Sustainable Extraction of Bioactive Compounds from Cocoa Shells Waste and Brewer’s Spent Grain Using a Novel Two-Stage System Integrating Ohmic-Accelerated Steam Distillation (OASD) and Supercritical CO2 Extraction (SSCO2)
Abstract
1. Introduction
2. Materials and Method
2.1. Material and Chemicals
2.2. Two-Stage Extraction System
2.3. Measurement and Quantification
2.3.1. HPLC
2.3.2. Quantification of Bioactive Materials
Quantification Assays
2.3.3. Confocal Laser Scanning Microscopy (CLSM)
2.3.4. Extraction Rate
3. Result and Discussion
3.1. Demonstration of Comprehensive Applicability: Analysis of Hard and Soft Cell Walls
3.2. HPLC-Based Identification and Compound-Specific Recovery Analysis
3.3. Imaging Analysis Provides Includes Qualitative and Quantitative Assessment of Antioxidant Release from Cells
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BSG | Brewers’ Spent Grain |
SSCO2 | Supercritical CO2 Extraction |
MAE | Microwave-Assisted Extraction |
UAE | Ultrasound-Assisted Extraction |
SWE | Subcritical Water Extraction |
OASD | Ohmic-Accelerated Steam Distillation |
HPLC | High-Performance Liquid Chromatography |
CLSM | Confocal Laser Scanning Microscopy |
pH | Potential of Hydrogen |
References
- Sánchez, M.; Ferreira-Santos, P.; Gomes-Dias, J.S.; Laca, A.; Rocha, C.M. Cascading recovery of added-value cocoa bean shell fractions through autohydrolysis treatments. Food Bioprocess Technol. 2025, 18, 965–978. [Google Scholar] [CrossRef]
- Dong, B.; Wang, Y.; Han, L.; Cui, G.; Wang, Y.; Su, Z. Active ingredients in waste of distillers’ grains and their resource utilization. Rev. Environ. Sci. Bio/Technol. 2025, 24, 191–215. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Gutiérrez-del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants 2021, 10, 1264. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Román-Aguirre, M.; Cruz-Alcantar, P.; Pérez-Urizar, J.T.; Saavedra-Leos, M.Z. Application of antioxidants as an alternative improving of shelf life in foods. Polysaccharides 2021, 2, 594–607. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef]
- Sun, M.; Zhuang, Y.; Gu, Y.; Zhang, G.; Fan, X.; Ding, Y. A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: Drying, extraction of bioactive compounds, and post-harvest preservation. Ultrason. Sonochem. 2024, 102, 106763. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Malik, K.; Moore, J.M.; Kamboj, B.R.; Malik, S.; Malik, V.K.; Arya, S.; Singh, K.; Mahanta, S.; Bishnoi, D.K. Valorisation of agri-food waste for bioactive compounds: Recent trends and future sustainable challenges. Molecules 2024, 29, 2055. [Google Scholar] [CrossRef]
- Teslić, N.; Pojić, M.; Stupar, A.; Mandić, A.; Mišan, A.; Pavlić, B. PhInd database–Polyphenol content in Agri-food by-products and trends in extraction technologies: A critical review. Food Chem. 2024, 458, 140474. [Google Scholar] [CrossRef] [PubMed]
- Wetchakama, P.; Sriwongruang, D.; Sae-Oui, P.; Siriwong, C. Characterization and utilization of cacao shell powder as a biofiller in natural rubber composite. J. Mater. Res. Technol. 2024, 30, 9130–9139. [Google Scholar] [CrossRef]
- Younes, A.; Karboune, S.; Liu, L.; Andreani, E.S.; Dahman, S. Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers 2023, 15, 745. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, Z.; Huang, H. Physical cell disruption technologies for intracellular compound extraction from microorganisms. Processes 2024, 12, 2059. [Google Scholar] [CrossRef]
