Tropical Cyclones and Coral Reefs Under a Changing Climate: Prospects and Likely Synergies Between Future High-Energy Storms and Other Acute and Chronic Coral Reef Stressors
Abstract
1. Introduction
2. High-Energy Storm Events and Coral Reefs: Observed Patterns and Trends
2.1. Climatology of Tropical Cyclones
2.2. Impacts of Tropical Cyclones on Coral Reefs
3. High-Energy Storm Events and Coral Reefs: Future Patterns and Likely Trends
3.1. Projected Changes in Tropical Cyclones
3.2. Future Impacts of Tropical Cyclones on Coral Reefs
3.3. Enhancing Coral Reef Resilience to Climate Change and Other Threats
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Knowlton, N.; Brainard, R.E.; Fisher, R.; Moews, M.; Plaisance, L.; Caley, M.J. Coral Reef Biodiversity. In Life in the World’s Oceans: Diversity, Distribution, and Abundance; McIntyre, A.D., Ed.; Census of Marine Life, and Blackwell: Oxford, UK, 2010; pp. 65–78. [Google Scholar]
- Bellwood, D.R.; Hughes, T.P.; Connolly, S.R.; Tanner, J. Environmental and geometric constraints on Indo-Pacific coral reef biodiversity. Ecol. Lett. 2005, 8, 643–651. [Google Scholar] [CrossRef]
- Villanoy, C.; David, L.; Cabrera, O.; Atrigenio, M.; Siringan, F. Coral reef ecosystems protect shore from high-energy waves under climate change scenarios. Clim. Chang. 2012, 112, 493–505. [Google Scholar] [CrossRef]
- Spalding, M.; Burke, L.; Wood, S.A.; Ashpole, J.; Hutchison, J.; zu Ermgassen, P. Mapping the global value and distribution of coral reef tourism. Mar. Policy 2017, 82, 104–113. [Google Scholar] [CrossRef]
- Lachs, L.; Oñate-Casado, J. Fisheries and Tourism: Social, Economic, and Ecological Trade-offs. In Coral Reef Systems YOUMARES 9—The Oceans: Our Research, Our Future; Jungblut, S., Liebich, V., Bode-Dalby, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 234–277. [Google Scholar]
- Brander, L.M.; van Beukering, P.; Herman, S.J.; Cesar, H. The recreational value of coral reefs: A meta-analysis. Ecol. Econ. 2007, 63, 209–218. [Google Scholar] [CrossRef]
- Woodhead, A.J.; Hicks, C.C.; Norström, A.V.; Williams, G.J.; Graham, N.A.J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 2019, 33, 1023–1034. [Google Scholar] [CrossRef]
- Han, M.; Wang, Z.; Li, Y.; Song, Y.; Wang, Z. The application and sustainable development of coral in traditional medicine and its chemical composition, pharmacology, toxicology, and clinical research. Front. Pharmacol. 2023, 14, 1230608. [Google Scholar] [CrossRef]
- Foale, S. Who cares about coral? The biological species concept and ‘cumulative intrinsic value’ in cross-cultural perspective. J. Trop. Futures 2024, 1, 149–157. [Google Scholar] [CrossRef]
- Baker, A.C.; Glynn, P.W.; Riegl, B. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 2008, 80, 435–471. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O. The Impact of Climate Change on Coral Reef Ecosystems. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 391–403. [Google Scholar]
- Hoey, A.S.; Howells, E.; Johansen, J.L.; Hobbs, J.-P.A.; Messmer, V.; McCowan, D.M.; Wilson, S.K.; Pratchett, M.S. Recent advances in understanding the effects of climate change on coral reefs. Diversity 2016, 8, 12. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Poloczanska, E.S.; Skirving, W.; Dove, S. Coral Reef Ecosystems under Climate Change and Ocean Acidification. Front. Mar. Sci. 2017, 29, 158. [Google Scholar] [CrossRef]
- Klein, S.G.; Roch, C.; Duarte, C.M. Systematic review of the uncertainty of coral reef futures under climate change. Nat. Commun. 2024, 15, 2224. [Google Scholar] [CrossRef]
- Fabricius, K.E.; Brown, A.; Collier, C.; Pineda, M.-C.; Robson, B.; Uthicke, S.; Waterhouse, J. The seven sins of climate change: A review of rates of change, and quantitative impacts on ecosystems and water quality in the Great Barrier Reef. Mar. Pollut. Bull. 2025, 219, 118267. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.A.; Côté, I.M.; Gill, J.A.; Grant, A.; Watkinson, A.R. Hurricanes and Caribbean coral reefs: Impacts, recovery patterns, and role in long-term decline. Ecology 2005, 86, 174–184. [Google Scholar] [CrossRef]
- Gouezo, M.; Golbuu, Y.; van Woesik, R.; Rehm, L.; Koshiba, S.; Doropoulos, C. Impact of two sequential super typhoons on coral reef communities in Palau. Mar. Ecol. Prog. Ser. 2015, 540, 73–85. [Google Scholar] [CrossRef]
- Turton, S.M. Reef-to-ridge ecological perspectives of high-energy storm events in northeast Australia. Ecosphere 2019, 10, e0257. [Google Scholar] [CrossRef]
