Recent Advances and Future Perspectives in Catalyst Development for Efficient and Sustainable Biomass Gasification: A Comprehensive Review
Abstract
1. Introduction
2. Catalyst Types and Material Design
2.1. Metal-Based Catalysts
2.2. Calcium-Based Catalysts
2.3. Natural Mineral Catalysts
2.4. Composite and Supported Catalysts
2.5. Waste-Derived Catalysts
3. Reaction Mechanisms and Structural Regulation
3.1. Catalytic Reaction Mechanisms
3.1.1. Tar Cracking and Reforming
- Adsorption and Primary Cracking
- 2.
- Aromatic Ring Opening and Deoxygenation
- 3.
- Radical Chain Reactions
3.1.2. Water–Gas Shift and Methane Reforming
- Water–Gas Shift (WGS) Reaction
- 2.
- Methane Reforming
3.2. Catalyst Structural Regulation and Optimization
3.2.1. Pore Structure and Specific Surface Area Regulation
3.2.2. Strong Metal–Support Interactions (SMSIs) and Alloy Effects
3.2.3. Nanoscale Dispersion and Crystal Phase Engineering
3.3. Catalyst Activation and Regeneration Strategies
3.3.1. Deactivation Mechanisms
3.3.2. Activation Strategies
3.3.3. Regeneration Methods
3.3.4. Post-Regeneration Performance Evaluation
4. Carbon-Neutral CO2 Conversion Mechanisms
4.1. In Situ CO2 Adsorption and Conversion
4.2. Integration with Carbon Capture and Storage (CCS)
4.3. Catalytic CO2 Reduction and Valorization
- (1)
- Ni-CaO-C dominates in H2 enrichment (highest among all catalysts).
- (2)
- CO2 is effectively suppressed (lowest concentration profile).
4.4. System Integration and Multi-Energy Synergy
4.5. Environmental Benefits and LCA
- (1)
- Developing multimetallic synergistic catalysts (e.g., Fe-Ni-Ca trimetallic systems) to enhance sintering resistance and poisoning tolerance;
- (2)
- Advancing gasification–electrolysis–chemical synthesis coproduct systems to maximize carbon utilization efficiency;
- (3)
- Implementing machine learning and digital twin technologies for dynamic process optimization;
- (4)
- Establishing standardized LCA methodologies to quantitatively assess carbon reduction benefits and economic viability.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, L.; Li, C.; Zhang, S.; Wang, S.; Li, B.; Cui, Z.; Tang, Y.; Hu, X. Distinct property of biochar from pyrolysis of poplar wood, bark, and leaves of the same origin. Ind. Crops Prod. 2023, 202, 117001. [Google Scholar] [CrossRef]
- Mansor, M.J.A.; Ibrahim, I.H.; Ideris, A.; Wantala, K.; Nguyen, V.C.; Abidin, S.Z. Recent study of transition bimetallic catalyst in biomass tar steam reforming for hydrogen-rich syngas: A comprehensive bibliometric analysis. Biomass Bioenergy 2025, 202, 108166. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- Ma, Q.; Ji, Q.; Chen, L.; Zhu, Z.; Tu, S.; Okonkwo, C.E.; Out, P.; Zhou, C. Multimode ultrasound and ternary deep eutectic solvent sequential pretreatments enhanced the enzymatic saccharification of corncob biomass. Ind. Crops Prod. 2022, 188, 115574. [Google Scholar] [CrossRef]
- Li, J.; Jiao, L.; Li, Z.; Yan, B.; Chen, G.; Ahmed, S. Investigation of coke deposition during catalytic cracking of different biomass model tar: Effect of microwave. Appl. Catal. A: Gen. 2021, 624, 118325. [Google Scholar] [CrossRef]
- Li, G.; Kim, S.; Han, S.H.; Chang, H.; Du, D.; Son, Y. Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biol. Biochem. 2018, 120, 212–221. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, G.; Mu, X.; Kong, L. From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. J. Environ. Manage. 2022, 322, 116087. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, R.; Ke, L.; Li, J.; Jayan, H.; El-Seedi, H.R.; Zou, X.; Guo, Z. Development of multifunctional metal-organic frameworks (MOFs)-based nanofiller materials in food packaging: A comprehensive review. Trends Food Sci. Technol. 2024, 154, 104771. [Google Scholar] [CrossRef]