- Nakib, M.E.; Aytaç, S. Ultrasonic-assisted extraction (uae) of bioactive compounds: Mechanisms, benefits, applications, and synergistic approaches. In Current Studies in Molecular Biology and Genetics; Taylor & Francis Group: Abingdon, UK, 2024; p. 11. [Google Scholar]
- Nonglait, D.L.; Gokhale, J.S. Review insights on the demand for natural pigments and their recovery by emerging microwave-assisted extraction (MAE). Food Bioprocess Technol. 2024, 17, 1681–1705. [Google Scholar] [CrossRef]
- Peñas, E.; Hernandez-Ledesma, B.; Martinez-Villaluenga, C. Microwave-assisted extraction of plant proteins. In Green Protein Processing Technologies from Plants: Novel Extraction and Purification Methods for Product Development; Springer: Berlin/Heidelberg, Germany, 2023; pp. 211–236. [Google Scholar] [CrossRef]
- Dashtian, K.; Kamalabadi, M.; Ghoorchian, A.; Ganjali, M.R.; Rahimi-Nasrabadi, M. Integrated supercritical fluid extraction of essential oils. J. Chromatogr. A 2024, 1733, 465240. [Google Scholar] [CrossRef]
- Herzyk, F.; Piłakowska-Pietras, D.; Korzeniowska, M. Supercritical extraction techniques for obtaining biologically active substances from a variety of plant byproducts. Foods 2024, 13, 1713. [Google Scholar] [CrossRef]
- Bryda, O.; Stadnytska, N. Extraction methods of extractive substances from medicinal plant raw materials: Advantages and limitations. Ann. Rom. Soc. Cell Biol. 2021, 25, 1737–1751. [Google Scholar]
- Zaky, A.A.; Akram, M.U.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. Bioactive compounds from plants and by-products: Novel extraction methods, applications, and limitations. AIMS Mol. Sci. 2024, 11, 150–188. [Google Scholar] [CrossRef]
- Dutzi, J.; Stoll, I.K.; Boukis, N.; Sauer, J. Screening of ten different plants in the process of supercritical water gasification. Sustain. Chem. Environ. 2024, 5, 100062. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s spent grains—Valuable beer industry by-product. Biomolecules 2020, 10, 1669. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.R. Genetic Dissection of Malt Quality in Barley: An Examination of Hydration Index and Metabolite QTL. Ph.D. Thesis, Montana State University, Bozeman, MT, USA, 2024. [Google Scholar]
- Usman, M.; Nakagawa, M.; Cheng, S. Emerging trends in green extraction techniques for bioactive natural products. Processes 2023, 11, 3444. [Google Scholar] [CrossRef]
- Franca-Oliveira, G.; Fornari, T.; Hernández-Ledesma, B. A review on the extraction and processing of natural source-derived proteins through eco-innovative approaches. Processes 2021, 9, 1626. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef]
- Srivastava, N.; Singh, A.; Kumari, P.; Nishad, J.H.; Gautam, V.S.; Yadav, M.; Bharti, R.; Kumar, D.; Kharwar, R.N. Advances in extraction technologies: Isolation and purification of bioactive compounds from biological materials. In Natural Bioactive Compounds; Elsevier: London, UK, 2021; pp. 409–433. [Google Scholar]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.-S. Advances in lipid extraction methods—A review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef]
- Rajpurohit, B.; Li, Y. Overview on pulse proteins for future foods: Ingredient development and novel applications. J. Future Foods 2023, 3, 340–356. [Google Scholar] [CrossRef]
- Ambriz-Pérez, D.L.; Luna-Avelar, K.D.; Gárate-Osuna, A.d.J.; Betancourt-Lozano, M.; Santos-Ballardo, D.U. Bioactive Compounds Extraction from Microalgae by Biotechnological Processes. In Bioactive Compounds Extraction from Marine Resources and Wastes; Springer: Berlin/Heidelberg, Germany, 2025; pp. 91–123. [Google Scholar] [CrossRef]
