Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Laboratory Analysis
2.3. Pollution Indices
2.3.1. Soil
Geoaccumulation Index (Igeo)
2.3.2. Plants
Metal Accumulation Index (MAI)
Bioaccumulation Factor (BAF)
2.4. Statistical Analyses and Spatial Data Processing
3. Results
3.1. Basic Soil Properties
3.2. Heavy Metal Accumulation in Soil, Pleurozium schreberi, and Tree Leaves
4. Discussion
4.1. The Role of Urban Parks in Reducing Anthropogenic Pollution
4.2. Heavy Metal Accumulation in Urban Parks
4.3. Management of Tree Species Composition in Urban Parks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shabbaj, I.I.; Alghamdi, M.A.; Shamy, M.; Hassan, S.K.; Alsharif, M.M.; Khoder, M.I. Risk Assessment and Implication of Human Exposure to Road Dust Heavy Metals in Jeddah, Saudi Arabia. Int. J. Environ. Res. Public Health 2018, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.; Verma, A.; Jaiswal, P. Detrimental Effects of Heavy Metals in Soil, Plants, and Aquatic Ecosystems and in Humans. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Syst. 2021, 5, 27. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, C.; Li, T.; Xu, S.; Liu, L.; Ju, M. A Water Quality Management Strategy for Regionally Protected Water Through Health Risk Assessment and Spatial Distribution of Heavy Metal Pollution in 3 Marine Reserves. Sci. Total Environ. 2017, 599, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Adimalla, N.; Qian, H.; Nandan, M.J.; Hursthouse, A.S. Potentially Toxic Elements (PTEs) Pollution in Surface Soils in a Typical Urban Region of South India: An Application of Health Risk Assessment and Distribution Pattern. Ecotoxicol. Environ. Saf. 2020, 203, 111055. [Google Scholar] [CrossRef] [PubMed]
- Jafari, K.; Ghalhari, M.R.; Hayati, R.; Baboli, Z.; Zeider, K.; Ramírez-Andreotta, M.D.; Goudarzi, G. Using Date Palm (Phoenix dactylifera L.) as Bio-monitors of Environmental Quality for Exposure Assessment and Pollution Source Tracking. Atmos. Env. 2023, 313, 120055. [Google Scholar] [CrossRef]
- Khurshid, C.A.; Mahdi, K.; Ahmed, O.I.; Osman, R.; Rahman, M.; Ritsema, C. Assessment of Potentially Toxic Elements in the Urban Soil and Plants of Kirkuk City in Iraq. Sustainability 2022, 14, 5655. [Google Scholar] [CrossRef]
- Chang, C.Y.; Yu, H.Y.; Chen, J.J.; Li, F.B.; Zhang, H.H.; Liu, C.P. Accumulation of Heavy Metals in Leaf Vegetables from Agricultural Soils and Associated Potential Health Risks in the Pearl River Delta, South China. Environ. Monit. Assess. 2014, 186, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.; Tunç, E.; Thiele-Bruhn, S.; Çelik, Ö.; Tsegai, A.T.; Aslan, N.; Arslan, S. Status, Sources and Assessment of Potentially Toxic Element (PTE) Contamination in Roadside Orchard Soils of Gaziantep (Türkiye). Int. J. Environ. Res. Public Health 2023, 20, 2467. [Google Scholar] [CrossRef] [PubMed]
- Al-Dulaimi, T.K.; Al-Mallah, A.Y. Comprehensive Evaluation of Some Heavy Metals in Dust Deposited on Eucalyptus Tree Leaves and Their Health Effects in Erbil City, Northern Iraq. Iraqi Geol. J. 2024, 57, 267–287. [Google Scholar] [CrossRef]
- Elkaee, S.; Shirvany, A.; Moeinaddini, M.; Sabbagh, F. Assessment of Particulate Matter, Heavy Metals, and Carbon Deposition Capacities of Urban Tree Species in Tehran, Iran. Forests 2024, 15, 273. [Google Scholar] [CrossRef]
- Wu, L.; Fu, S.; Wang, X.; Chang, X. Mapping of Atmospheric Heavy Metal Deposition in Guangzhou City, Southern China Using Archived Bryophytes. Environ. Pollut. 2019, 265, 114998. [Google Scholar] [CrossRef] [PubMed]
- Polishchuk, A.I.; Antonyak, H.L. Accumulation of Heavy Metals in Gametophytes of the Epilithic Mosses. Stud. Biol. 2019, 13, 21–28. [Google Scholar] [CrossRef]
- Phaenark, C.; Seechanhoi, P.; Sawangproh, W. Metal Toxicity in Bryum coronatum Schwaegrichen: Impact on Chlorophyll Content, Lamina Cell Structure, and Metal Accumulation. Int. J. Phytoremediation 2024, 26, 1336–1347. [Google Scholar] [CrossRef] [PubMed]
- Klapstein, S.J.; Walker, A.K.; Saunders, C.H.; Cameron, R.P.; Murimboh, J.D.; O’Driscoll, N.J. Spatial Distribution of Mercury and Other Potentially Toxic Elements Using Epiphytic Lichens in Nova Scotia. Chemosphere 2020, 241, 125064. [Google Scholar] [CrossRef] [PubMed]
- Gatina, E.; Zinicovscaia, I.; Yushin, N.; Chaligava, O.; Frontasyeva, M.; Sharipova, A. Assessment of the Atmospheric Deposition of Potentially Toxic Elements Using Moss Pleurozium schreberi in an Urban Area: The Perm (Perm Region, Russia) Case Study. Plants 2024, 13, 2353. [Google Scholar] [CrossRef] [PubMed]