- Brown, B.E. The fate of coral reefs in the Andaman Sea, eastern Indian Ocean following the Sumatran earthquake and tsunami, 26 December. Geogr. J. 2005, 171, 372–374. [Google Scholar] [CrossRef]
- Emanuel, K. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1513–1766. [Google Scholar]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical cyclones and climate change assessment part II: Projected response to anthropogenic warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Jin, F.F.; Boucharel, J.; Lin, I.I. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature 2014, 516, 82–85. [Google Scholar] [CrossRef]
- Wolanski, E.; Richmond, R.H.; Davis, G.; Bonito, V. Water and fine sediment dynamics in transient river plumes in a small, reef-fringed bay, Guam. Estuar. Coast. Shelf Sci. 2003, 56, 1029–1040. [Google Scholar] [CrossRef]
- Thompson, A.; McKenzie, L.; da Silva, E.T.; Collier, C.; Tracey, D.; Martin, K. Estimating the exposure of coral reefs and seagrass meadows to land-sourced contaminants in river flood plumes of the Great Barrier Reef: Validating a simple satellite risk framework with environmental data. Remote Sens. 2016, 8, 210. [Google Scholar]
- Gilford, D.M.; Giguere, J.; Pershing, A.J. Human-caused ocean warming has intensified recent hurricanes. Environ. Res. Clim. 2024, 3, 045019. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Kossin, J.P. A global slowdown of tropical cyclone translation speed. Nature 2018, 558, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Seidel, D.J.; Fu, Q.; Randel, W.J.; Reichler, T.J. Widening of the tropical belt in a changing climate. Nat. Geosci. 2008, 1, 21–24. [Google Scholar] [CrossRef]
- Studholme, J.; Fedorov, A.V.; Gulev, S.K.; Emanuel, K.; Hodges, K. Poleward expansion of tropical cyclone latitudes in warming climates. Nat. Geosci. 2022, 15, 14–28. [Google Scholar] [CrossRef]
- Woodley, J.D.; Chornesky, E.A.; Clifford, P.A.; Jackson, J.B.C.; Kaufman, L.S.; Knowlton, N.; Lang, C.; Pearson, M.P.; Porter, J.W.; Rooney, M.C.; et al. Hurricane Allen’s Impact on Jamaican Coral Reefs. Science 1981, 214, 749–755. [Google Scholar] [CrossRef]
- Done, T.J. Effects of tropical cyclone waves on ecological and geomorphological structures on the Great Barrier Reef. Cont. Shelf Res. 1992, 12, 859–872. [Google Scholar] [CrossRef]
- Harmelin-Vivien, M.L. The effects of storms and cyclones on coral reefs: A review. J. Coast.Res. 1994, 12, 211–231. [Google Scholar]
- Fabricius, K.E.; De’ath, G.; Poutinen, M.L.; Done, T.; Cooper, T.F.; Burgess, S.C. Disturbance gradients on inshore and offshore coral reefs caused by a severe tropical cyclone. Limnol. Oceanogr. 2008, 53, 690–704. [Google Scholar] [CrossRef]
- Perry, C.T.; Smithers, S.G.; Kench, P.S.; Pears, B. Impacts of Cyclone Yasi on nearshore, terrigenous sediment-dominated reefs of the central Great Barrier Reef, Australia. Geomorphology 2014, 222, 92–105. [Google Scholar] [CrossRef]
- Carter, A.L.; Gilchrist, H.; Dexter, K.G.; Gardner, C.J.; Gough, C.; Rocliffe, S.; Wilson, A.M.W. Cyclone impacts on coral reef communities in Southwest Madagascar. Front. Mar. Sci. 2022, 9, 753325. [Google Scholar] [CrossRef]
- Waide, R.B.; Willig, M.R. Conceptual over- view: Disturbance, gradients, and ecological response. In A Caribbean Forest Tapestry: The Multidimensional Nature of Disturbance and Response; Brokaw, N., Crowl, T., Lugo, A., McDowell, W., Scatena, F., Waide, R.M., Willig, M., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 42–71. [Google Scholar]
- Beeden, R.; Maynard, J.; Puotinen, M.; Marshall, P.; Dryden, J.; Goldberg, J.; Williams, G. Impacts and recovery from Severe Tropical Cyclone Yasi on the Great Barrier Reef. PLoS ONE 2025, 10, e0121272. [Google Scholar] [CrossRef] [PubMed]
- Puotinen, M.; Drost, E.; Lowe, R.; Depczynski, M.; Radford, B.; Heyward, A.; Gilmour, J. Towards modelling the future risk of cyclone wave damage to the world’s coral reefs. Glob. Change Biol. 2020, 26, 4302–4315. [Google Scholar] [CrossRef] [PubMed]
- Goreau, T. The Death of “Resilience”: Hurricane Recovery of Coral Reefs Destroyed by Global Warming, Pollution, and Pathogens. Coral Reef Alliance. 2017. Available online: https://www.globalcoral.org/death-resilience-hurricane-recovery-coral-reefs-destroyed-global-warming-pollution-pathogens/#:~:text=But%20Jamaican%20coral%20reefs%20never,exceeding%20their%20capacity%20to%20adapt (accessed on 18 August 2025).
