Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Earth Map
- -
- a streamlined GEE application called Imagery Comparison (https://earthmap.org/compare.html, accessed on 14 March 2025) with access to more geospatial products and side-by-side image comparison.
- -
- the FAO AgroInformatics Geospatial Platform (https://data.apps.fao.org, accessed on 5 April 2025) with additional resources and analytical capabilities.
2.3. Datasets
2.3.1. Global Ecological Zones
2.3.2. Aridity Index (AI)
2.3.3. Precipitation/Temperature
2.3.4. Land Cover and Land Use Change
2.3.5. Normalized Difference Vegetation Index, Potential Evapotranspiration, and Water Deficit
2.3.6. Land Productivity Dynamics
3. Results and Discussions
3.1. Climate Trends and Variability
3.2. Land Cover and Land Use Change (LCLUC)
3.3. Vegetation Dynamics, Climatic Water Demand, and Land Degradation Neutrality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, M.S.; Stringer, L.C. Land Degradation, Desertification and Climate Change: Anticipating, Assessing and Adapting to Future Change; Routledge: Abingdon, UK, 2016; ISBN 0203071158. [Google Scholar]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B. Biodiversity Redistribution under Climate Change: Impacts on Ecosystems and Human Well-Being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Olsson, L.; Opondo, M.; Tschakert, P.; Agrawal, A.; Eriksen, S.; Ma, S.; Perch, L.; Zakieldeen, S. Livelihoods and Poverty. In Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2014; pp. 793–832. [Google Scholar]
- Cook, S.E.; Fisher, M.J.; Andersson, M.S.; Rubiano, J.; Giordano, M. Water, Food and Livelihoods in River Basins. Water Int. 2009, 34, 13–29. [Google Scholar] [CrossRef]
- Alam, G.M.M.; Alam, K.; Mushtaq, S.; Clarke, M.L. Vulnerability to Climatic Change in Riparian Char and River-Bank Households in Bangladesh: Implication for Policy, Livelihoods and Social Development. Ecol. Indic. 2017, 72, 23–32. [Google Scholar] [CrossRef]
- Ge, Y.; Li, X.; Cai, X.; Deng, X.; Wu, F.; Li, Z.; Luan, W. Converting UN Sustainable Development Goals (SDGs) to Decision-Making Objectives and Implementation Options at the River Basin Scale. Sustainability 2018, 10, 1056. [Google Scholar] [CrossRef]
- Wang, H.; He, G. Rivers: Linking Nature, Life, and Civilization. River 2022, 1, 25–36. [Google Scholar] [CrossRef]
- Trabucchi, M.; Ntshotsho, P.; O’Farrell, P.; Comín, F.A. Ecosystem Service Trends in Basin-Scale Restoration Initiatives: A Review. J. Environ. Manag. 2012, 111, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Kibaroglu, A. The Euphrates–Tigris River Basin. In Sustainability of Engineered Rivers in Arid Lands: Challenge and Response; Cambridge University Press: Cambridge, UK, 2021; Chapter 8; p. 94. [Google Scholar]
- Paisley, R.K.; Henshaw, T.W. Transboundary Governance of the Nile River Basin: Past, Present and Future. Environ. Dev. 2013, 7, 59–71. [Google Scholar] [CrossRef]
- Sok, S.; Meas, S.; Chea, S.; Chhinh, N. Regional Cooperation and Benefit Sharing for Sustainable Water Resources Management in the Lower Mekong Basin. Lakes Reserv. 2019, 24, 215–227. [Google Scholar] [CrossRef]
- Pande, C.B. Sustainable Watershed Development Planning. In Sustainable Watershed Development: A Case Study of Semi-Arid Region in Maharashtra State of India; Springer: Cham, Switzerland, 2020; pp. 57–69. [Google Scholar]
- Jawad, L.A. Tigris and Euphrates Rivers: Their Environment from Headwaters to Mouth; Springer Nature: Berlin/Heidelberg, Germany, 2021; Volume 11, ISBN 3030575705. [Google Scholar]
