Enhancing Treated Wastewater Reuse in Saudi Agriculture: Farmers’ Perspectives
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Factors Affecting Farmers’ Acceptance of TWW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzahrani, F.; Tawfik, R. Regional Heterogeneity in Urban Water Consumption in Saudi Arabia. Water 2025, 17, 1156. [Google Scholar] [CrossRef]
- MoEWA. National Water Strategy; MoEWA: Saudi Arabia, Riyadh, 2018. [Google Scholar]
- Baig, M.B.; Alotibi, Y.; Straquadine, G.S.; Alataway, A. Water Resources in the Kingdom of Saudi Arabia: Challenges and Strategies for Improvement. In Water Polices in MENA Countries; Zekri, S., Ed.; Springer: Cham, Switzerland, 2020; pp. 135–160. [Google Scholar]
- MoEWA; Oubelkacem, A.; Scardigno, A.; Choukr-Allah, R. Statistical Yearbook 2022; Ministry of Environ-Ment, Water and Agriculture: Saudi Arabia, Riyadh, 2022. [Google Scholar]
- Chowdhury, S.; Al-Zahrani, M. Reuse of Treated Wastewater in Saudi Arabia: An Assessment Framework. J. Water Reuse Desalin 2013, 3, 297–314. [Google Scholar] [CrossRef]
- Asaad, S.; Suleiman, A. Socio-Demographic Factors and Treated Wastewater Reuse in the MENA Region: Insights and Implications. Desalination 2023, 565, 116830. [Google Scholar] [CrossRef]
- Badr, E.-S.A.; Tawfik, R.T.; Alomran, M.S. An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia. Water 2023, 15, 2488. [Google Scholar] [CrossRef]
- El-Sebaei, M.N.; Osman, R.T.; Mansour, H.E.H.; Al-Asmari, M.A. Using of Triple-Treated Wastewater in Agricultural Irrigation in Al-Ahsa Oasis, Saudi Arabia. Iraqi J. Agric. Sci. 2021, 52, 1516–1527. [Google Scholar] [CrossRef]
- Alotaibi, B.A.; Baig, M.B.; Najim, M.M.M.; Shah, A.A.; Alamri, Y.A. Water Scarcity Management to Ensure Food Scarcity through Sustainable Water Resources Management in Saudi Arabia. Sustainability 2023, 15, 10648. [Google Scholar] [CrossRef]
- Ouda, O.K. Impacts of Agricultural Policy on Irrigation Water Demand: A Case Study of Saudi Arabia. Int. J. Water Resour. Dev. 2014, 30, 282–292. [Google Scholar] [CrossRef]
- Alzahrani, F.; Elsebaei, M.; Tawfik, R. Public Acceptance of Treated Wastewater Reuse in the Agricultural Sector in Saudi Arabia. Sustainability 2023, 15, 15434. [Google Scholar] [CrossRef]
- Bilal, H.M.; Zulfiqar, R.; Adnan, M.; Umer, M.S.; Islam, H.; Zaheer, H.; Abbas, W.M.; Haider, F.; Ahmad, I. Impact of Salinity on Citrus Production: A Review. Int. J. Appl. Res. 2020, 6, 173–176. [Google Scholar]
- Al-Karablieh, N.; Al-Shomali, I.; Al-Elaumi, L.; Tabieh, M.; Al-Karablieh, E.; Al-Jaghbir, M.; Bubba, M.D. The Impact of Treated Wastewater Irrigation on Strawberry Development, Fruit Quality Parameters, and Microbial and Chemical Contaminant Transfer: A Health Risk Assessment. Sci. Hortic. 2024, 329, 113014. [Google Scholar] [CrossRef]
- Abu Madi, M.; Braadbaart, O.; Al-Sa’ed, R.; Alaerts, G. Willingness of Farmers to Pay for Reclaimed Wastewater in 2003. Water Supply 2003, 3, 115–122. [Google Scholar] [CrossRef]
- Choukr-Allah, R. Wastewater Treatment and Reuse. In Arab Environment: Water: Sustainable Management of a Scarce Resource; Report of the Arab Forum for Environment and Development: Beirut, Lebanon, 2010; pp. 107–124. [Google Scholar]
- Qadir, M. The Challenges of Wastewater Irrigation in Developing Countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef]
