
- Liu, L.; Greaver, T.L. A Review of Nitrogen Enrichment Effects on Three Biogenic GHGs: The CO2 Sink May Be Largely Offset by Stimulated N2O and CH4 Emission. Ecol. Lett. 2009, 12, 1103–1117. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A. Changing Views of Nitrous Oxide Emissions from Agricultural Soil: Key Controlling Processes and Assessment at Different Spatial Scales. Eur. J. Soil Sci. 2017, 68, 137–155. [Google Scholar] [CrossRef]
- Thomas, B.W.; Hao, X.; Larney, F.J.; Goyer, C.; Chantigny, M.H.; Charles, A. Non-Legume Cover Crops Can Increase Non-Growing Season Nitrous Oxide Emissions. Soil Sci. Soc. Am. J. 2017, 81, 189–199. [Google Scholar] [CrossRef]
- Baggs, E.; Philippot, L. Microbial Terrestrial Pathways to Nitrous Oxide. In Nitrous Oxide and Climate Change; Routledge: Londres, UK, 2010; ISBN 978-1-84977-511-3. [Google Scholar]
- Teixeira Filho, M.C.M.; Buzetti, S.; Andreotti, M.; Arf, O.; Benett, C.G.S. Doses, fontes e épocas de aplicação de nitrogênio em trigo irrigado em plantio direto. Pesqui. Agropecuária Bras. 2010, 45, 797–804. [Google Scholar] [CrossRef]
- Hickman, J.E.; Palm, C.A.; Mutuo, P.; Melillo, J.M.; Tang, J. Nitrous Oxide (N2O) Emissions in Response to Increasing Fertilizer Addition in Maize (Zea mays L.) Agriculture in Western Kenya. Nutr. Cycl. Agroecosyst. 2014, 100, 177–187. [Google Scholar] [CrossRef]
- Signor, D.; Cerri, C.E.P.; Conant, R. N2O Emissions Due to Nitrogen Fertilizer Applications in Two Regions of Sugarcane Cultivation in Brazil. Environ. Res. Lett. 2013, 8, 015013. [Google Scholar] [CrossRef]
- da Silva, F.A.M.; de Oliveira, A.D.; de Carvalho, A.M.; Marchão, R.L.; Luiz, A.J.B.; Ribeiro, F.P.; Müller, A.G. Effects of Agricultural Management and of Climate Change on N2O Emissions in an Area of the Brazilian Cerrado: Measurements and Simulations Using the STICS Soil-Crop Model. Agric. Ecosyst. Environ. 2024, 363, 108842. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous Oxide Emissions from Soils: How Well Do We Understand the Processes and Their Controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Ottaiano, L.; Di Mola, I.; Di Tommasi, P.; Mori, M.; Magliulo, V.; Vitale, L. Effects of Irrigation on N2O Emissions in a Maize Crop Grown on Different Soil Types in Two Contrasting Seasons. Agriculture 2020, 10, 623. [Google Scholar] [CrossRef]
- de Carvalho, A.M.; de Oliveira, W.R.D.; Ramos, M.L.G.; Coser, T.R.; de Oliveira, A.D.; Pulrolnik, K.; Souza, K.W.; Vilela, L.; Marchão, R.L. Soil N2O Fluxes in Integrated Production Systems, Continuous Pasture and Cerrado. Nutr. Cycl. Agroecosyst. 2017, 108, 69–83. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Zhai, L.; Liu, H.; Wang, K.; Jiao, C.; Shen, Z. National Assessment of Nitrogen Fertilizers Fate and Related Environmental Impacts of Multiple Pathways in China. J. Clean. Prod. 2020, 277, 123519. [Google Scholar] [CrossRef]