- Muratoglu, A.; Iraz, E.; Ercin, E. Water Resources Management of Large Hydrological Basins in Semi-Arid Regions: Spatial and Temporal Variability of Water Footprint of the Upper Euphrates River Basin. Sci. Total Environ. 2022, 846, 157396. [Google Scholar] [CrossRef] [PubMed]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.K. Global Climate Change Impacts on Tigris-Euphrates Rivers Basins. J. Earth Sci. Geotech. Eng. 2020, 10, 49–98. [Google Scholar]
- Evans, J.P. Impact of Global Warming on the Euphrates-Tigris Watershed. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 5–9 December 2005; pp. 5–9. [Google Scholar]
- Luan, W.; Li, X.; Kuang, W.; Su, J.; Xue, H.; Zhang, K.; Zhu, J.; Li, G. Quantitative Assessment of the Water Stress in the Tigris–Euphrates River Basin Driven by Anthropogenic Impacts. Remote Sens. 2025, 17, 662. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Ismail, M.; Ehsan, M.A.; Islam, M.N.; Abid, M.A.; O’Brien, E.; Kamil, S.; Rashid, I.U. Projected Changes in Climate Extremes Using CMIP6 Simulations over SREX Regions. Earth Syst. Environ. 2021, 5, 481–497. [Google Scholar] [CrossRef]
- Schroeter, S.; Bi, D.; Law, R.M.; Loughran, T.F.; Rashid, H.A.; Wang, Z. Global-Scale Future Climate Projections from ACCESS Model Contributions to CMIP6. J. South. Hemisph. Earth Syst. Sci. 2024, 74, ES23029. [Google Scholar] [CrossRef]
- Eniolorunda, N. Climate Change Analysis and Adaptation: The Role of Remote Sensing (Rs) and Geographical Information System (Gis). Int. J. Comput. Eng. Res. 2014, 4, 41–51. [Google Scholar]
- Reddy, G.P.O.; Kumar, N.; Singh, S.K. Remote Sensing and GIS in Mapping and Monitoring of Land Degradation. In Geospatial Technologies in Land Resources Mapping, Monitoring and Management; Springer: Cham, Switzerland, 2018; pp. 401–424. [Google Scholar]
- Doldrina, C. Open Data and Earth Observations: The Case of Opening up Access to and Use of Earth Observation Data through the Global Earth Observation System of Systems. J. Intell. Prop. Info. Tech. Elec. Com. L. 2015, 6, 73. [Google Scholar]
- Harris, R.; Baumann, I. Open Data Policies and Satellite Earth Observation. Space Policy 2015, 32, 44–53. [Google Scholar] [CrossRef]
- Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef]
- Guo, H.-D.; Zhang, L.; Zhu, L.-W. Earth Observation Big Data for Climate Change Research. Adv. Clim. Change Res. 2015, 6, 108–117. [Google Scholar] [CrossRef]
- Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Morales, C.; Díaz, A.S.-P.; Dionisio, D.; Guarnieri, L.; Marchi, G.; Maniatis, D.; Mollicone, D. Earth Map: A Novel Tool for Fast Performance of Advanced Land Monitoring and Climate Assessment. J. Remote Sens. 2023, 3, 0003. [Google Scholar] [CrossRef]
- Nazarkulov, K.; Koshoev, M.; Toktomametova, J.; Sakyev, D. Geohazards Inventory in Central Asia Using the Geohazard Mapping Module of the FAO Collect Earth and Earth Map Tools. Int. J. Geoinform. 2021, 17, 93–98. [Google Scholar] [CrossRef]
- Gabrielyan, H. Historical and Geographical Overviews of the Euphrates-Tigris and the Orontes Basins. In Turkey’s Water Policy as Part of the Political Strategy: The Evolution of Turkey’s Water Policy; Springer: Berlin/Heidelberg, Germany, 2024; pp. 107–156. [Google Scholar]
- Abdelmohsen, K.; Sultan, M.; Save, H.; Abotalib, A.Z.; Yan, E.; Zahran, K.H. Buffering the Impacts of Extreme Climate Variability in the Highly Engineered Tigris Euphrates River System. Sci. Rep. 2022, 12, 4178. [Google Scholar] [CrossRef]