- Gurusamy, S.; Dhanasekaran, S.; Liang, L.; Zhang, Y.; Yang, Q.; Li, Y.; Liu, X.; Zhang, H. Edible Fe2ZnO4 nanocomposite for extending shelf-life and preventing blue mold decay in apples. Food Control 2025, 171, 111111. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Beta, T.; Chai, Z.; Zhang, X.; Li, Y.; Huang, W. Effect of in vitro gastro-intestinal digestion on the phenolic composition and antioxidant capacity of Burdock roots at different harvest time. Food Chem. 2021, 358, 129897. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Yagoub, A.E.-G.A.; Chen, L.; Zhou, C. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind. Crops Prod. 2020, 149, 112357. [Google Scholar] [CrossRef]
- Wang, Y.; Shoaib, M.; Wang, J.; Lin, H.; Chen, Q.; Ouyang, Q. A novel ZIF-8 mediated nanocomposite colorimetric sensor array for rapid identification of matcha grades, validated by density functional theory. J. Food Compos. Anal. 2025, 137, 106864. [Google Scholar] [CrossRef]
- Ding, A.; Zhou, Q.; Wei, W.; Li, S.; Chen, H.; Zeng, F.; Zhang, Y.; Zhong, Z.; De Girolamo, A.; Zhang, L.; et al. Synergistic intensification of membrane reactor with biochar catalyst for efficient production of clean syngas from biomass gasification. Chem. Eng. J. 2025, 512, 162452. [Google Scholar] [CrossRef]
- Lin, H.; Duan, Y.; Man, Z.; Zareef, M.; Wang, Z.; Chen, Q. Quantitation of volatile aldehydes using chemoselective response dyes combined with multivariable data analysis. Food Chem. 2021, 353, 129485. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, H.; Chen, L.; Ren, M.; Fakayode, O.A.; Han, J.; Zhou, C. Efficient hydrogen evolution reaction performance using lignin-assisted chestnut shell carbon-loaded molybdenum disulfide. Ind. Crops Prod. 2023, 193, 116214. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, Y.; Wang, J.; Gan, L.; He, M.; Zhang, T.; Li, P.; Qiu, F. Preparation and application of Mg–Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage. Food Bioprod. Process. 2021, 126, 293–304. [Google Scholar] [CrossRef]
- Okonkwo, C.E.; Hussain, S.Z.; Onyeaka, H.; Adeyanju, A.A.; Nwonuma, C.O.; Bashir, A.A.; Farooq, A.; Zhou, C.; Shittu, T.D. Lignin polyphenol: From biomass to innovative food applications, and influence on gut microflora. Ind. Crops Prod. 2023, 206, 117696. [Google Scholar] [CrossRef]
- Ding, Q.; Sheikh, A.R.; Zhu, Y.; Zheng, Y.; Sun, N.; Luo, L.; Raynaldo, F.A.; Ma, H.; Liu, J. Preparation and Characterization of Ultrasound-Assisted Novel Peptide–Calcium Chelates from Nannocholoropsis oceanica. Food Bioprocess Technol. 2025, 18, 2820–2839. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, Z.; Zhang, T.; Chen, Q.; Qiu, F.; Peng, Y.; Tang, S. Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. Food Bioprod. Process. 2018, 111, 93–103. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Chen, L.; Yarley, O.P.N.; Zhou, C. Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crops Prod. 2021, 172, 114064. [Google Scholar] [CrossRef]
- Kang, W.; Lin, H.; Adade, S.Y.-S.S.; Wang, Z.; Ouyang, Q.; Chen, Q. Advanced sensing of volatile organic compounds in the fermentation of kombucha tea extract enabled by nano-colorimetric sensor array based on density functional theory. Food Chem. 2023, 405, 134193. [Google Scholar] [CrossRef]