- Pai, S.; Hebbar, A.; Selvaraj, S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541. [Google Scholar] [CrossRef] [PubMed]
- Baier, A.K.; Rauh, C. Influence of Ohmic Heating on Food Bioactives. In Retention of Bioactives in Food Processing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 397–426. [Google Scholar] [CrossRef]
- Javed, T.; Oluwole-ojo, O.; Zhang, H.; Akmal, M.; Breikin, T.; O’Brien, A. System Design, Modelling, Energy Analysis, and Industrial Applications of Ohmic Heating Technology. Food Bioprocess Technol. 2024, 18, 2195–2217. [Google Scholar] [CrossRef]
- Rantaša, M.; Slaček, G.; Knez, Ž.; Marevci, M.K. Supercritical fluid extraction of cannabinoids and their analysis by liquid chromatography and supercritical fluid chromatography: A short review. J. CO2 Util. 2024, 86, 102907. [Google Scholar] [CrossRef]
- Knirsch, M.C.; Dos Santos, C.A.; de Oliveira Soares, A.A.M.; Penna, T.C.V. Ohmic heating–a review. Trends Food Sci. Technol. 2010, 21, 436–441. [Google Scholar] [CrossRef]
- Yazıcı, Ö.; Sevgili, L.M. Obtaining cumin (Cuminum Cymminum) essential oils by steam distillation. Part I: Investigation of operation parameters on essential oil yield and distribution of oil composition. J. Chem. Technol. Biotechnol. 2024, 99, 481–498. [Google Scholar] [CrossRef]
- Singh, A.P. Scope Of Ohmic Heating System in the Food Processing Industry. In Ohmic Heating Technology for Processing of Foods and Food Products; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 175–208. [Google Scholar]
- Mota, R.V.; da Silva, N.J.; Menezes, E.G.; de Carvalho, M.E.F.; Pinheiro, J.M.; da Silva, D.A.; Andrade, E.H.d.A.; de Carvalho Junior, R.N. Determination of process parameters, chemical composition and antioxidant activity of Calycolpus goetheanus (O. Berg) extract obtained by supercritical CO2. J. Supercrit. Fluids 2025, 216, 106443. [Google Scholar] [CrossRef]
- Getachew, A.T.; Jacobsen, C.; Sørensen, A.-D.M. Supercritical CO2 for efficient extraction of high-quality starfish (Asterias rubens) oil. J. Supercrit. Fluids 2024, 206, 106161. [Google Scholar] [CrossRef]
- Salleh, L.M.; Abel, S.E.R.; Zahedi, G.; Abd Rahman, R.; Nasir, H.M.; Fauaâ, S.A.S. Optimization of supercritical carbon dioxide extraction of Quercus infectoria oil. J. Teknol. (Sci. Eng.) 2015, 74, 79–86. [Google Scholar] [CrossRef]
- Syimir Fizal, A.N.; Hossain, M.S.; Zulkifli, M.; Khalil, N.A.; Abd Hamid, H.; Ahmad Yahaya, A.N. Implementation of the supercritical CO2 technology for the extraction of candlenut oil as a promising feedstock for biodiesel production: Potential and limitations. Int. J. Green Energy 2022, 19, 72–83. [Google Scholar] [CrossRef]
- Mradu, G.; Saumyakanti, S.; Sohini, M.; Arup, M. HPLC profiles of standard phenolic compounds present in medicinal plants. Int. J. Pharmacogn. Phytochem. Res. 2012, 4, 162–167. [Google Scholar]
- Olonimoyo, E.A.; Amradi, N.K.; Lansing, S.; Asa-Awuku, A.A.; Duncan, C.M. An Improved Underivatized, Cost-Effective, Validated Method for Six Short-Chain Fatty Organic Acids by High-Performance Liquid Chromatography. J. Chromatogr. Open 2024, 7, 100193. [Google Scholar] [CrossRef]