- Ezber, Y.; Bozkurt, D.; Sen, O.L. Impact of Atmospheric Rivers on the Winter Snowpack in the Headwaters of Euphrates-Tigris Basin. Clim. Dyn. 2024, 62, 7095–7110. [Google Scholar] [CrossRef]
- Kibaroglu, A. State-of-the-Art Review of Transboundary Water Governance in the Euphrates–Tigris River Basin. Int. J. Water Resour. Dev. 2019, 35, 4–29. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. The Future of the Tigris and Euphrates Water Resources in View of Climate Change. J. Earth Sci. Geotech. Eng. 2018, 8, 59–74. [Google Scholar]
- Mueller, A.; Detges, A.; Pohl, B.; Reuter, M.H.; Rochowski, L.; Volkholz, J.; Woertz, E. Climate Change, Water and Future Cooperation and Development in the Euphrates-Tigris Basin; ResearchGate/Geoscience/Report; Cascades: Eugene, OR, USA, 2021; pp. 38–53. [Google Scholar]
- Bozkurt, D.; Sen, O.L. Climate Change Impacts in the Euphrates–Tigris Basin Based on Different Model and Scenario Simulations. J. Hydrol. 2013, 480, 149–161. [Google Scholar] [CrossRef]
- Uhlir, P.F.; Chen, R.S.; Gabrynowicz, J.I.; Janssen, K. Toward Implementation of the Global Earth Observation System of Systems Data Sharing Principles. Data Sci. J. 2009, 8, GEO1–GEO91. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- Teich, I.; Gonzalez Roglich, M.; Corso, M.L.; García, C.L. Combining Earth Observations, Cloud Computing, and Expert Knowledge to Inform National Level Degradation Assessments in Support of the 2030 Development Agenda. Remote Sens. 2019, 11, 2918. [Google Scholar] [CrossRef]
- Li, W.; El-Askary, H.; Lakshmi, V.; Piechota, T.; Struppa, D. Earth Observation and Cloud Computing in Support of Two Sustainable Development Goals for the River Nile Watershed Countries. Remote Sens. 2020, 12, 1391. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Levin, E.; Beisekenov, N.; Wilson, M.; Sadenova, M.; Nabaweesi, R.; Nguyen, L. Empowering Climate Resilience: Leveraging Cloud Computing and Big Data for Community Climate Change Impact Service (C3IS). Remote Sens. 2023, 15, 5160. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A Global Analysis and Future Trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Google Geo for Good Impact Award. Available online: https://www.fao.org/newsroom/detail/fao-s-environment-and-climate-monitoring-portal-earth-map-receives-google-impact-award/en (accessed on 2 June 2025).
- Simons, H. Global Ecological Zoning for the FAO Global Forest Resources Assessment 2000 Entwicklung Einer Globalen Ökologischen Zonierung Für Die Weltweite Bewertung Der Waldressourcen Im Jahr 2000 Seitens Der FAO. In Anwendung und Auswertung der Karte der Natürlichen Vegetation Europas (Application and Analysis of the Map of the Natural Vegetation of Europe); BfN: Bonn, Germany, 2005; p. 55. [Google Scholar]
- Audebert, P.; Milne, E.; Schiettecatte, L.-S.; Dionisio, D.; Sinitambirivoutin, M.; Pais, C.; Proença, C.; Bernoux, M. Ecological Zoning for Climate Policy and Global Change Studies. Nat. Sustain. 2024, 7, 1294–1303. [Google Scholar] [CrossRef]
- GEZ FAO. Global Ecological Zones for FAO Forest Reporting: 2010 Update; FAO: Rome, Italy, 2012. [Google Scholar]
- Ullah, I.; Ma, X.; Ren, G.; Yin, J.; Iyakaremye, V.; Syed, S.; Lu, K.; Xing, Y.; Singh, V.P. Recent Changes in Drought Events over South Asia and Their Possible Linkages with Climatic and Dynamic Factors. Remote Sens. 2022, 14, 3219. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Portmann, R.W.; Solomon, S.; Hegerl, G.C. Spatial and Seasonal Patterns in Climate Change, Temperatures, and Precipitation across the United States. Proc. Natl. Acad. Sci. USA 2009, 106, 7324–7329. [Google Scholar] [CrossRef] [PubMed]