- Koukoulakis, P.H.; Kyritsis, S.S.; Zhu, G.; Kalavrouziotis, I.K. Contribution of the DSS-Computer Program to Wastewater and Biosolids Reuse in Agriculture Environment. EQA Int. J. Environ. Qual. 2025, 65, 35–48. [Google Scholar] [CrossRef]
- Kokkinos, P.; Comia, J.R.; Caucci, S.; Hettiarachchi, H.; Ballesteros, F.C.; Oron, G.; Salgot, M.; Kalavrouziotis, I.K. Wastewater and Sludge Reuse: Selected Case Studies across the Globe. Desalination Water Treat. 2022, 250, 65–79. [Google Scholar] [CrossRef]
- Obijianya, C.C.; Yakamercan, E.; Karimi, M.; Veluru, S.; Simko, I.; Eshkabilov, S.; Simsek, H. Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities. Water 2025, 17, 2083. [Google Scholar] [CrossRef]
- Chirane, M.S.; Belmeskine, H.; Boudjellaba, S.; Megatelli, S. Assessment of Chemical and Bacteriological Status of Treated Wastewater of the Baraki WWTP (Algeria) for Agricultural Purposes. Water Supply 2024, 24, 2383–2394. [Google Scholar] [CrossRef]
- Attada, R.; Dasari, H.P.; Chowdary, J.S.; Yadav, R.K.; Knio, O.; Hoteit, I. Surface Air Temperature Variability over the Arabian Peninsula and Its Links to Circulation Patterns. Int. J. Clim. 2018, 39, 445–464. [Google Scholar] [CrossRef]
- Luong, T.M.; Dasari, H.P.; Hoteit, I. Extreme Precipitation Events Are Becoming Less Frequent but More Intense over Jeddah, Saudi Arabia. Are Shifting Weather Regimes the Cause? Atmos. Sci. Lett. 2020, 21, e981. [Google Scholar] [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Dey, E.L.; Astin, A.W. Statistical Alternatives for Studying College Student Retention: A Comparative Analysis of Logit, Probit, and Linear Regression. Res. High. Educ. 1993, 34, 569–581. [Google Scholar] [CrossRef]
- Perry, G.M.; Rister, M.E.; Richardson, J.W.; Grant, W.R. Analyzing Tenure Arrangements and Crop Rotations Using Farm Simulation and Probit Analysis. J. Agric. Appl. Econ. 1986, 18, 165–174. [Google Scholar] [CrossRef]
- Stern, S. Rules of Thumb for Comparing Multinomial Logit and Multinomial Probit Coefficients. Econ. Lett. 1989, 31, 235–238. [Google Scholar] [CrossRef]
- Maddala, G.S.; Lahiri, K. Introduction to Econometrics; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Dragonetti, G.; Khadra, R.; Daccache, A.; Oubelkacem, A.; Choukr-Allah, R.; Lamaddalena, N. Development and Application of a Predictive Model for Treated Wastewater Irrigation Management in a Semiarid Area. Integr. Environ. Assess. Manag. 2020, 16, 910–919. [Google Scholar] [CrossRef]
- Sarap, K.; Vashist, D. Adoption of Modern Varieties of Rice in Orissa: A Farm Level Analysis. Indian J. Agric. Econ. 1994, 49, 88–93. [Google Scholar]
- Rosenberg, A.; Turvey, C.G. Identifying Management Profiles of Ontario Swine Producers through Cluster Analysis. Appl. Econ. Perspect. Policy 1991, 13, 201–213. [Google Scholar] [CrossRef]
- Al-Shenaifi, M.; Al-Shayaa, M.; Alharbi, M. Perception and Attitudes of Farmers toward the Uses of Treated Sewage Water in Palm Trees Irrigation. Jordan J. Agric. Sci. 2015, 11, 693–704. [Google Scholar] [CrossRef]
- Alataway, A.A.; Ness, M.R.; Gowing, J.W. Public Attitude towards Wastewater Reuse for Irrigated Agriculture in Saudi Arabia. In WIT Transactions on Ecology and the Environment; Brebbia, C.A., Popov, V., Eds.; WITP: Southampton, UK, 2011; Volume 145, pp. 759–767. [Google Scholar]