- Muthusamy, S.; Rajalakshmi, K.; Ahn, D.-H.; Kannan, P.; Zhu, D.; Nam, Y.-S.; Choi, K.Y.; Luo, Z.; Song, J.-W.; Xu, Y. Spontaneous detection of F− and viscosity using a multifunctional tetraphenylethene-lepidine probe: Exploring environmental applications. Food Chem. 2025, 466, 142147. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Liaqat, F.; Khazi, M.I.; Liaqat, N.; Nawaz, M.Z.; Zhu, D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. Ind. Crops Prod. 2024, 216, 118759. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Z.; Jia, W.; Tai, K.; Xu, Y.; He, Y. Response Mechanism and Evolution Trend of Carbon Effect in the Farmland Ecosystem of the Middle and Lower Reaches of the Yangtze River. Agronomy 2024, 14, 2354. [Google Scholar] [CrossRef]
- Zahoor; Madadi, M.; Nazar, M.; Shah, S.W.A.; Li, N.; Imtiaz, M.; Zhong, Z.; Zhu, D. Green alkaline fractionation of sugarcane bagasse at cold temperature improves digestibility and delignification without the washing processes and release of hazardous waste. Ind. Crops Prod. 2023, 200, 116815. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Sun, Z.; Wang, D.; Liu, F.; Lin, L. In Vitro and In Situ Characterization of Psychrotrophic Spoilage Bacteria Recovered from Chilled Chicken. Foods 2023, 12, 95. [Google Scholar] [CrossRef]
- Wang, C.; He, G.; Meng, J.; Wang, S.; Kong, Y.; Jiang, J.; Hu, R.; Zhou, G. Improved lignocellulose saccharification of a Miscanthus reddish stem mutant induced by heavy-ion irradiation. Glob. Change Biol. Bioenergy 2020, 12, 1066–1077. [Google Scholar] [CrossRef]
- Kang, L.; Liang, Q.; Abdul, Q.; Rashid, A.; Ren, X.; Ma, H. Preparation technology and preservation mechanism of γ-CD-MOFs biaological packaging film loaded with curcumin. Food Chem. 2023, 420, 136142. [Google Scholar] [CrossRef]
- Huo, R.; Miao, X.; Cheng, H.; Chen, D.; Liu, Y.; Zhang, H.; Wang, H.; Xue, N.; Zhu, H.; Yin, J. A highly stable leaf-like Ni/Ca3AlO catalyst for hydrogen production from biomass gasification. Energy 2025, 316, 134638. [Google Scholar] [CrossRef]
- Chai, Y.; Wang, M.; Gao, N.; Duan, Y.; Li, J. Experimental study on pyrolysis/gasification of biomass and plastics for H2 production under new dual-support catalyst. Chem. Eng. J. 2020, 396, 125260. [Google Scholar] [CrossRef]
- Chan, F.L.; Tanksale, A. Review of recent developments in Ni-based catalysts for biomass gasification. Renew. Sustain. Energy Rev. 2014, 38, 428–438. [Google Scholar] [CrossRef]
- Azadvar, S.; Tavakoli, O.; Zarghami, R. Catalytic optimization in hydrogen production from co-gasification of canola meal and N95 filter mask through supercritical water: Products analysis and reaction pathway. Int. J. Hydrogen Energy 2025, 155, 150355. [Google Scholar] [CrossRef]
- Niu, Y.; Chi, Z.; Han, S.; Li, M.; Han, F. Analysis of the effects of Pr1-xCexCoO3/dolomite catalyst on energy saving and carbon reduction in biomass gasification for the production of hydrogen-rich syngas. J. Energy Inst. 2024, 117, 101766. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, S.; Zhang, H.; Liu, X.; Xiong, Y. High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni–Fe@Nanofibers/Porous carbon catalyst. Int. J. Hydrogen Energy 2019, 44, 26193–26203. [Google Scholar] [CrossRef]
- Cortazar, M.; Santamaria, L.; Lopez, G.; Alvarez, J.; Amutio, M.; Bilbao, J.; Olazar, M. Fe/olivine as primary catalyst in the biomass steam gasification in a fountain confined spouted bed reactor. J. Ind. Eng. Chem. 2021, 99, 364–379. [Google Scholar] [CrossRef]
