Industrial Structure Upgrading and Carbon Emission Intensity: The Mediating Roles of Green Total Factor Productivity and Labor Misallocation
Abstract
1. Introduction
2. Literature Review and Theoretical Hypotheses
2.1. Industrial Structure Upgrading and Carbon Emission Intensity
2.2. Research on the Mechanism and Pathway of
2.2.1. The , , and
2.2.2. The , , and
3. Research Design
3.1. Model Construction
3.1.1. Benchmark Regression Model
3.1.2. Four-Stage Mediation Effect Test Model
3.2. Data Source and Processing
3.3. Selection and Calculation of Variables
3.3.1. Selection and Calculation of Carbon Emission Intensity ()
3.3.2. Industrial Structure Upgrading ()
3.3.3. Mediating Variable
- Green Total Factor Productivity ()
- 2.
- Labor Misallocation ()
3.3.4. Control Variables
4. Empirical Results Analysis
4.1. Multiple Collinear Analysis
4.2. Panel Diagnosis
4.3. Benchmark Regression Results
4.4. Robustness Test
4.5. Endogeneity Test
4.6. Analysis of Regional Heterogeneity
4.7. Mechanism Verification
4.7.1. Mechanism Verification Based on GTFP
4.7.2. Mechanism Verification Based on the
4.7.3. An Exploration of the Relationship Between and
5. Conclusions and Policy Implications
5.1. Research Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; An, Y.; Liu, S. China’s Industrial Structure Adjustment: Based on Three-Dimensional Calculations. China Ind. Econ. 2013, 70–82. [Google Scholar] [CrossRef]
- Gan, C.; Zheng, R.; Yu, D. The impact of China’s industrial structure transformation on economic growth and fluctuations. Econ. Res. 2011, 5, 16. [Google Scholar]
- Zhou, Q.; Li, Z. The impact of industrial structure upgrades on the urban–rural income gap: An empirical study based on China’s provincial panel data. Growth Change 2021, 52, 1761–1782. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Hu, L.; Yuan, W.; Jiang, J.; Ma, T.; Zhu, S. Asymmetric effects of industrial structure rationalization on carbon emissions: Evidence from thirty Chinese provinces. J. Clean. Prod. 2023, 428, 139347. [Google Scholar] [CrossRef]
- Han, X.; Cao, T. Urbanization level, industrial structure adjustment and spatial effect of urban haze pollution: Evidence from China’s Yangtze River Delta urban agglomeration. Atmos. Pollut. Res 2022, 13, 101427. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Li, J. Industrial structural transformation and carbon dioxide emissions in China. Energy Pol. 2013, 57, 43–51. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Cheng, G.; Shi, Y.; Zhou, H. Spatial statistical analysis of the effects of green technology innovation and industrial structure upgrading on carbon emission intensity. Int. Rev. Econ. Financ. 2025, 102, 104163. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Liu, Z.; Zhang, H.; Tan, T.-D. The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China. Nat. Hazard. 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Mi, Z.-F.; Pan, S.-Y.; Yu, H.; Wei, Y.-M. Potential impacts of industrial structure on energy consumption and CO2 emission: A case study of Beijing. J. Clean. Prod. 2015, 103, 455–462. [Google Scholar] [CrossRef]
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y.; Li, Y. Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—New evidence using the dynamic threshold panel model. Energy Rep. 2020, 6, 28–39. [Google Scholar] [CrossRef]
- Guo, C.-Q.; Wang, X.; Cao, D.-D.; Hou, Y.-G. The impact of green finance on carbon emission--analysis based on mediation effect and spatial effect. Front. Environ. Sci. 2022, 10, 844988. [Google Scholar] [CrossRef]
- Zhou, X.; Li, G.; Wang, Q.; Zhou, D. U-shaped relationship between digitalization and low-carbon economy efficiency: Mediation and spillover effects. J. Clean. Prod. 2024, 458, 142535. [Google Scholar] [CrossRef]
- Fan, G.; Zhu, A.; Xu, H. Analysis of the impact of industrial structure upgrading and energy structure optimization on carbon emission reduction. Sustainability 2023, 15, 3489. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Ren, X. Industrial Structure Upgrading, Technological Innovation and Carbon Emissions—A Moderated Mediating Model. J.Technol. Econ. 2020, 39, 1–9. [Google Scholar]