- Moravcová, P.; Schröterová, L.; Zíka, J.; Hošťálková, A.; Švec, F.; Šatínský, D. A UHPLC-DAD method for quantification of berberine and protoberberine alkaloids in herbal food supplements based on Berberis aristata extract and evaluation of their biological activity. J. Food Compos. Anal. 2024, 139, 107150. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Wu, H.-L.; Wang, T.; Fang, H.; Wang, X.-Z.; Khanthavong, S.; Keobountham, P.; Yu, R.-Q. Targeted metabolites analysis and variety discrimination of Wuyi rock tea by using a whole-process chemometric-assisted HPLC-DAD strategy. J. Food Compos. Anal. 2023, 121, 105365. [Google Scholar] [CrossRef]
- De Micco, V.; Aronne, G. Combined histochemistry and autofluorescence for identifying lignin distribution in cell walls. Biotech. Histochem. 2007, 82, 209–216. [Google Scholar] [CrossRef]
- Shen, C.; Chen, W.; Aziz, T.; Al-Asmari, F.; Alghamdi, S.; Bayahya, S.H.; Cui, H.; Lin, L. Effects of cold plasma pretreatment before different drying process on the structural and functional properties of starch in Chinese yam. Int. J. Biol. Macromol. 2024, 274, 133307. [Google Scholar] [CrossRef]
- Petri, A.; Alexandratou, E.; Yova, D. Assessment of natural antioxidants’ effect on PDT cytotoxicity through fluorescence microscopy image analysis. Lasers Surg. Med. 2022, 54, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Berkel Kasikci, M.z.; Guilois-Dubois, S.; Billet, K.; Jardin, J.; Guyot, S.; Morzel, M. Interactions between Salivary Proteins and Apple Polyphenols and the Fate of Complexes during Gastric Digestion. J. Agric. Food Chem. 2024, 72, 9179–9189. [Google Scholar] [CrossRef]
- Shrivastav, G.; Prava Jyoti, T.; Chandel, S.; Singh, R. Eco-friendly extraction: Innovations, principles, and comparison with traditional methods. Sep. Purif. Rev. 2025, 54, 241–257. [Google Scholar] [CrossRef]
- Sentkowska, A.; Ivanova-Petropulos, V.; Pyrzynska, K. What Can Be Done to Get More—Extraction of Phenolic Compounds from Plant Materials. Food Anal. Methods 2024, 17, 594–610. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, V.; Chopra, H.K.; Panesar, P.S. Extraction and characterization of phenolic compounds from mandarin peels using conventional and green techniques: A comparative study. Discov. Food 2024, 4, 60. [Google Scholar] [CrossRef]
- Baltacıoğlu, C.; Baltacıoğlu, H.; Okur, İ.; Yetişen, M.; Alpas, H. Recovery of phenolic compounds from peach pomace using conventional solvent extraction and different emerging techniques. J. Food Sci. 2024, 89, 1672–1683. [Google Scholar] [CrossRef]
- Carvalho, H.J.M.; Barcia, M.T.; Schmiele, M. Non-Conventional Starches: Properties and Potential Applications in Food and Non-Food Products. Macromol 2024, 4, 886–909. [Google Scholar] [CrossRef]
- Bai, X.; He, Y.; Quan, B.; Xia, T.; Zhang, X.; Wang, Y.; Zheng, Y.; Wang, M. Physicochemical properties, structure, and ameliorative effects of insoluble dietary fiber from tea on slow transit constipation. Food Chem. X 2022, 14, 100340. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, H.; Yang, Y.; Ping, Y.; Tian, H.; Gu, H.; Yang, L. Natural acidic deep eutectic solvent-mediated microwave-assisted simultaneous hydrodistillation, hydrolysis, and extraction for obtaining essential oils, gallic acid and ellagic acid from Liquidambar formosana leaves and fruits. Sustain. Chem. Pharm. 2025, 43, 101870. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Chen, Y.; Chen, J. Effects of acid treatment on the physicochemical and functional properties of wheat bran insoluble dietary fiber. Cereal Chem. 2022, 99, 343–354. [Google Scholar] [CrossRef]
- Pazo-Cepeda, M.V.; Aspromonte, S.G.; Alonso, E. Extraction of ferulic acid and feruloylated arabinoxylo-oligosaccharides from wheat bran using pressurized hot water. Food Biosci. 2021, 44, 101374. [Google Scholar] [CrossRef]