- Passinato, J.H.; Amado, T.J.C.; Kassam, A.; Acosta, J.A.A.; Amaral, L.d.P. Soil Health Check-Up of Conservation Agriculture Farming Systems in Brazil. Agronomy 2021, 11, 2410. [Google Scholar] [CrossRef]
- Mendes, I.C.; Chaer, G.M.; dos Reis Junior, F.B.; Dantas, O.D.; Malaquias, J.V.; de Oliveira, M.I.L.; Nogueira, M.A.; Hungria, M. Soil Bioanalysis (SoilBio): A Sensitive, Calibrated, and Simple Assessment of Soil Health for B Razil. In Soil Health Series: Volume 3 Soil Health and Sustainable Agriculture in Brazil; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 292–326. ISBN 978-0-89118-744-8. [Google Scholar]
- dos Santos, J.V.; Raimundo Bento, L.; Dias Bresolin, J.; Corso Mitsuyuki, M.; Perondi Anchão Oliveira, P.; Macedo Pezzopane, J.R.; Carlos de Campos Bernardi, A.; Carvalho Mendes, I.; Martin-Neto, L. The Long-Term Effects of Intensive Grazing and Silvopastoral Systems on Soil Physicochemical Properties, Enzymatic Activity, and Microbial Biomass. Catena 2022, 219, 106619. [Google Scholar] [CrossRef]
- De Lopes, A.A.C.; de Sousa, D.M.G.; dos Reis Junior, F.B.; Carvalho Mendes, I. Air-Drying and Long-Term Storage Effects on β-Glucosidase, Acid Phosphatase and Arylsulfatase Activities in a Tropical Savannah Oxisol. Appl. Soil Ecol. 2015, 93, 68–77. [Google Scholar] [CrossRef]
Soil Depth | Sand | Clay | Silt | BD | FC | PWP | AWC |
---|---|---|---|---|---|---|---|
(cm) | (%) | (%) | (%) | (g cm−3) | (cm3 cm−3) | (cm3 cm−3) | (mm) |
00–20 | 33 | 52 | 16 | 1.08 | 0.32 | 0.19 | 26.00 |
20–40 | 32 | 54 | 14 | 1.06 | 0.31 | 0.19 | 24.40 |
pH | OM | P | K+ | Ca2+ | Mg2+ | Al3+ | H + Al | CEC |
---|---|---|---|---|---|---|---|---|
- | (g kg−1) | (mg dm−1) | (cmolc kg−1) | |||||
5.27 | 23.80 | 21.76 | 223.23 | 4.32 | 1.08 | 0.11 | 3.89 | 9.88 |
f | Y | PEIP | NIR | AWL | WUE | |||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | Average | |||||
(%) | (kg ha−1) | (Day) | (ud) | (mm) | (kg ha−1 mm−1) | |||
20 | 6991 | 8470 | 5338 | 6933 a | 102 a | 38 a | 498 a | 13.9 a |
40 | 7136 | 7857 | 5449 | 6814 a | 100 a | 21 b | 486 ab | 14.0 a |
60 | 4715 | 7293 | 5065 | 5691 b | 94 b | 14 c | 459 ab | 12.4 a |
80 | 4994 | 7274 | 5165 | 5811 b | 90 b | 11 c | 445 b | 13.1 a |
CH4 | Soil Temperature | WFPS | NO3− | NH4+ | |
---|---|---|---|---|---|
2022/2023 | |||||
N2O | 0.12 ** | 0.02 | 0.08 * | 0.09 * | 0.01 |
CH4 | −0.03 | 0 | 0.06 | 0.03 | |
Soil Temperature | −0.06 | 0 | 0.12 ** | ||
WFPS | 0.27 *** | 0.05 | |||
NO3− | 0.33 *** | ||||
2023/2024 | |||||
N2O | 0.16 ** | 0.35 *** | 0.14 * | 0.06 | 0.03 |
CH4 | 0.26 *** | 0.08 | 0.03 | 0.03 | |
Soil Temperature | 0.24 *** | 0.14 * | 0.07 | ||
WFPS | 0.12 * | 0.04 | |||