- Chen, J.; Liu, D.; Xu, A. Will industrial structure upgrading reduce carbon emission intensity?—An investigation from the perspective of green taxation. Chin. J. Environ. Manag. 2024, 16, 80–90. [Google Scholar]
- Liu, Z.; Xin, L. Has China’s Belt and Road Initiative promoted its green total factor productivity?—Evidence from primary provinces along the route. Energy Pol. 2019, 129, 360–369. [Google Scholar] [CrossRef]
- Clark, C. The Conditions of Economic Progress; CABI Digital Library: Boston, MA, USA, 1967. [Google Scholar]
- Timmer, M.P.; Szirmai, A. Productivity growth in Asian manufacturing: The structural bonus hypothesis examined. Struct. Change Econ. Dyn. 2000, 11, 371–392. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L. Green credit and industrial green total factor productivity: The impact mechanism and threshold effect tests. J. Environ. Manag. 2023, 331, 117266. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Chen, X. The effect of China’s reconfiguration of economic factors in terms of energy consumption. China Popul. Resour. Environ. 2021, 31, 128–137. [Google Scholar]
- Yang, Y.; Wei, X.; Wei, J.; Gao, X. Industrial structure upgrading, green total factor productivity and carbon emissions. Sustainability 2022, 14, 1009. [Google Scholar] [CrossRef]
- Bai, J.; Liu, Y. Can outward direct investment improve China’s resource misallocation? China Ind. Econ. 2018, 60–78. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, W. Price Distortion, Factor Misallocation and Efficiency Loss: Theory and Application. China Econ. Q. 2011, 4, 1401–1422. [Google Scholar]
- Niu, Z.; Xu, C.; Wu, Y. Improvement of Business Environment, Human Capital Effect and Enterprise Labor Productivity. Manag. World 2023, 2, 83–100. [Google Scholar]
- Jiang, T. The Mediating Effect and Moderating Effect in Empirical Studies of Causal Inference. China Ind. Econ. 2022, 5, r120. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef] [PubMed]
- Angrist, J.D.; Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Alesina, A.; Zhuravskaya, E. Segregation and the quality of government in a cross section of countries. Am. Econ. Rev. 2011, 101, 1872–1911. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Du, L. The driving factors of carbon dioxide emissions in China: A study based on provincial panel data. S. China J. Econ. 2010, 28, 20–33. [Google Scholar]
- Zhu, D.; Ren, L.; Liu, Y. China’s inclusive financial development, economic growth and carbon emissions. China Popul. Resour. Environ. 2018, 28, 66–76. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Institute for Global Environmental Strategies. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 2 July 2025).
- Office of the National Climate Change Policy Coordination Group. Energy Research Institute of the National Development and Reform Commission; Guidelines for Compiling Provincial Greenhouse Gas Inventories: Beijing, China, 2007. [Google Scholar]
- Andersen, P.; Petersen, N.C. A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Malmquist, S. Index numbers and indifference surfaces. Trab. Estad. Investig. Oper. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Chambers, R.G.; Chung, Y.; Färe, R. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Long, Y.; Liu, L.; Yang, B. Different types of environmental concerns and heterogeneous influence on green total factor productivity: Evidence from Chinese provincial data. J. Clean. Prod. 2023, 428, 139295. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, C. The internal-structural effects of different types of environmental regulations on China’s green total-factor productivity. Energy Econ. 2022, 113, 106246. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. Estimation of Inter-provincial Physical Capital Stock in China: 1952–2000. Econ. Res. 2004, 10, 35–44. [Google Scholar]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital economy development, industrial structure upgrading and green total factor productivity: Empirical evidence from China’s cities. Int. J. Environ. Res. Publ. Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Chen, S.; Golley, J. ‘Green’productivity growth in China’s industrial economy. Energy Econ. 2014, 44, 89–98. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Huang, W.; Zhang, X. A new Malmquist-type green total factor productivity measure: An application to China. Energy Econ. 2023, 117, 106408. [Google Scholar] [CrossRef]