- Yim, H.; Valizadeh, S.; Pyo, S.; Jang, S.-H.; Ko, C.H.; Khan, M.A.; Jeon, B.-H.; Lin, K.-Y.A.; Park, Y.-K. Hydrogen generation from gasification of woody biomass upon acid mine drainage sludge as a novel catalyst under an air medium. Fuel 2023, 338, 127243. [Google Scholar] [CrossRef]
- Lu, Y.; Jin, H.; Zhang, R. Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water. Carbon Resour. Convers. 2019, 2, 95–101. [Google Scholar] [CrossRef]
- Mo, Z.; He, Y.; Liu, J.; Tu, J.; Li, D.; Hu, C.; Zhang, Q.; Wang, K.; Wang, T. Biomass steam gasification for hydrogen-rich syngas production over fly ash-based catalyst pretreated by coupling of washing and calcination. Int. J. Hydrogen Energy 2024, 49, 164–176. [Google Scholar] [CrossRef]
- Xu, C.; Chen, S.; Soomro, A.; Sun, Z.; Xiang, W. Hydrogen rich syngas production from biomass gasification using synthesized Fe/CaO active catalysts. J. Energy Inst. 2018, 91, 805–816. [Google Scholar] [CrossRef]
- Ma, M.; Chen, Y.; Wang, X.; Wu, J.; Li, D.; Sang, W.; Xu, S. Promoting effect of calcium substitution of La-Fe based perovskites for enhanced cellulose and lignin biomass CO2 gasification. J. Energy Inst. 2025, 121, 102173. [Google Scholar] [CrossRef]
- Mohanty, R.; Mahanta, P.; Mahapatro, A.; Sharma, R.P. Catalytic Gasification of Pinewood Biomass in a Fluidized Bed Reactor with Dolomite, Limestone, and Activated Carbon: An Experimental Study. Energy 2025, 325, 136131. [Google Scholar] [CrossRef]
- Shahbaz, M.; Taqvi, S.A.A.; Inayat, M.; Inayat, A.; Sulaiman, S.A.; McKay, G.; Al-Ansari, T. Air catalytic biomass (PKS) gasification in a fixed-bed downdraft gasifier using waste bottom ash as catalyst with NARX neural network modelling. Comput. Chem. Eng. 2020, 142, 107048. [Google Scholar] [CrossRef]
- Mbeugang, C.F.M.; Li, B.; Xie, X.; Wei, J.; Isa, Y.M.; Kozlov, A.; Penzik, M. Catalysis/sorption enhanced pyrolysis-gasification of biomass for H2-rich gas production: Effects of various nickel-based catalysts addition and the combination with calcined dolomite. Fuel 2024, 372, 132195. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, Y. Biomass to hydrogen-rich syngas via tar removal from steam gasification with La1-XCeXFeO3/dolomite as a catalyst. Int. J. Hydrogen Energy 2022, 47, 21997–22009. [Google Scholar] [CrossRef]
- Tian, Y.; He, D.; Zeng, Y.; Hu, L.; Du, J.; Luo, Z.; Ma, W.; Zhang, Z. Experimental research on hydrogen-rich syngas yield by catalytic biomass air-gasification over Ni/olivine as in situ tar destruction catalyst. J. Energy Inst. 2023, 108, 101263. [Google Scholar] [CrossRef]
- Zhou, C.; Rosén, C.; Engvall, K. Use of in-bed primary catalyst in pressurized biomass fluidized bed gasification: Strategies for optimal use. Fuel 2025, 393, 134997. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Xu, D.; Zhang, H. Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking. Fuel 2022, 323, 124278. [Google Scholar] [CrossRef]
- Liu, H.; Tang, Y.; Ma, X.; Tang, J.; Yue, W.; Chen, W.; Sun, Z.; Deng, J. Red mud enhanced biomass gasification to produce syngas: Mechanism, simulation and economic evaluation. Chem. Eng. J. 2024, 499, 156208. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, X.; Zhang, C.; Yin, H.; Wang, A.; Wang, C. Functional characterization of bimetallic CuPdx nanoparticles in hydrothermal conversion of glycerol to lactic acid. J. Food Biochem. 2019, 43, 12931. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.; Zou, L.; Xiu, H.; Liu, T.; Zhang, X. Experimental study on hydrogen production from heavy tar in biomass gasification furnace catalyzed by carbon-based catalysts. Fuel 2024, 361, 130718. [Google Scholar] [CrossRef]