- Alharbi, M. Attitudes of the Farmers Towards the Use of Treated Sewage Water in Irrigating Palm Trees in Some Provinces of Riyadh Area, Kingdom of Saudi Arabia. Master’s Thesis, King Saud University, Riyadh, Saudi Arabia, 2013. [Google Scholar]
- Ouda, O.K. Treated Wastewater Use in Saudi Arabia: Challenges and Initiatives. Int. J. Water Resour. Dev. 2016, 32, 799–809. [Google Scholar] [CrossRef]
- Alrwis, K.N.; Ghanem, A.M.; Alnashwan, O.S.; Al Duwais, A.A.M.; Alaagib, S.A.B.; Aldawdahi, N.M. Measuring the Impact of Water Scarcity on Agricultural Economic Development in Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 191–195. [Google Scholar] [CrossRef]
- Massoud, M.A.; Kazarian, A.; Alameddine, I.; Al-Hindi, M. Factors Influencing the Reuse of Reclaimed Water as a Management Option to Augment Water Supplies. Environ. Monit. Assess. 2018, 190, 531. [Google Scholar] [CrossRef] [PubMed]
- Mu’azu, N.D.; Abubakar, I.R.; Blaisi, N.I. Public Acceptability of Treated Wastewater Reuse in Saudi Arabia: Implications for Water Management Policy. Sci. Total. Environ. 2020, 721, 137659. [Google Scholar] [CrossRef]
- Husain, T.; Ahmed, A.H. Environmental and Economic Aspects of Wastewater Reuse in Saudi Arabia. Water Int. 1997, 22, 108–112. [Google Scholar] [CrossRef]
Study Sites | Soil Texture (%) | pH | EC (dS/m) | TDS (ppm) | Total N (%) | Available P (%) | ||
---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||||
Al-Qatif | 88 | 6 | 6 | 7.8 | 1.3 | 823 | 0.02 | 5.75 |
Al-Ahsa | 76 | 13 | 11 | 7.1 | 1.7 | 1106 | 0.02 | 5.80 |
Riyadh | 72 | 13 | 15 | 7.2 | 0.7 | 421 | 0.13 | 2.14 |
Taif | 68 | 17 | 15 | 7.3 | 1.5 | 886 | 0.02 | 3.80 |
Medina | 68 | 19 | 13 | 7.1 | 1.7 | 1044 | 0.02 | 2.44 |
Water Quality Indicators | SAR | NO3 (ppm) | CaCO3 (ppm) | pH | EC (dS/m) | |||
1.0–1.2 | 1.8–2.3 | 30–36 | 7.3–7.7 | 0.7–1.1 |
Category | Variable | Definition | Unit/Code |
---|---|---|---|
Socioeconomic | Age | Farmer’s age | Years |
Education | Formal education level | Years of education | |
Family size | Number of household members | Count | |
Work status | Employment status | 0 = not working, 1 = retired, 2 = working | |
Income level | Monthly income in Saudi Riyals | 0 = <3k, 1 = 3k–5k, 3 = 5k–7k, … | |
Agricultural experience | Years of farming experience | Years | |
Farm-specific | Holding size | Total land held | Dunam |
Irrigated area | Total irrigated area | Dunam | |
Land ownership | Whether the land is owned | 1 = yes, 0 = no | |
Use of groundwater | Use of groundwater for irrigation | 1 = yes, 0 = no | |
Sufficient water | Receives sufficient water supply | 1 = yes, 0 = no | |
Water storage | Stores water on farm | 1 = yes, 0 = no | |
Store damage | Water quality affected due to storage | 1 = yes, 0 = no | |
Permanent labor | Number of permanent workers | Count | |
Occasional labor | Number of occasional workers | Count | |
Attitudes and adoption willingness | TWW satisfaction | Satisfied with use of treated wastewater | 1 = yes, 0 = no |
Willing to use TWW | Willing to use treated wastewater | 1 = yes, 0 = no | |
TWW as alternative | Perceive TWW as a substitute for their current primary water source | 1 = yes, 0 = no | |
TWW as new source | Consider TWW as an entirely new addition to their water sources | 1 = yes, 0 = no | |