- Copernicus Climate Change Service (C3 S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate; Copernicus Climate Change Service: Reading, UK, 2017. [Google Scholar]
- Eyring, V. Coupled Model Intercomparison Project Phase 6 (CMIP6)-an Overview of Activities. In Proceedings of the World Climate Research Programme’s Working Group on Coupled Modelling (WGCM), Princeton, NJ, USA, 1–2 November 2016. [Google Scholar]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N. The Shared Socio-Economic Pathway (SSP) Greenhouse Gas Concentrations and Their Extensions to 2500. Geosci. Model. Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F. The Global 2000–2020 Land Cover and Land Use Change Dataset Derived from the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Song, X.-P. The Future of Global Land Change Monitoring. Int. J. Digit. Earth 2023, 16, 2279–2300. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- da Silva, V.S.; Salami, G.; da Silva, M.I.O.; Silva, E.A.; Monteiro Junior, J.J.; Alba, E. Methodological Evaluation of Vegetation Indexes in Land Use and Land Cover (LULC) Classification. Geol. Ecol. Landsc. 2020, 4, 159–169. [Google Scholar] [CrossRef]
- Barvels, E.; Fensholt, R. Earth Observation-Based Detectability of the Effects of Land Management Programmes to Counter Land Degradation: A Case Study from the Highlands of the Ethiopian Plateau. Remote Sens. 2021, 13, 1297. [Google Scholar] [CrossRef]
- Zhao, Q.; Qu, Y. The Retrieval of Ground NDVI (Normalized Difference Vegetation Index) Data Consistent with Remote-Sensing Observations. Remote Sens. 2024, 16, 1212. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Mohammadzadeh, A.; Jamali, S. Linear and Non-Linear Vegetation Trend Analysis throughout Iran Using Two Decades of MODIS NDVI Imagery. Remote Sens. 2022, 14, 3683. [Google Scholar] [CrossRef]
- Zarei, A.R.; Mahmoudi, M.R. Evaluation of the Effect of Changes in Climatic Variables at Different Levels on the Rate of Potential Evapotranspiration in Arid and Semi-Arid Regions. Pure Appl. Geophys. 2023, 180, 421–437. [Google Scholar] [CrossRef]
- Lee, S.-J.; Kim, N.; Lee, Y. Development of Integrated Crop Drought Index by Combining Rainfall, Land Surface Temperature, Evapotranspiration, Soil Moisture, and Vegetation Index for Agricultural Drought Monitoring. Remote Sens. 2021, 13, 1778. [Google Scholar] [CrossRef]
- Bijl, D.L.; Biemans, H.; Bogaart, P.W.; Dekker, S.C.; Doelman, J.C.; Stehfest, E.; van Vuuren, D.P. A Global Analysis of Future Water Deficit Based on Different Allocation Mechanisms. Water Resour. Res. 2018, 54, 5803–5824. [Google Scholar] [CrossRef]
- Sadoff, C.; Muller, M. Water Management, Water Security and Climate Change Adaptation: Early Impacts and Essential Responses; Global Water Partnership: Stockholm, Sweden, 2009; ISBN 9185321753. [Google Scholar]
- Cui, Y.; Li, X. A New Global Land Productivity Dynamic Product Based on the Consistency of Various Vegetation Biophysical Indicators. Big Earth Data 2022, 6, 36–53. [Google Scholar] [CrossRef]
- UNCCD. National Report on Land Degradation Neutrality Target Setting Programme: Lao PDR; UNCCD: Vientiane, Laos, 2020. [Google Scholar]