- Feehan, C.J.; Filbee-Dexter, K.; Thomsen, M.S.; Wernberg, T.; Miles, T. Ecosystem damage by increasing tropical cyclones. Commun. Earth Environ. 2024, 5, 674. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Impacts of 1.5 °C global warming on natural and human Systems. In Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2022; pp. 175–312. [Google Scholar]
- Tollefson, J. Earth breaches 1.5 °C climate limit for the first time: What does it mean? Nature 2025, 637, 769–770. [Google Scholar] [CrossRef]
- Osipova, E.; Emslie-Smith, M.; Osti, M.; Murai, M.; Åberg, U.; Shadie, P. IUCN World Heritage Outlook 3: A Conservation Assessment of All Natural World Heritage Sites; IUCN: Gland, Switzerland, 2020; 90p. [Google Scholar]
- Manzello, D.; Enochs, I.; Musielewicz, S.; Carlton, R.; Gledhill, D. Tropical cyclones cause CaCO3 undersaturation of coral reef seawater in a high-CO2 world. J. Geophys. Res. Ocean. 2013, 118, 5312–5321. [Google Scholar] [CrossRef]
- Bender-Champ, D.; Diaz-Pulido, G.; Dove, S. Effects of elevated nutrients and CO2 emission scenarios on three coral reef macroalgae. Harmful Algae 2017, 65, 40–51. [Google Scholar] [CrossRef]
- Perry, C.T.; Alvarez-Filip, L.; Graham, N.A.J.; Mumby, P.J.; Wilson, S.K.; Kench, P.S.; Manzello, D.P.; Morgan, K.M.; Slangen, A.B.A.; Thomson, D.P.; et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 2018, 558, 396–400. [Google Scholar] [CrossRef]
- Lawrence, J.; Mackey, B.; Chiew, F.; Costello, M.J.; Hennessy, K.; Lansbury, N.; Nidumolu, U.B.; Pecl, G.; Rickards, L.; Tapper, N.; et al. Australasia. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1581–1688. [Google Scholar]
- Birkeland, C. Ratcheting down the coral reefs. Bioscience 2004, 54, 1021–1027. [Google Scholar] [CrossRef]
- Fenner, D. Challenges for managing fisheries on diverse coral reefs. Diversity 2012, 4, 105–160. [Google Scholar] [CrossRef]
- Fenner, D. Fishing down the largest coral reef fish species. Mar. Pollut. Bull. 2014, 84, 9–16. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Darling, E.S.; Beger, M.; Fox, H.E.; Grantham, H.S.; Jupiter, S.D.; Logan, C.A.; Mcleod, E.; McManus, L.C.; Oddenyo, R.M.; et al. Diversification of refugia types needed to secure the future of coral reefs subject to climate change. Conserv. Biol. 2024, 38, e14108. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.J.; O’Brien, J.K.; Bay, L.K.; Severati, A.; Spindler, R.; Henley, E.M.; Quigley, K.M.; Randall, C.J.; van Oppen, M.J.H.; Carter, V.; et al. A decade of coral biobanking science in Australia-transitioning into applied reef restoration. Front. Mar. Sci. 2022, 9, 960470. [Google Scholar] [CrossRef]
- Rinkevich, B. Rebuilding coral reefs: Does active reef restoration lead to sustainable reefs? Curr. Opin. Environ. Sustain. 2014, 7, 28–36. [Google Scholar] [CrossRef]
- Hughes, T.P.; Baird, A.H.; Morrison, T.H.; Torda, G. Principles for coral reef restoration in the Anthropocene. One Earth 2023, 6, 656–665. [Google Scholar] [CrossRef]
Ocean Basin and Season | Mean Annual Frequency (n) | Countries/Regions Containing Coral Reefs | TC Characteristics and Historical Changes | Projected Mean Changes in TCs for 2 °C of Global Warming, Relative to 1986–2005 Conditions (% Change) |
---|---|---|---|---|
Northwest Pacific (all months) | ~26 | Northern and central Philippines, Micronesia, southern China (incl. Taiwan), southern Japan, Vietnam | Large size, medium–high frequency of intense storms. Increases in intensity and poleward shift in the location of peak intensity, uncertain changes in frequency. | TC frequency: −12% Number category 4–5 TCs: −8% Overall intensity: +6% Rain rate: +17% |