- Oliveira, T.; Caleja, C.; Raimundo, D.; Machado, S.; Santo, L.E.; Ferreira, I.; Oliveira, M.B.; Pereira, E.; Barros, L. Circular economy in the agri-food sector: Valorization studies of vegetable by-products. In Proceedings of the 5th International Electronic Conference on Foods, Online, 28–30 October 2024; MDPI: Basel, Switzerland, 2024. [Google Scholar]
- Sahu, C.K.; Vasanthkumar, S.; Bayineni, V.K.; Arora, A.; Kadeppagari, R.-K. Microwave and enzyme based green combinatorial process for the improved extraction of quercetin from rose onion peel. Food Biosci. 2025, 64, 105991. [Google Scholar] [CrossRef]
- Gupta, Y.; Beckett, L.E.; Sadula, S.; Vargheese, V.; Korley, L.T.; Vlachos, D.G. Bio-based molecular imprinted polymers for separation and purification of chlorogenic acid extracted from food waste. Sep. Purif. Technol. 2023, 327, 124857. [Google Scholar] [CrossRef]
- Franca, A.S.; Basílio, E.P.; Resende, L.M.; Fante, C.A.; Oliveira, L.S. Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake. Foods 2024, 13, 3935. [Google Scholar] [CrossRef]
- Stryjecka, M.; Kiełtyka-Dadasiewicz, A.; Michalak, M. Physico-Chemical Characteristics of Rosa canina L. Seeds and Determining Their Potential Use. Appl. Sci. 2024, 15, 168. [Google Scholar] [CrossRef]
- Gavarić, A.; Pastor, K.; Nastić, N.; Vidović, S.; Živanović, N.; Simin, N.; Duarte, A.R.C.; Vladić, J. Recovery of polyphenols from rosehip seed waste using natural deep eutectic solvents and ultrasonic waves simultaneously. Foods 2023, 12, 3655. [Google Scholar] [CrossRef] [PubMed]
- Vargas, V.; Saldarriaga, S.; Sánchez, F.S.; Cuellar, L.N.; Paladines, G.M. Effects of the spray-drying process using maltodextrin on bioactive compounds and antioxidant activity of the pulp of the tropical fruit açai (Euterpe oleracea Mart.). Heliyon 2024, 10, e33544. [Google Scholar] [CrossRef] [PubMed]
- Conrado, N.M.; dos Santos, P.N.A.; da Conceição Prudêncio Dutra, M.; Krause, L.C.; dos Santos Polidoro, A.; dos Santos Lima, M.; dos Santos, A.L.; Caramão, E.B. Energized Dispersive guided extraction (EDGE), a New Extractive Approach of Phenolics from Açaí (E. oleracea) seeds: Chemical characterization, antioxidant Properties, and Bioaccessibility of the extracts. Food Bioprocess Technol. 2025, 18, 605–617. [Google Scholar] [CrossRef]
- Pérez-Silva, A.; Peña-Mojica, E.; Ortega-Galeana, A.; López-Cruz, J.I.; Ledesma-Escobar, C.A.; Rivera-Rivera, M.; Paz-Gamboa, E. Maya Vanilla (Vanilla cribbiana Soto Arenas): A New Species in Commerce. Plants 2025, 14, 300. [Google Scholar] [CrossRef]
- Xu, L.; Liaqat, F.; Khazi, M.I.; Sun, J.; Zhu, D. Natural deep eutectic solvents-based green extraction of vanillin: Optimization, purification, and bioactivity assessment. Front. Nutr. 2024, 10, 1279552. [Google Scholar] [CrossRef] [PubMed]
- Joradon, P.; Rungsardthong, V.; Ruktanonchai, U.; Suttisintong, K.; Thumthanaruk, B.; Vatanyoopaisarn, S.; Uttapap, D.; Mendes, A.C. Extraction of bioactive compounds from Lion’s Mane mushroom by-product using supercritical CO2 extraction. J. Supercrit. Fluids 2024, 206, 106162. [Google Scholar] [CrossRef]
- Wang, H.; Deng, L.; Huang, G. Ultrasound-assisted extraction and value of active substances in Muxu. Ultrason. Sonochem. 2025, 113, 107220. [Google Scholar] [CrossRef] [PubMed]
- Gigi, A.; Praveena, U.; Pillai, P.S.; Ragavan, K.; Anandharamakrishnan, C. Advances and challenges in the fractionation of edible oils and fats through supercritical fluid processing. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70017. [Google Scholar] [CrossRef] [PubMed]