- Ivits, E.; Cherlet, M. Land-Productivity Dynamics towards Integrated Assessment of Land Degradation at Global Scales. Jt. Res. Cent. Eur. Comm. 2013, 10, 59315. [Google Scholar]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; Von, M.G. World Atlas of Desertification; Publications Office of the European Union: Luxembourg, 2018; ISBN 9279753509. [Google Scholar]
- Mikhailova, E.A.; Zurqani, H.A.; Lin, L.; Hao, Z.; Post, C.J.; Schlautman, M.A.; Shepherd, G.B. Possible Integration of Soil Information into Land Degradation Analysis for the United Nations (UN) Land Degradation Neutrality (LDN) Concept: A Case Study of the Contiguous United States of America (USA). Soil. Syst. 2024, 8, 27. [Google Scholar] [CrossRef]
- Viviroli, D.; Weingartner, R. The Hydrological Significance of Mountains: From Regional to Global Scale. Hydrol. Earth Syst. Sci. 2004, 8, 1017–1030. [Google Scholar] [CrossRef]
- Jain, S.; Srivastava, A.; Khadke, L.; Chatterjee, U.; Elbeltagi, A. Global-Scale Water Security and Desertification Management amidst Climate Change. Environ. Sci. Pollut. Res. 2024, 31, 58720–58744. [Google Scholar] [CrossRef]
- Jiang, L.-M.; Sattar, K.; Lü, G.-H.; Hu, D.; Zhang, J.; Yang, X.-D. Different Contributions of Plant Diversity and Soil Properties to the Community Stability in the Arid Desert Ecosystem. Front. Plant Sci. 2022, 13, 969852. [Google Scholar] [CrossRef]
- Bilgen, A.; Akıncı, Z.S.; Casellas, A.; Jongerden, J. Is the Glass Half Empty or Half Full? An Appraisal of the Four Decades of Turkey’s Southeastern Anatolia Project (GAP). In Tigris and Euphrates Rivers: Their Environment from Headwaters to Mouth; Springer: Cham, Switzerland, 2021; pp. 1581–1598. [Google Scholar]
- Atik, O.; Kadour, A.; Mahmoud, I.; Al Hasan, K.; Al Nabhan, A.; Jazieh, H.; Nijhawan, A.; Pianosi, F. Irrigation Water in Northwest Syria: Impact of the Recent Crisis and Drought. Water 2024, 16, 3101. [Google Scholar] [CrossRef]
- Mahmud, S.F. Opportunities and Challenges of Sustainable Agricultural Development in Iraq. Int. J. Social. Relev. Concern. 2021, 9, 12–24. [Google Scholar]
- Nouri, M.; Homaee, M.; Pereira, L.S.; Bybordi, M. Water Management Dilemma in the Agricultural Sector of Iran: A Review Focusing on Water Governance. Agric. Water Manag. 2023, 288, 108480. [Google Scholar] [CrossRef]
- Al-Ansari, N.; Abed, S.A.; Ewaid, S.H. Agriculture in Iraq. J. Earth Sci. Geotech. Eng. 2021, 11, 223–241. [Google Scholar] [CrossRef]
- World Bank Iraq: Country Water Resource Assistance Strategy: Addressing Major Threats to People’s Livelihoods. Available online: https://documents1.worldbank.org/curated/en/854951468337169489/pdf/600600PUB0ID181Mobile09780821386699.pdf (accessed on 17 April 2025).
- Nama, A.H.; Alwan, I.A.; Pham, Q.B. Climate Change and Future Challenges to the Sustainable Management of the Iraqi Marshlands. Environ. Monit. Assess. 2024, 196, 35. [Google Scholar] [CrossRef]
- Atesoglu, A.; Ayyildiz, E.; Karakaya, I.; Bulut, F.S.; Serengil, Y. Land Cover and Drought Risk Assessment in Türkiye’s Mountain Regions Using Neutrosophic Decision Support System. Environ. Monit. Assess. 2024, 196, 1046. [Google Scholar] [CrossRef]
- Serkendiz, H.; Tatli, H.; Kılıç, A.; Çetin, M.; Sungur, A. Analysis of Drought Intensity, Frequency and Trends Using the SPEI in Turkey. Theor. Appl. Climatol. 2024, 155, 2997–3012. [Google Scholar] [CrossRef]
- Şensoy, A.; Uysal, G.; Doğan, Y.O.; Civelek, H.S. The Future Snow Potential and Snowmelt Runoff of Mesopotamian Water Tower. Sustainability 2023, 15, 6646. [Google Scholar] [CrossRef]