TWW as complementary | View TWW as an additional source used alongside existing ones | 1 = yes, 0 = no | |
Perceived impacts | Productivity impact | Perceived impact on crop productivity | 1 = positive, 0 = no impact, −1 = negative |
Soil impact | Perceived impact on soil | 1 = positive, 0 = no impact, −1 = negative | |
Fruit impact | Perceived impact on fruit quality | 1 = positive, 0 = no impact, −1 = negative | |
Return impact | Perceived impact on total farm returns | 1 = positive, 0 = no impact, −1 = negative | |
Costs impact | Impact on water costs | 1 = positive, 0 = no impact, −1 = negative | |
Water impact | Impact on water consumption | 1 = positive, 0 = no impact, −1 = negative | |
Fertilizers impact | Impact on fertilizer use | 1 = positive, 0 = no impact, −1 = negative | |
Pest impact | Impact on pest incidence | 1 = positive, 0 = no impact, −1 = negative | |
Health impact | Perceived impact on human health | 1 = positive, 0 = no impact, −1 = negative | |
Consumer impact | Impact on final consumers | 1 = positive, 0 = no impact, −1 = negative | |
Other | Extension services | Receives any extension services | 1 = yes, 0 = no |
Public extension services | Receives public extension services | 1 = yes, 0 = no | |
No alternative | Uses TWW due to lack of alternatives | 1 = yes, 0 = no | |
GW salinity | Uses TWW due to saline groundwater | 1 = yes, 0 = no | |
Water scarcity | Uses TWW due to water scarcity | 1 = yes, 0 = no |
Location | Al-Ahsa | Riyadh | Taif | Qatif | Madina | Mean | SD |
---|---|---|---|---|---|---|---|
Age | 60.13 | 58.06 | 47.4 | 59.37 | 58.24 | 57.34 | 12.05 |
Education | 7.02 | 15.55 | 13.9 | 8.87 | 12.64 | 11.31 | 5.68 |
Family size | 7.92 | 7.8 | 6.53 | 8.37 | 3.7 | 7.2 | 5.80 |
Work status | 0.79 | 1.68 | 1.6 | 1.33 | 1.06 | 1.25 | 0.74 |
Income level | 2.46 | 5.45 | 4.1 | 3.85 | 3.7 | 3.84 | 2.11 |
Agricultural experience | 37.0 | 24.8 | 19.7 | 37.0 | 25.4 | 29.73 | 16.11 |
Holding size | 5.5 | 119.5 | 26.4 | 9.6 | 53.0 | 46.4 | 153.15 |
Irrigated area | 4.23 | 52.17 | 20.12 | 8.31 | 40.89 | 24.87 | 76.15 |
Land ownership | 0.66 | 0.97 | 0.72 | 0.33 | 0.88 | 0.74 | 0.44 |
Use groundwater | 0.22 | 0.17 | 0.84 | 0.3 | 0.4 | 0.33 | 0.47 |
Sufficient water | 0.84 | 0.38 | 0.29 | 0.93 | 0.76 | 0.63 | 0.48 |
Water storage | 0.34 | 0.84 | 0.5 | 0.13 | 0.18 | 0.46 | 0.50 |
Store damage | 0.41 | 0.79 | 0.36 | 0.89 | 0.84 | 0.62 | 0.49 |
Permanent labor | 1.23 | 6.74 | 3.19 | 2.22 | 2.78 | 3.34 | 5.25 |
Occasional labor | 3.65 | 8.0 | 4.09 | 1.59 | 2.0 | 4.45 | 6.46 |
TWW satisfaction | 0.93 | 0.96 | 0.36 | 0.39 | 0.88 | 0.78 | 0.72 |
WTU TWW | 1.0 | 0.99 | 0.47 | 1.0 | 1.0 | 0.92 | 0.27 |
TWW as alternative | 0.53 | 0.5 | 0.17 | 0.13 | 0.28 | 0.39 | 0.49 |
TWW as new source | 0.17 | 0.08 | 0.09 | 0.07 | 0.02 | 0.1 | 0.30 |
TWW as complementary | 0.3 | 0.4 | 0.21 | 0.8 | 0.7 | 0.42 | 0.49 |
Productivity impact | 0.5 | 0.94 | −0.22 | −0.7 | 0.84 | 0.42 | 0.84 |
Soil impact | 0.62 | 0.36 | −0.34 | −0.7 | 0.78 | 0.27 | 0.88 |
Fruit impact | 0.41 | 0.58 | −0.4 | −0.7 | 0.7 | 0.24 | 0.86 |
Return impact | 0.54 | 0.57 | −0.02 | −0.61 | 0.54 | 0.33 | 0.81 |
Costs impact | 0.54 | 0.77 | −0.17 | −0.76 | 0.56 | 0.35 | 0.87 |
Water impact | 0.51 | 0.65 | −0.12 | −0.15 | 0.72 | 0.4 | 0.81 |
Fertilizers impact | 0.62 | 0.76 | −0.33 | −0.39 | 0.72 | 0.41 | 0.81 |