Northeast Pacific (May–November) | ~16 | Western Central America, Hawai’ian Islands (rarely) | Moderate–large size, medium frequency of intense storms. Increases in the intensity and rainfall rates, a higher frequency of rapid intensification events, possible decline in frequency. | TC frequency: −2% Number category 4–5 TCs: +22% Overall intensity: +5% Rain rate: +20% |
North Atlantic/Caribbean (June–November) | ~13 | Outer and Lesser Antilles, Cuba, Nicaragua, Honduras, Belize, Guatemala, eastern and northern Mexico, south and southeast United States | Moderate–large size, low–medium frequency of intense storms. A potential increase in intensity and rainfall rates, a possible poleward shift in tracks. | TC frequency: −13% Number category 4–5 TCs: +12% Overall intensity: +3% Rain rate: +16% |
Southeast Indian/Southwest Pacific (November–April) | ~13 | Northern Australia, southern Papua New Guinea, Solomon Islands, Vanuatu, New Caledonia, Fiji, Samoa | Small–moderate size, low frequency of intense storms. A decrease in frequency, but a trend towards higher intensity, poleward shift in peak intensity, slowing forward motion. | TC frequency: −18% Number category 4–5 TCs: −17% Overall intensity: +2% Rain rate: +8% |
Southwest Indian (November–May) | ~9 | Madagascar, Mozambique, southern Tanzania, Mauritius, La Reunion | Small–moderate size, low frequency of intense storms. Frequency may have decreased; increases in intensity. | TC frequency: −19% Number category 4–5 TCs: +1% Overall intensity: +6% Rain rate: +18% |
North Indian (all months) | ~5 | Western and eastern India, southeastern Arabian Peninsula, Bangladesh, Myanmar, Sri Lanka | Small–moderate size, low frequency of intense storms. An increase in the frequency and intensity of cyclones in the Arabian Sea, while the Bay of Bengal has seen a decrease in cyclone frequency. | TC frequency: −3% Number category 4–5 TCs: +2% Overall intensity: +6% Rain rate: +19% |
Southeast Pacific (November–April) | <1 | Cook Islands and French Polynesia (rare) | Small–moderate size, low frequency of intense storms. Potential influence from increasing sea surface temperatures (SSTs). | Not available |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turton, S.M. Tropical Cyclones and Coral Reefs Under a Changing Climate: Prospects and Likely Synergies Between Future High-Energy Storms and Other Acute and Chronic Coral Reef Stressors. Sustainability 2025, 17, 7651. https://doi.org/10.3390/su17177651
Turton SM. Tropical Cyclones and Coral Reefs Under a Changing Climate: Prospects and Likely Synergies Between Future High-Energy Storms and Other Acute and Chronic Coral Reef Stressors. Sustainability. 2025; 17(17):7651. https://doi.org/10.3390/su17177651
Chicago/Turabian StyleTurton, Stephen M. 2025. "Tropical Cyclones and Coral Reefs Under a Changing Climate: Prospects and Likely Synergies Between Future High-Energy Storms and Other Acute and Chronic Coral Reef Stressors" Sustainability 17, no. 17: 7651. https://doi.org/10.3390/su17177651
APA StyleTurton, S. M. (2025). Tropical Cyclones and Coral Reefs Under a Changing Climate: Prospects and Likely Synergies Between Future High-Energy Storms and Other Acute and Chronic Coral Reef Stressors. Sustainability, 17(17), 7651. https://doi.org/10.3390/su17177651