- O’Neill, B. The Shared Socioeconomic Pathways (SSPs) and Their Extension and Use in Impact, Adaptation and Vulnerability Studies. In Proceedings of the 19th Conference on Global Economic Analysis, World Bank, Washington, DC, USA, 15–17 June 2016. [Google Scholar]
- Tebaldi, C.; Debeire, K.; Eyring, V.; Fischer, E.; Fyfe, J.; Friedlingstein, P.; Knutti, R.; Lowe, J.; O’Neill, B.; Sanderson, B. Climate Model Projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 2021, 12, 253–293. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Anders, J.; Schneider, C. Monitoring of Changes in Land Use/Land Cover in Syria from 2010 to 2018 Using Multitemporal Landsat Imagery and GIS. Land 2020, 9, 226. [Google Scholar] [CrossRef]
- Atesoglu, A.; Akturk, E.; Rasouli, A.; Erpay, S.; Ozel, H.B. Monitoring of Land-Cover/Land-Use Changes in Syria by Involving the Collect Earth Methodology Approach. Fresenius Environ. Bull. 2020, 29, 11032–11041. [Google Scholar]
- Eklund, L.; Degerald, M.; Brandt, M.; Prishchepov, A.V.; Pilesjö, P. How Conflict Affects Land Use: Agricultural Activity in Areas Seized by the Islamic State. Environ. Res. Lett. 2017, 12, 054004. [Google Scholar] [CrossRef]
- Doocy, S.; Lyles, E.; Delbiso, T.D.; Robinson, C.W.; The IOCC/GOPA Study Team. Internal Displacement and the Syrian Crisis: An Analysis of Trends from 2011–2014. Confl. Health 2015, 9, 33. [Google Scholar] [CrossRef]
- Morton, M.J.; Burnham, G.M. Iraq’s Internally Displaced Persons: A Hidden Crisis. JAMA 2008, 300, 727–729. [Google Scholar] [CrossRef]
- Woertz, E. Food Security in Iraq: Results from Quantitative and Qualitative Surveys. Food Secur. 2017, 9, 511–522. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Doronzo, D.; Ahmed, M. Types, Indications and Impact Evaluation of Sand and Dust Storms Trajectories in the Arabian Gulf. Sustainability 2017, 9, 1526. [Google Scholar] [CrossRef]
Data Name | Short Description | Main Source | Purpose/Target Logic |
---|---|---|---|
Global Ecological Zones | The Global Ecological Zones (GEZ) dataset, developed by the FAO, classifies global forests into major ecological types (e.g., tropical rainforest and boreal forest). | Food and Agriculture Organization of the United Nations (FAO) | Climate trends and variability |
Aridity Index | The United Nations Environment Programme (UNEP) defines drylands according to an Aridity Index (AI), which is the ratio of the average annual precipitation to the potential evapotranspiration. | European Commission, Joint Research Centre | |
Precipitation/Temperature | The products are derived from processing the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis of the global climate product. | Copernicus Climate Change Service | |
Land Cover and Land Use Change | The GLAD Global Land Cover and Land Use Change dataset quantifies land use/cover changes from 2000 to 2020 at a 30 m spatial resolution. | GLAD Global Land Cover and Land Use Change | Land Cover and Land Use Change (LCLUC) and gain/loss conversions |
Potential Evapotranspiration | The potential evapotranspiration (PET) products are derived from the available MODIS Global Terrestrial Evapotranspiration 8-Day Global 1 km time series. | MOD16A2 v006—MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid | Vegetation dynamics, climatic water demand, and Land Degradation Neutrality |
Water Deficit | The Water Deficit product is derived from processing MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m version to generate a time series of the Water Deficit. | ||