Pest impact | 0.36 | 0.06 | −0.55 | −0.74 | −0.28 | −0.07 | 0.84 |
Health impact | 0.17 | 0.09 | −0.22 | −0.59 | 0.16 | 0.0 | 0.68 |
Consumer impact | 0.35 | 0.14 | −0.52 | −0.46 | 0.08 | 0.04 | 0.84 |
Extension services | 0.54 | 0.94 | 0.22 | 0.61 | 0.22 | 0.57 | 0.50 |
Public extension | 0.38 | 0.61 | 0.38 | 0.61 | 0.12 | 0.43 | 0.50 |
No alternative | 0.28 | 0.11 | 0.12 | 0.63 | 0.0 | 0.22 | 0.41 |
GW salinity | 0.02 | 0.0 | 0.02 | 0.0 | 0.34 | 0.05 | 0.22 |
Water scarcity | 0.03 | 0.21 | 0.26 | 0.02 | 0.02 | 0.11 | 0.32 |
Sample size | 130 | 107 | 58 | 46 | 50 |
Factor (Independent Variable) | Willingness to Use TWW (General) | TWW as Alternative Source | TWW as New Source | TWW as Complementary Source |
---|---|---|---|---|
Satisfaction with TWW | 1.391 *** | 0.374 *** | −0.400 ** | - |
Education level | −0.100 *** | - | - | - |
Extension services | 0.960 ** | 0.416 *** | 0.418 * | −0.279 * |
Public extensions | −1.132 ** | - | - | - |
Work kind | 0.539 ** | −0.162 ** | - | 0.162 ** |
Lack of alternative source | 0.999 * | - | - | - |
Using groundwater | −2.018 *** | −0.379 ** | - | - |
Fertilizers saving | 0.589 *** | - | - | - |
Fruit impact | - | 0.298 ** | - | −0.282 ** |
Health impact | - | 0.426 *** | −0.407 ** | −0.240 * |
Costs impact | - | −0.220 * | 0.534 *** | - |
Occasional lab | - | −0.043 *** | - | 0.029 ** |
Store damage | - | −0.492 *** | −0.346 * | 0.667 *** |
Holding size | - | 0.001 * | −0.008 ** | - |
Land ownership | - | 0.382 ** | - | - |
Return impact | - | - | 0.456 ** | −0.292 ** |
Fertilizers | - | - | −0.408 ** | 0.327 *** |
Pest impact | - | - | 0.349 ** | −0.239 ** |
Agr. experience | - | - | - | 0.011 ** |
Water impact | - | - | - | 0.361 *** |
Water store | - | - | - | −0.324 ** |
Constant | 2.096 *** | −1.053 *** | −1.614 *** | −0.739 *** |
Model Statistics | ||||
Log likelihood | −42.09 | −198 | −101 | −212.9 |
Pseudo R2 | 0.618 | 0.229 | 0.196 | 0.196 |
LR chi2 | 136 | 118 | 49.6 | 100.4 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 |
% Cases Correctly Classified | 94.82% | 74.0% | 89.9% | 73.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawfik, R.; Turk, K.G.B.; Alomair, M.; Sidahmed, S.; Alqurashi, R.M.; Ebrahim, A.; El-Kafrawy, M.; Hamad, S.; Al-Karablieh, E. Enhancing Treated Wastewater Reuse in Saudi Agriculture: Farmers’ Perspectives. Sustainability 2025, 17, 7633. https://doi.org/10.3390/su17177633
Tawfik R, Turk KGB, Alomair M, Sidahmed S, Alqurashi RM, Ebrahim A, El-Kafrawy M, Hamad S, Al-Karablieh E. Enhancing Treated Wastewater Reuse in Saudi Agriculture: Farmers’ Perspectives. Sustainability. 2025; 17(17):7633. https://doi.org/10.3390/su17177633
Chicago/Turabian StyleTawfik, Rady, Khalid G. Biro Turk, Mohammad Alomair, Salah Sidahmed, Randah M. Alqurashi, Ammar Ebrahim, Mohamed El-Kafrawy, Sidiq Hamad, and Emad Al-Karablieh. 2025. "Enhancing Treated Wastewater Reuse in Saudi Agriculture: Farmers’ Perspectives" Sustainability 17, no. 17: 7633. https://doi.org/10.3390/su17177633
APA StyleTawfik, R., Turk, K. G. B., Alomair, M., Sidahmed, S., Alqurashi, R. M., Ebrahim, A., El-Kafrawy, M., Hamad, S., & Al-Karablieh, E. (2025). Enhancing Treated Wastewater Reuse in Saudi Agriculture: Farmers’ Perspectives. Sustainability, 17(17), 7633. https://doi.org/10.3390/su17177633