- Moustafa, A.; Abdelrahman, K.; Abdelhaleem, A.; Fahim, I.S. Valorization of plastic waste via hydrothermal liquefaction and hydrothermal gasification: Review and bibliometric analysis. J. Anal. Appl. Pyrolysis 2025, 189, 107112. [Google Scholar] [CrossRef]
- Ren, M.; Fakayode, O.A.; Kong, F.; Zhou, C.; Chen, L.; Fan, X.; Liang, J.; Li, H. Characterization of cellulose nanocrystals prepared by different delignification methods and application of ultra-light, hydrophobic aerogels as oil absorbent in food systems. Ind. Crops Prod. 2023, 197, 116653. [Google Scholar] [CrossRef]
- Mbeugang, C.F.M.; Mahmood, F.; Ali, M.; Tang, J.; Li, B. H2-rich syngas production and tar removal over biochar-supported Ni-Fe bimetallic catalysts during catalytic pyrolysis-gasification of biomass. Renew. Energy 2025, 243, 122547. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Y.; Du, J. Hydrogen production from catalytic steam-gasification of biomass using char and char-supported iron catalysts. J. Energy Inst. 2025, 120, 102031. [Google Scholar] [CrossRef]
- Shao, S.; Ma, L.; Li, X.; Zhang, H.; Xiao, R. Preparation of activated carbon with heavy fraction of bio-oil from rape straw pyrolysis as carbon source and its performance in the aldol condensation for aviation fuel as carrier. Ind. Crops Prod. 2023, 192, 115912. [Google Scholar] [CrossRef]
- Ruivo, L.; Oliveira, H.; Gomes, H.; Cruz, N.; Yaremchenko, A.; Tarelho, L.A.; Frade, J. Siderite/Concrete catalysts for H2-enriched gas production from biomass steam gasification. Energy Convers. Manag. 2022, 255, 115280. [Google Scholar] [CrossRef]
- Gurtner, D.; Kresta, M.; Maurer, M.; Haselwanter, J.; Hofmann, A.; Pfeifer, C. Self-Sustained Physical Activation at Pilot-Scale Integrated in a Commercial Wood Gasification Plant: A Path to Renewable Activated Carbon, PAH Removal and Electrical Efficiency Improvement. Fuel Process. Technol. 2025, 275, 108235. [Google Scholar] [CrossRef]
- Yu, P.; Yu, H.; Cheng, J.; Nie, J.; Liu, Y.; Niu, Q.; Yang, Q.; Liu, Y.; Ji, G. Enhancing Enzymatic Hydrolysis of Rice Straw by Acid-Assisted Mechanocatalytic Depolymerization Pretreatment. Agronomy 2024, 14, 2550. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Wu, P.; Yagoub, A.E.-G.A.; Chen, L.; Taiye, M.A.; Zhou, C. Pretreatment of sugarcane bagasse with deep eutectic solvents affect the structure and morphology of lignin. Ind. Crops Prod. 2021, 173, 114108. [Google Scholar] [CrossRef]
- Zheng, D.; Zou, Y.; Cobbina, S.J.; Wang, W.; Li, Q.; Chen, Y.; Feng, W.; Zou, Y.; Zhao, T.; Zhang, M.; et al. Purification, characterization and immunoregulatory activity of a polysaccharide isolated from Hibiscus sabdariffa L. J. Sci. Food Agric. 2017, 97, 1599–1606. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Xiao, L.; Tahir, H.E. Aroma profile and sensory characteristics of a sulfur dioxide-free mulberry (Morus nigra) wine subjected to non-thermal accelerating aging techniques. Food Chem. 2017, 232, 89–97. [Google Scholar] [CrossRef]
- Xu, G.; Yang, P.; Yang, S.; Wang, H.; Fang, B. Non-natural catalysts for catalytic tar conversion in biomass gasification technology. Int. J. Hydrogen Energy 2022, 47, 7638–7665. [Google Scholar] [CrossRef]
- Shao, S.; Sun, T.; Li, X.; Wang, Y.; Ma, L.; Liu, Z.; Wu, S. Preparation of heavy bio-oil-based porous carbon by pyrolysis gas activation and its performance in the aldol condensation for aviation fuel as catalyst carrier. Ind. Crops Prod. 2024, 218, 118963. [Google Scholar] [CrossRef]