- Bhadange, Y.A.; Carpenter, J.; Saharan, V.K. A Comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega 2024, 9, 31274–31297. [Google Scholar] [CrossRef]
- Baskaran, K.; Radhakrishnan, M. High-pressure processing-assisted in-situ extraction of caffeine, chlorogenic acid, phenolic content, and antioxidant properties of green coffee bean. J. Food Process Eng. 2024, 47, e14551. [Google Scholar] [CrossRef]
- Lee, J.-E.; Jayakody, J.T.M.; Kim, J.-I.; Jeong, J.-W.; Choi, K.-M.; Kim, T.-S.; Seo, C.; Azimi, I.; Hyun, J.; Ryu, B. The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods 2024, 13, 3151. [Google Scholar] [CrossRef]
S.No | Compounds Have Been Extracted | Soxhlet Extraction Yield Reference Concentration (mg/L) | Extraction Yield (mg/L) from Two-Stage (OASD + SSCO2) | Extraction Rate for Two-Stage (OASD + SSCO2)(%) | S.NO | Compounds Have Been Extracted | Soxhlet Extraction Yield Reference Concentration (mg/L) | Extraction Yield (mg/L) from Two-Stage (OASD + SSCO2) | Extraction Rate for Two-Stage (OASD + SSCO2) (%) |
---|---|---|---|---|---|---|---|---|---|
1 | Caffeic Acid | 160.05 | 102.434 | 64% | 15 | Lecithin | 80.32 | 2.31 | 3% |
2 | Ferulic Acid | 162.70 | 132.017 | 82% | 16 | Phospholipids | 10.432 | 0.2202 | 2% |
3 | p-Coumaric Acid | 159.86 | 153.138 | 95% | 17 | Triglycerides | 1.0232 | 0.1024 | 10% |
4 | Gallic Acid | 160.56 | 150.929 | 94% | 18 | Coumarins | 8.921 | 0.9351 | 10% |
5 | Quercetin | 161.02 | 139.216 | 86% | 19 | Lignans | 8.021 | 0.921 | 11% |
6 | Kaempferol | 161.83 | 89.009 | 55% | 20 | Resveratrol | 9.123 | 0.713 | 7% |
7 | Syringic Acid | 1.21 | 0.88274 | 72% | 21 | Tocopherols E | 16.021 | 0.8672 | 5% |
8 | Vanillic Acid | 0.2001 | 0.01806 | 9% | 22 | Tocopherols K | 1.5988 | 0.08074 | 5% |
9 | Linoleic Acid, C18:2 | 1.942 | 1.11054 | 57% | 23 | Kaempferol | 10.432 | 0.7025 | 6% |
10 | Oleic Acid, C18:1 | 1.813 | 1.30248 | 72% | 24 | Apigenin | 10.324 | 0.201 | 1% |
11 | Palmitic Acid, C16:0 | 1.8342 | 1.42148 | 77.5% | 25 | Luteolin | 0.94532 | 0.0390 | 4% |
12 | Stearic Acid, C18:0 | 1.2932 | 0.3224 | 25% | 26 | Naringenin | 6.132 | 1.709 | 27% |
13 | Alpha-Linolenic Acid, C18:3 | 2.0121 | 0.05312 | 3% | 27 | Curcumin | 10.432 | 1.819 | 17% |
14 | Carotenoids | 15.432 | 7.432 | 49% |
Compound | Sample | Insoluble Fiber in Sample | Recovery Method | Recovery Rate | Reference |
---|---|---|---|---|---|
p-Coumaric acid | BSG | 15–30% | Two-stage (OASD + SSCO2) | 95% | |
Peach pomace | 14% [54] | High-pressure processing (HPP) | 21% | [53] | |
Gallic acid | BSG | 15–30% | Two-stage (OASD + SSCO2) | 94% | |
Liquidambar formosana leaves | 1–3% [55] | Microwave-assisted simultaneous hydrodistillation | 68% | [56] | |
Ferulic acid | BSG | 15–30% | Two-stage (OASD + SSCO2) | 82% | |
Wheat bran | 43% [57] | Microwave water extraction (PMWE) | 78% | [58] | |
Quercetin | BSG | 15–30% | Two-stage (OASD + SSCO2) | 87% | |
Onion peel | 14.2% [59] | MAE | 89% | [60] |
S.No. | Extracted Compounds | Soxhlet Extraction Yield Reference Concentration (mg/L) | Extraction Yield (mg/L) from Two-Stage (OASD + SSCO2) | Extraction Rate for Two-Stage (OASD + SSCO2)(%) | S.No. | Extracted Compounds | Soxhlet Extraction Yield Reference Concentration (mg/L) | Extraction Yield (mg/L) from Two-Stage (OASD + SSCO2) | Extraction Rate for Two-Stage (OASD + SSCO2) (%) |
---|---|---|---|---|---|---|---|---|---|
1 | Quercetin | 141 | 105.3 | 74% | 13 | Theobromine | 16.0 | 9.1232 | 57% |