- Guo, B.; Yu, H.; Jin, G. Urban green total factor productivity in China: A generalized Luenberger productivity indicator and its parametric decomposition. Sustain. Cities Soc. 2024, 106, 105365. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Cui, S.; Li, G.; Dou, J. Research on the Resource Misallocation Effect of Industrial Synergistic Agglomeration. Stat. Res. 2019, 36, 76–87. [Google Scholar]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yu, K.; Chen, Z. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Pol. 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Ding, T.; Ning, Y.; Zhang, Y. The contribution of China’s outward foreign direct investment (OFDI) to the reduction of global CO2 emissions. Sustainability 2017, 9, 741. [Google Scholar] [CrossRef]
- Schipper, L.; Saenger, C.; Sudardshan, A. Transport and carbon emissions in the United States: The long view. Energies 2011, 4, 563–581. [Google Scholar] [CrossRef]
- Khan, M. CO2 emissions and sustainable economic development: New evidence on the role of human capital. Sustain. Dev. 2020, 28, 1279–1288. [Google Scholar] [CrossRef]
- Han, Y.; Huang, L.; Wang, X. Has the industrial structure been optimized and upgraded to improve ecological efficiency? J. Quant.Tech. Econ. 2016, 33, 40–59. [Google Scholar]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Goldsmith-Pinkham, P.; Sorkin, I.; Swift, H. Bartik instruments: What, when, why, and how. Am. Econ. Rev. 2020, 110, 2586–2624. [Google Scholar] [CrossRef]
Category | Primary Indicators | Secondary Indicators |
---|---|---|
Input | Capital Input | The total stock of fixed assets in the entire society |
Labor Input | Annual employment | |
Energy Input | Total energy consumption | |
Output | Desirable Output | Real GDP |
Undesirable Output | Industrial sulfur dioxide emissions | |
Industrial wastewater discharge volume |
Index | Meaning | N | Mean | Std. | Min | Max |
---|---|---|---|---|---|---|
Carbon Emission Intensity | 480 | 1.998 | 0.622 | 0.335 | 3.836 | |
Industrial Structure Upgrading | 480 | 10.280 | 0.333 | 9.598 | 11.33 | |
Green Total Factor Productivity | 480 | −0.465 | 0.396 | −1.584 | 0.511 | |
Labor Misallocation | 480 | −1.460 | 1.165 | −6.064 | 1.214 | |
lnUrban | Urbanization Level | 480 | −0.657 | 0.267 | −1.974 | −0.110 |
Energy | Energy Consumption Structure | 480 | 0.000 | 1.000 | −2.319 | 3.787 |
Opening | Degree of Openness | 480 | 0.311 | 0.347 | 0.012 | 1.664 |
Prind | The Proportion of Primary Industry | 480 | 0.111 | 0.060 | 0.003 | 0.339 |
Seind | The Proportion of Secondary Industry | 480 | 0.431 | 0.082 | 0.160 | 0.620 |
Edu | Human Capital | 480 | 0.0175 | 0.00631 | 0.00461 | 0.0389 |
Transportation Level | 480 | 11.330 | 0.872 | 8.734 | 12.980 |
Variable | VIF | Variable | VIF |
---|---|---|---|
2.87 | Opening | 2.70 | |
1.48 | Prind | 3.57 | |
1.95 | Seind | 2.14 | |
lnUrban | 4.34 | Edu | 2.02 |
Energy | 1.82 | lntrans | 1.57 |
Type of Test | Variable | Title 2 | Title 3 |
---|---|---|---|
Pasaran CD-Test | lnCEI | 43.95 | 0.000 *** |
lnISU | 12.31 | 0.000 *** | |
lnGTFP | 65.69 | 0.000 *** | |
lnLamis | 22.91 | 0.000 *** | |
Urban | 76.67 | 0.000 *** | |
Energy | 10.56 | 0.000 *** | |
Opening | 29.70 | 0.000 *** | |
Prind | 64.89 | 0.000 *** | |
Seind | 49.25 | 0.000 *** | |
Edu | 46.80 | 0.000 *** | |
lntrans | 58.01 | 0.000 *** | |
Wooldridge-Test | 184.897 | 0.000 *** |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
−0.547 *** | −0.461 *** | −0.190 *** | −0.296 *** | |
(0.117) | (0.146) | (0.045) | (0.041) | |
Prind | −0.456 | −0.503 | ||
(0.524) | (0.417) | |||
Seind | −0.246 | 0.400 | ||