- Gu, H.; Dong, Y.; Lv, R.; Huang, X.; Chen, Q. Rapid quantification of acid value in frying oil using iron tetraphenylporphyrin fluorescent sensor coupled with density functional theory and multivariate analysis. Food Qual. Saf. 2022, 6, fyac046. [Google Scholar] [CrossRef]
- Di, M.; Wang, M.; Jin, L.; Li, Y.; Hu, H. In situ catalytic cracking of coal pyrolysis tar coupled with steam reforming of ethane over carbon based catalyst. Fuel Process. Technol. 2020, 209, 106551. [Google Scholar] [CrossRef]
- Chai, Y.; Gao, N.; Wang, M.; Wu, C. H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. Chem. Eng. J. 2020, 382, 122947. [Google Scholar] [CrossRef]
- Fu, Z.; Aghdam, N.C.; Nekoeian, S.; He, J.; Cheng, L.; Liu, S.; Zhang, L.; Chao, J.; Wei, X.; Wang, R.; et al. Hot syngas cleanup for pilot two-stage fluidized bed steam-oxygen biomass gasification plant. Bioresour. Technol. 2025, 418, 131876. [Google Scholar] [CrossRef]
- Lysne, A.; Saxrud, I.; Snidaro, R.L.G.; Blekkan, E.A. Noble metal (Pt, Pd and Rh) promoted Ni-Co/Mg(Al)O catalysts for steam reforming of tar impurities from biomass gasification. J. Catal. 2024, 436, 115567. [Google Scholar] [CrossRef]
- Bu, Q.; Chen, K.; Morgan, H.M., Jr.; Liang, J.; Zhang, X.; Yan, L.; Mao, H. Thermal Behavior and Kinetic Study of the Effects of Zinc-Modified Biochar Catalyst on Lignin and Low-Density Polyethylene (LDPE) Co-Pyrolysis. Trans. ASABE 2018, 61, 1783–1793. [Google Scholar] [CrossRef]
- Wu, L.; Ma, H.; Yan, Z.; Xu, Q.; Li, Z. Improving catalyst performance of Ni-CaO-C to enhance H2 production from biomass steam gasification through induction heating technology. Energy Convers. Manag. 2022, 270, 116242. [Google Scholar] [CrossRef]
- Quan, C.; Wang, M.; Gao, N.; Yang, T.; Fan, X.; Miskolczi, N. Enhanced hydrogen production from biomass gasification by in situ CO2 capture with Ni/Ca-based catalysts. Biomass Bioenergy 2024, 182, 107110. [Google Scholar] [CrossRef]
- Śpiewak, K.; Czerski, G.; Soprych, P. Steam gasification of tire char supported by catalysts based on biomass ashes. Energy 2023, 285, 129378. [Google Scholar] [CrossRef]
- Wu, L.; Yan, Z.; Xie, J.; Xu, Q.; Li, Z. Enhancing the catalytic H2 production performance of magnetic Ni-Fe2O3-C catalyst in biomass steam gasification using electromagnetic induction heating. Bioresour. Technol. 2024, 402, 130844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, J.; Ye, L.; Li, S.; Su, Y.; Zhang, H. Investigation into biochar supported Fe-Mo carbides catalysts for efficient biomass gasification tar cracking. Chem. Eng. J. 2023, 454, 140072. [Google Scholar] [CrossRef]
- Peng, H.; Cai, W.; Huang, M.; Xia, S.; Zhu, L.; Fang, X.; Ma, Z. Advancing biomass gasification by the dry and wet torrefaction pretreatment. Energy 2025, 324, 136118. [Google Scholar] [CrossRef]
- Hussain, S.; Irmak, S.; Farid, M.U. Developing N, S-doped hierarchical porous carbon-supported Pt catalysts for hydrothermal gasification of woody biomass to hydrogen. Next Energy 2025, 8, 100257. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Jayan, H.; Gao, S.; Zhou, R.; Yosri, N.; Zou, X.; Guo, Z. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem. 2024, 448, 139051. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, C.; Ma, H.; Dong, Y.; Fu, J.; Lai, X.; Yagoub, A.E.-G.A.; Peng, W.; Ni, H. Antioxidant and lipase inhibitory activities of Camellia pollen extracts: The effect of composition and extraction solvents. All Life 2022, 15, 1304–1314. [Google Scholar] [CrossRef]