2 | Catechin | 180 | 153 | 83% | 14 | Caffeine | 120 | 80.231 | 67% |
3 | Epicatechin | 16 | 1.2 | 7.5% | 15 | Theophylline | 1.64 | 1.01 | 61% |
4 | Ferulic acid | 1.3 | 0.8 | 62% | 16 | Oleic acid | 2.93 | 0.02931 | 1% |
5 | Caffeic acid | 121 | 60 | 50% | 17 | Linoleic acid | 1.27 | 0.05031 | 3% |
6 | Gallic acid | 131 | 120 | 93% | 18 | Palmitic acid | 1.24 | 0.2352 | 18% |
7 | Chlorogenic acid | 130 | 126 | 93% | 19 | Stearic acid | 1.36 | 0.0842 | 6% |
8 | Vanillin | 157 | 132 | 81% | 20 | β-Sitosterol | 1.25 | 0.0211 | 2% |
9 | Epicatechin | 1.68 | 0.30293 | 18% | 21 | Campesterol | 1.80 | 0.9783 | 54% |
10 | Cyanidin | 1.61 | 0.9213 | 57% | 22 | Stigmasterol | 1.67 | 0.0421 | 3% |
11 | Delphinidin | 1.60 | 0.91242 | 57% | |||||
12 | Methylxanthines | 1.62 | 0.73121 | 45% |
Compound | Sample | Insoluble Fiber in Sample | Recovery Method | Recovery Rate | Reference |
---|---|---|---|---|---|
Chlorogenic acid | Cocoa shells | 50–64% | Two-stage (OASD + SSCO2) | 94% | |
Spent coffee beans | 60–66% [62] | Solvents extraction (tetrahydrofuran, itaconic acid) | 92% | [61] | |
Gallic acid | Cocoa shells | 50–64% | Two-stage (OASD + SSCO2) | 93% | |
Rosehip seed waste | 62–66% [63] | Pretreatment with SSCO2 and ultrasound-assisted extraction (UAE) | 9.5% | [64] | |
Catechin | Cocoa shells | 50–64% | Two-stage (OASD + SSCO2) | 83% | |
Açaí (E. oleracea) | 59–65% [65] | Energized dispersive guided extraction (EDGE) | 27% | [66] | |
Vanillin | Cocoa shells | 50.1–64.1% | Two-stage (OASD + SSCO2) | 81% | |
Vanilla pods [67] | 60–71% | Deep eutectic solvent (NADES) | 43% | [68] |
Sample | Cell Wall | Antioxidants | Phenolic Acid | Polyphenolic Acid | |
---|---|---|---|---|---|
BSG | Before extraction (Area) | 4878.1 ± 2 | 7899.1 ± 5 | 6941.5 ± 5 | 4215.2 ± 3 |
After (Area) | 3054.2 ± 3 | 854.2 ± 3 | 612.4 ± 3 | 421.1 ± 2 | |
Cocoa shells | Before extraction (Area) | 4015.1 ± 2 | 3124.6 ± 1 | 3012.6 ± 5 | 2243.5 ± 1 |
After extraction (Area) | 3842.0 ± 3 | 842.5 ± 2 | 624.5 ± 8 | 567.5 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, H.-Y.I.; Zhang, X.; Wang, Y.; Miri, T.; Onyeaka, H. Sustainable Extraction of Bioactive Compounds from Cocoa Shells Waste and Brewer’s Spent Grain Using a Novel Two-Stage System Integrating Ohmic-Accelerated Steam Distillation (OASD) and Supercritical CO2 Extraction (SSCO2). Sustainability 2025, 17, 7373. https://doi.org/10.3390/su17167373
Chu H-YI, Zhang X, Wang Y, Miri T, Onyeaka H. Sustainable Extraction of Bioactive Compounds from Cocoa Shells Waste and Brewer’s Spent Grain Using a Novel Two-Stage System Integrating Ohmic-Accelerated Steam Distillation (OASD) and Supercritical CO2 Extraction (SSCO2). Sustainability. 2025; 17(16):7373. https://doi.org/10.3390/su17167373
Chicago/Turabian StyleChu, Hao-Yu Ivory, Xinyu Zhang, Yuxin Wang, Taghi Miri, and Helen Onyeaka. 2025. "Sustainable Extraction of Bioactive Compounds from Cocoa Shells Waste and Brewer’s Spent Grain Using a Novel Two-Stage System Integrating Ohmic-Accelerated Steam Distillation (OASD) and Supercritical CO2 Extraction (SSCO2)" Sustainability 17, no. 16: 7373. https://doi.org/10.3390/su17167373
APA StyleChu, H.-Y. I., Zhang, X., Wang, Y., Miri, T., & Onyeaka, H. (2025). Sustainable Extraction of Bioactive Compounds from Cocoa Shells Waste and Brewer’s Spent Grain Using a Novel Two-Stage System Integrating Ohmic-Accelerated Steam Distillation (OASD) and Supercritical CO2 Extraction (SSCO2). Sustainability, 17(16), 7373. https://doi.org/10.3390/su17167373