(0.384) | (0.339) | |||
Edu | −13.707 *** | −0.567 | ||
(4.516) | (3.932) | |||
Energy | 0.517 *** | 0.308 *** | ||
(0.014) | (0.011) | |||
lnUrban | 0.441 *** | 0.050 | ||
(0.121) | (0.084) | |||
−0.115 *** | 0.101 *** | |||
(0.033) | (0.027) | |||
Constant | 7.618 *** | 8.727 *** | 3.636 *** | 3.589 *** |
(1.253) | (1.786) | (0.461) | (0.223) | |
Individual Fixed effect | NO | NO | YES | YES |
Year Fixed effect | NO | NO | YES | YES |
N | 480.000 | 480.000 | 480.000 | 480.000 |
0.086 | 0.683 | 0.4942 | 0.7865 |
Variable Substitution | Winsorization | Model Transformation | |||
---|---|---|---|---|---|
(1) | (2) | (3) Fixed Effect | (4) Random Effect | (5) Mixed OLS | |
−0.192 *** | −0.302 *** | −0.296 *** | −0.266 ** | −0.461 *** | |
(0.052) | (0.046) | (0.041) | (0.047) | (0.082) | |
Control Variables | Control | Control | Control | Control | Control |
Constant | 9.837 *** | 3.707 *** | 3.589 *** | 3.006 *** | 8.727 *** |
(0.497) | (0.208) | (0.223) | (0.548) | (1.093) | |
Individual Fixed effect | Fixed | Fixed | Fixed | ||
Year Fixed effect | Fixed | Fixed | Fixed | ||
N | 480.000 | 480.000 | 480.000 | 480.000 | 480.000 |
0.9121 | 0.789 | 0.787 | 0.730 | 0.683 |
A Two-Stage Least Squares Regression | ||
---|---|---|
(1) First | (2) Second | |
0.044 *** | ||
(3.68) | ||
0.003 *** | ||
(8.66) | ||
−0.873 *** | ||
(−7.29) | ||
Control Variables | Control | Control |
Observations | 480 | 480 |
Individual Fixed Effect | YES | YES |
Year Fixed Effect | YES | YES |
Kleibergen–Paap rk LM | 75.681 p-value: 0.000 | |
Kleibergen–Paap rk Wald F | 53.156 Critical value: 19.930 | |
Hansen J | 1.042 p-value: 0.307 |
(1) | (2) | (3) | |
---|---|---|---|
East | Central | West | |
−0.1000 | −0.361 *** | −0.192 ** | |
(−1.58) | (−4.10) | (−2.54) | |
Constant | 2.782 ** | 4.043 *** | 2.374 ** |
(2.71) | (4.10) | (2.89) | |
Control Variables | Control | Control | Control |
Observations | 450 | 450 | 450 |
Individual Fixed Effect | YES | YES | YES |
Year Fixed Effect | YES | YES | YES |
N | 176 | 128 | 176 |
0.9124 | 0.8126 | 0.8973 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
−0.300 *** | 0.322 *** | −0.275 *** | ||
(0.042) | (0.064) | (0.041) | ||
−0.120 *** | −0.080 *** | |||
(0.027) | (0.021) | |||
Control Variables | Control | Control | Control | Control |
Constant | 4.581 *** | −0.119 | 1.723 *** | 4.577 *** |
(0.247) | (1.602) | (0.299) | (0.267) | |
Individual Fixed Effect | YES | YES | YES | YES |
Year Fixed Effect | YES | YES | YES | YES |
N | 480.000 | 480.000 | 480.000 | 480.000 |
0.7787 | 0.6647 | 0.7632 | 0.7822 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
−0.317 *** | 0.537 *** | −0.292 *** | ||
(0.073) | (0.145) | (0.071) | ||
−0.054 *** | −0.047 *** | |||
(0.009) | (0.009) | |||
Control Variables | Control | Control | Control | Control |
Constant | 2.371 *** | −2.651 | −0.613 | 2.247 *** |
(0.651) | (1.594) | (0.737) | (0.636) | |
Individual Fixed Effect | YES | YES | YES | YES |
Year Fixed Effect | YES | YES | YES | YES |
N | 480.000 | 480.000 | 480.000 | 480.000 |
0.5774 | 0.2544 | 0.5678 | 0.5901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Xu, C. Industrial Structure Upgrading and Carbon Emission Intensity: The Mediating Roles of Green Total Factor Productivity and Labor Misallocation. Sustainability 2025, 17, 7639. https://doi.org/10.3390/su17177639
Luo J, Xu C. Industrial Structure Upgrading and Carbon Emission Intensity: The Mediating Roles of Green Total Factor Productivity and Labor Misallocation. Sustainability. 2025; 17(17):7639. https://doi.org/10.3390/su17177639
Chicago/Turabian StyleLuo, Jinyan, and Chengbo Xu. 2025. "Industrial Structure Upgrading and Carbon Emission Intensity: The Mediating Roles of Green Total Factor Productivity and Labor Misallocation" Sustainability 17, no. 17: 7639. https://doi.org/10.3390/su17177639
APA StyleLuo, J., & Xu, C. (2025). Industrial Structure Upgrading and Carbon Emission Intensity: The Mediating Roles of Green Total Factor Productivity and Labor Misallocation. Sustainability, 17(17), 7639. https://doi.org/10.3390/su17177639