NO3− | 0.89 *** |
Year | Treatment | GWP (kg CO2 eq. ha−1) | GHGI (kg CO2 eq. Mg−1) |
---|---|---|---|
2022 | 20% | 878.68 (±72.74) c | 104.76 (±9.73) bc |
40% | 760.91 (±89.86) c | 96.68 (±8.55) c | |
60% | 1441.88 (±98.89) a | 200.73 (±37.36) a | |
80% | 1174.74 (±68.64) b | 161.69 (±7.94) ab | |
2023 | 20% | 630.09 (±28.92) b | 118.04 (±4.95) b |
40% | 632.11 (±40.09) b | 116.53 (±13.79) b | |
60% | 929.68 (±70.77) a | 184.59 (±13.03) a | |
80% | 829.31 (±66.10) a | 162.80 (±19.62) ab | |
Mean | 20% | 754.39 (±49.60) c | 111.40 (±2.52) b |
40% | 696.51 (±58.27) c | 106.61 (±10.99) b | |
60% | 1185.78 (±47.00) a | 192.66 (±15.79) a | |
80% | 1002.02 (±53.13) b | 162.24 (±19.62) a |
Treatments (%) | Yield * (Mg ha−1) | GWP ** (kg CO2 eq. ha−1) | GHGI ** (kg CO2 eq. Mg−1) | WUE * (kg ha−1 mm−1) |
---|---|---|---|---|
20 | 6.93 | 754.39 | 111.40 | 13.9 |
40 | 6.81 | 696.51 | 106.61 | 14.0 |
60 | 5.69 | 1185.78 | 192.66 | 12.4 |
80 | 5.81 | 1002.02 | 162.24 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.D.d.; Antonini, J.C.d.A.; Santos, M.V.A.d.; Andrade, A.C.M.d.; Malaquias, J.V.; Carvalho, A.M.d.; Muller, A.G.; Delvico, F.M.d.S.; Mendes, I.d.C.; Chagas, J.H.; et al. Sustainable Irrigation Management of Winter Wheat and Effects on Soil Gas Emissions (N2O and CH4) and Enzymatic Activity in the Brazilian Savannah. Sustainability 2025, 17, 7734. https://doi.org/10.3390/su17177734
Oliveira ADd, Antonini JCdA, Santos MVAd, Andrade ACMd, Malaquias JV, Carvalho AMd, Muller AG, Delvico FMdS, Mendes IdC, Chagas JH, et al. Sustainable Irrigation Management of Winter Wheat and Effects on Soil Gas Emissions (N2O and CH4) and Enzymatic Activity in the Brazilian Savannah. Sustainability. 2025; 17(17):7734. https://doi.org/10.3390/su17177734
Chicago/Turabian StyleOliveira, Alexsandra Duarte de, Jorge Cesar dos Anjos Antonini, Marcos Vinícius Araújo dos Santos, Altair César Moreira de Andrade, Juaci Vitoria Malaquias, Arminda Moreira de Carvalho, Artur Gustavo Muller, Francisco Marcos dos Santos Delvico, Ieda de Carvalho Mendes, Jorge Henrique Chagas, and et al. 2025. "Sustainable Irrigation Management of Winter Wheat and Effects on Soil Gas Emissions (N2O and CH4) and Enzymatic Activity in the Brazilian Savannah" Sustainability 17, no. 17: 7734. https://doi.org/10.3390/su17177734
APA StyleOliveira, A. D. d., Antonini, J. C. d. A., Santos, M. V. A. d., Andrade, A. C. M. d., Malaquias, J. V., Carvalho, A. M. d., Muller, A. G., Delvico, F. M. d. S., Mendes, I. d. C., Chagas, J. H., Sussel, A. A. B., & Albrecht, J. C. (2025). Sustainable Irrigation Management of Winter Wheat and Effects on Soil Gas Emissions (N2O and CH4) and Enzymatic Activity in the Brazilian Savannah. Sustainability, 17(17), 7734. https://doi.org/10.3390/su17177734