Normalized Difference Vegetation Index | The NDVI products are derived from the available Vegetation Indices 16-Day Global 250 m time series. | MOD13Q1 v006 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid | |
Land Productivity Dynamics | The dynamics in the land productivity indicator are related to changes in the health and productive capacity. |
Class | 2000 (ha) | 2020 (ha) | Change (ha) |
---|---|---|---|
True desert | 37,335,028.45 | 36,484,760.37 | −850,268.08 |
Semi-arid | 32,850,054.75 | 29,814,243.69 | −3,035,811.06 |
Dense short vegetation | 6,107,403.91 | 5,793,714.89 | −313,689.02 |
Tree cover | 225,247.12 | 247,365.85 | 22,118.73 |
Salt pan | 435,916.26 | 126,023.29 | −309,892.97 |
Wetland sparse vegetation | 545,022.67 | 167,500.93 | −377,521.74 |
Wetland dense short vegetation | 99,406.31 | 142,627.95 | 43,221.64 |
Wetland tree cover | 2726.20 | 2,712.03 | −14.16 |
Open surface water | 1,321,320.21 | 2,120,124.75 | 798,804.54 |
Snow/ice | 367.23 | 305.14 | −62.09 |
Cropland | 13,611,024.57 | 15,598,467.94 | 1,987,443.37 |
Built-up | 1,003,854.82 | 3,039,525.67 | 2,035,670.85 |
Ocean | − | − | − |
Total | 93,537,372.50 | 93,537,372.50 | 0.00 |
IRN (%) | IRQ (%) | SYR (%) | TUR (%) | |
---|---|---|---|---|
Persistent water loss | 0.025 | 0.949 | 0.011 | 0.013 |
Persistent water gain | 0.406 | 0.483 | 0.0103 | 0.099 |
Cropland gain from trees | 0.247 | 0.29 | 0.009 | 0.452 |
Cropland gain from wetland vegetation | 0.438 | 0.334 | 0.019 | 0.207 |
Cropland gain from other classes | 0.140 | 0.575 | 0.107 | 0.176 |
Cropland loss to trees | 0.422 | 0.447 | 0.011 | 0.119 |
Cropland loss to short vegetation/other classes | 0.152 | 0.455 | 0.165 | 0.226 |
Built-up gain from trees | 0.062 | 0.514 | - | 0.423 |
Built-up gain from crops | 0.152 | 0.389 | 0.111 | 0.346 |
Built-up gain from other classes | 0.169 | 0.476 | 0.061 | 0.281 |
2024 | Total (2016) | |||||||
---|---|---|---|---|---|---|---|---|
Unknown Class | Declining | Early Signs of Decline | Stable But Stressed | Stable | Increasing | |||
2016 | Unknown class | 0 | 0 | 0 | 5 | 0 | 0 | 5 |
Declining | 0 | 831,411 | 2,063,137 | 3,284,661 | 2,629,552 | 618,859 | 9,427,620 | |
Early signs of decline | 0 | 1,256,100 | 3,627,536 | 2,654,530 | 2,090,146 | 731,739 | 10,360,051 | |
Stable but stressed | 19 | 527,488 | 11,849,019 | 10,210,230 | 13,707,808 | 5,360,920 | 41,655,484 | |
Stable | 0 | 474,596 | 9,503,291 | 5,866,428 | 7,602,693 | 2,005,622 | 25,452,630 | |
Increasing | 14 | 98,930 | 1,655,257 | 1,031,840 | 1,455,806 | 2,399,523 | 6,641,370 | |
Total (2024) | 33 | 3,188,525 | 28,698,240 | 23,047,694 | 27,486,005 | 11,116,663 | 93,537,160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ateşoğlu, A.; Aydoğdu, M.H.; Yenigün, K.; Sanchez-Paus Díaz, A.; Marchi, G.; Bulut, F.Ş. Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin. Sustainability 2025, 17, 7513. https://doi.org/10.3390/su17167513
Ateşoğlu A, Aydoğdu MH, Yenigün K, Sanchez-Paus Díaz A, Marchi G, Bulut FŞ. Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin. Sustainability. 2025; 17(16):7513. https://doi.org/10.3390/su17167513
Chicago/Turabian StyleAteşoğlu, Ayhan, Mustafa Hakkı Aydoğdu, Kasım Yenigün, Alfonso Sanchez-Paus Díaz, Giulio Marchi, and Fidan Şevval Bulut. 2025. "Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin" Sustainability 17, no. 16: 7513. https://doi.org/10.3390/su17167513
APA StyleAteşoğlu, A., Aydoğdu, M. H., Yenigün, K., Sanchez-Paus Díaz, A., Marchi, G., & Bulut, F. Ş. (2025). Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin. Sustainability, 17(16), 7513. https://doi.org/10.3390/su17167513