- Xu, D.; Xiong, Y.; Ye, J.; Su, Y.; Dong, Q.; Zhang, S. Performances of syngas production and deposited coke regulation during co-gasification of biomass and plastic wastes over Ni/γ-Al2O3 catalyst: Role of biomass to plastic ratio in feedstock. Chem. Eng. J. 2020, 392, 123728. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Zhu, H.; Chen, X.; Yu, G. In situ study on structure evolution and gasification reactivity of biomass char with K and Ca catalysts at carbon dioxide atmosphere. Carbon Resour. Convers. 2023, 6, 27–33. [Google Scholar] [CrossRef]
- Ruivo, L.C.M.; Pio, D.T.; Yaremchenko, A.A.; Tarelho, L.A.C.; Frade, J.R.; Kantarelis, E.; Engvall, K. Iron-based catalyst (Fe2-xNixTiO5) for tar decomposition in biomass gasification. Fuel 2021, 300, 120859. [Google Scholar] [CrossRef]
- Wang, J.; Deng, J.; Ren, S.; Qu, G.; Wang, C.; Guo, R.; Zhao, X. Acoustic wave propagation characteristics and spontaneous combustion warning of coal during oxidative warming of loose coal. Fuel 2025, 398, 135528. [Google Scholar] [CrossRef]
- McFarlan, A.; Maffei, N. Assessing a commercial steam methane reforming catalyst for tar removal in biomass gasification. Bioresour. Technol. Rep. 2022, 17, 100968. [Google Scholar] [CrossRef]
- Xu, M.-X.; Liu, Z.-S.; Zhang, X.-Y.; Di, J.-Y.; Meng, X.-X.; Zhao, L.; Lu, Q. Steam reforming of biomass gasification tar over Ni-based catalyst supported by TiO2-SiO2 composite. Fuel 2023, 343, 127934. [Google Scholar] [CrossRef]
- Gomes, H.G.; Lopes, D.V.; Moura, J.M.; Ribeiro, J.P.; Cruz, N.C.; Matos, M.A.; Tarelho, L.A. Biomass fly ash granules as a promising catalyst to promote producer gas quality from residual forest biomass steam gasification. Energy 2025, 319, 134889. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, C.; Cai, L.; Chen, Y.; Sun, W.; Zhu, Z. A gasification strategy to anchor Fe, Ni dual-sites on biomass-derived N, P co-doped porous carbon as an efficient bifunctional catalyst for Zn-air batteries. Sustain. Mater. Technol. 2024, 40, e00875. [Google Scholar] [CrossRef]
- Tuly, J.A.; Ma, H.; Zabed, H.M.; Janet, Q.; Godana, E.A.; Chen, G.; Ekumah, J.-N. Potentiality assessment of microbial action on combined agri-food industrial wastes in amino acids catabolism. J. Funct. Foods 2023, 100, 105377. [Google Scholar] [CrossRef]
- Li, S.; Guo, L. Stability and activity of a co-precipitated Mg promoted Ni/Al2O3 catalyst for supercritical water gasification of biomass. Int. J. Hydrogen Energy 2019, 44, 15842–15852. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Z.; Tang, A.; Huang, H.; Wei, D.; Yu, E.; Lu, W. Steam-gasification of biomass with CaO as catalyst for hydrogen-rich syngas production. J. Energy Inst. 2019, 92, 1641–1646. [Google Scholar] [CrossRef]
- Lee, C.S.; Conradie, A.V.; Lester, E. The integration of low temperature supercritical water gasification with continuous in situ nano-catalyst synthesis for hydrogen generation from biomass wastewater. Chem. Eng. J. 2023, 455, 140845. [Google Scholar] [CrossRef]
- Saquic, B.E.B.; Irmak, S.; Wilkins, M.; Smith, T. Effect of precursors on graphene supported platinum monometalic catalysts for hydrothermal gasification of biomass compounds to hydrogen. Fuel 2021, 290, 120079. [Google Scholar] [CrossRef]
- Benedetti, V.; Ail, S.S.; Patuzzi, F.; Cristofori, D.; Rauch, R.; Baratieri, M. Investigating the feasibility of valorizing residual char from biomass gasification as catalyst support in Fischer-Tropsch synthesis. Renew. Energy 2020, 147, 884–894. [Google Scholar] [CrossRef]
- Gong, C.; Meng, X.; Jin, C.; Yang, M.; Liu, J.; Sheng, K.; Pu, Y.; Ragauskas, A.; Ji, G.; Zhang, X. Green synthesis of cellulose formate and its efficient conversion into 5-hydroxymethylfurfural. Ind. Crops Prod. 2023, 192, 115985. [Google Scholar] [CrossRef]
- Rezende, R.F.; de Souza, G.B.; Mourão, L.C.; Dias, I.M.; Vidotti, A.D.; de Freitas, A.C.; Pavão, L.V.; García-Jarana, B.; Abelleira-Pereira, J.M.; Portela, J.R.; et al. Experimental, simulation and process design of hydrogen production from biomass-based products co-gasification in supercritical water. Fuel 2025, 404, 136316. [Google Scholar] [CrossRef]
- Sher, F.; Hameed, S.; Omerbegović, N.S.; Chupin, A.; Hai, I.U.; Wang, B.; Teoh, Y.H.; Yildiz, M.J. Cutting-edge biomass gasification technologies for renewable energy generation and achieving net zero emissions. Energy Convers. Manag. 2025, 323, 119213. [Google Scholar] [CrossRef]
- Karka, S.; Kamesh, R. Data analysis and machine learning aided integrated catalyst activity and process modelling for selective H2 production from biomass gasification. Biomass Bioenergy 2024, 187, 107291. [Google Scholar] [CrossRef]
- Wang, X.; Ma, S.; Duan, W.; Liu, C.; Liu, S.; Jiang, X.; Wang, H. Tar inhibition for hydrogen production from biomass gasification assisted by machine learning. Int. J. Hydrogen Energy 2025, 102, 790–799. [Google Scholar] [CrossRef]
- Chen, T.; Liu, C.; Meng, L.; Lu, D.; Chen, B.; Cheng, Q. Early warning of rice mildew based on gas chromatography-ion mobility spectrometry technology and chemometrics. Food Meas. 2021, 15, 1939–1948. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Miao, J.; Sun, H. Can Green Finance Effectively Promote the Carbon Emission Reduction in ‘Local-Neighborhood’ Areas?—Empirical Evidence from China. Agriculture 2022, 12, 1550. [Google Scholar] [CrossRef]
- Liao, M.; Wang, C.; Weng, J.; Xu, L.; Shu, R.; Du, Y.; Chen, Y.; Song, Q.; Tian, Z. H2-rich gas production from wood biomass air-steam gasification over a multifunctional Ni1.5Ca4.0Mn1.0Ox catalyst derived from biomaterial. Fuel Process. Technol. 2023, 249, 107848. [Google Scholar] [CrossRef]
Catalyst Type | Typical Active Components | H2 Yield (mmol·g−1) | Tar Conversion (%) |
---|---|---|---|
Metal-based catalysts | Ni, Fe, Co | 33.66 (Ni-Fe alloy) | 93.3 |
Calcium-based catalysts | CaO, dolomite (CaMg(CO3)2) | 26.40 (Fe-loaded CaO) | 80 |
Natural mineral catalysts | Olivine, red mud (Fe2O3/Al2O3) | 21.73 (Fe/olivine) | 88.7 |
Composite/supported catalysts | Ni-CaO-C, Ni-Fe@CNF/PCs | 80.36 (Ni-CaO-C) | 95 |
Waste-derived catalysts | Fe-Ni-loaded biochar, fly ash | 33.66 (Ni-Fe biochar) | >80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Wang, Q.; Wang, S. Recent Advances and Future Perspectives in Catalyst Development for Efficient and Sustainable Biomass Gasification: A Comprehensive Review. Sustainability 2025, 17, 7370. https://doi.org/10.3390/su17167370
Zhu M, Wang Q, Wang S. Recent Advances and Future Perspectives in Catalyst Development for Efficient and Sustainable Biomass Gasification: A Comprehensive Review. Sustainability. 2025; 17(16):7370. https://doi.org/10.3390/su17167370
Chicago/Turabian StyleZhu, Miaomiao, Qi Wang, and Shuang Wang. 2025. "Recent Advances and Future Perspectives in Catalyst Development for Efficient and Sustainable Biomass Gasification: A Comprehensive Review" Sustainability 17, no. 16: 7370. https://doi.org/10.3390/su17167370
APA StyleZhu, M., Wang, Q., & Wang, S. (2025). Recent Advances and Future Perspectives in Catalyst Development for Efficient and Sustainable Biomass Gasification: A Comprehensive Review. Sustainability, 17(16), 7370. https://doi.org/10.3390/su17167370