- Ilieva-Makulec, K.; Plichta, P.D.; Sierakowski, M. Biomonitoring of Heavy Metal Air Pollution in Warsaw Using Two Moss Species Pleurozium schreberi and Sphagnum palustre. Stud. Ecol. Bioethicae 2021, 19, 111–124. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, M.; Wu, Y.; Fu, Z.; Sun, G.; Shang, L.; Wang, P. Distribution Patterns and Sources of Heavy Metals in Soils from an Industry Undeveloped City in Southern China. Ecotoxicol. Environ. Saf. 2020, 205, 111115. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Alam, M.K.; Ahmed, M.W.; Parven, A.; Jubayer, M.F.; Megharaj, M.; Khan, M.S.I. Determination and Probabilistic Health Risk Assessment of Heavy Metals in Widely Consumed Market Basket Fruits from Dhaka City Bangladesh. Int. J. Environ. Anal. Chem. 2024, 104, 215–230. [Google Scholar] [CrossRef]
- Chen, H.; Yan, Y.; Hu, D.; Peng, L.; Wang, C. PM2.5-bound Heavy Metals in a Typical Industrial City of Changzhi in North China: Pollution Sources and Health Risk Assessment. Atmos. Environ. 2024, 321, 120344. [Google Scholar] [CrossRef]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as Bioindicator of Heavy Metal Pollution in Three European Cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Rahat, M.M.R.; Choudhury, T.R.; Nigar, R.; Liu, G.; Habib, A. Heavy Metal Contamination and Health Risk Assessment of Road Dust from Landfills in Dhaka-Narayanganj, Bangladesh. Emerg. Contam. 2024, 10, 100278. [Google Scholar] [CrossRef]
- Aguilera, A.; Bautista, F.; Gutiérrez-Ruiz, M.; Ceniceros-Gómez, A.E.; Cejudo, R.; Goguitchaichvili, A. Heavy Metal Pollution of Street Dust in the Largest City of Mexico, Sources and Health Risk Assessment. Environ. Monit. Assess. 2021, 193, 193. [Google Scholar] [CrossRef] [PubMed]
- Masri, S.; LeBrón, A.M.; Logue, M.D.; Valencia, E.; Ruiz, A.; Reyes, A.; Wu, J. Risk assessment of soil heavy metal contamination at the census tract level in the city of Santa Ana, CA: Implications for health and environmental justice. Environ. Sci. Process. Impacts 2021, 23, 812–830. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Evaluation of Properties of Soils and Plants; Institute of Environmental Protection: Warsaw, Polish, 1991; p. 333. (In Polish) [Google Scholar]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Kabata-Pendias, A. Trace Elements of Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2011; pp. 28–534. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust, treatise on geochemistry. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Liu, Y.J.; Zhu, Y.G.; Ding, H. Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a metal accumulation index (MAI). Environ. Pollut. 2007, 145, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Gąsiorek, M.; Kowalska, J.; Mazurek, R.; Pająk, M. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, R.; Chen, W.; Peng, C.; Markert, B. Effects of urbanization on heavy metal accumulation in surface soils, Beijing. J. Environ. Sci. 2018, 64, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Paquette, A.; Pellerin, S.; Poulin, M. Using plant community uniqueness and floristic quality assessment in management decision-making in an urban park setting. Urban For. Urban Green. 2023, 84, 127925. [Google Scholar] [CrossRef]
- Yaghoubi, S.Z.; Hosseini, S.A.; Bidhendi, G.N.; Sharafati, A. Assessment of heavy metals in contaminated soils of urban parks in Tehran, Iran. Int. J. Environ. Sci. Technol. 2022, 19, 12303–12314. [Google Scholar] [CrossRef]
- Zhu, R.C.; Ren, Z.J.; Parajuli, M.; Yuan, Y.Q.; Yang, Q.Y.; Yu, A.H. Assessment of potential ecological and health risk of potentially toxic elements in Roadside green areas and Urban parks. J. Environ. Chem. Eng. 2024, 13, 115045. [Google Scholar] [CrossRef]
- Dresler, S.; Wójciak, M.; Sowa, I.; Sawicki, J.; Strzemski, M.; Hawrylak-Nowak, B.; Hanaka, A. Accumulation ability of trace metals by silver birch leaves in areas contaminated by Zn–Pb ore processing: Effects of excessive trace metal accumulation on specialized metabolism. Chemosphere 2024, 362, 142719. [Google Scholar] [CrossRef] [PubMed]
- Dąbkowska-Naskręt, H.; Różański, S.; Bartkowiak, A. Forms and mobility of trace elements in soils of park areas from the city of Bydgoszcz, north Poland. Soil Sci. Annu. 2016, 67, 73–78. [Google Scholar] [CrossRef]
- Liang, L.; Zhu, Y.; Xu, X.; Hao, W.; Han, J.; Chen, Z.; Dong, X.; Qiu, G. Integrated insights into source apportionment and source-specific health risks of potential pollutants in urban park soils on the Karst Plateau, SW China. Expo Health 2023, 15, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.D.; Vo, T.Q.T.; Tran, Q.T.; Tran, T.A.; Tuong, T.T.H.; Nguyen, T.H.L.; Chau, T.N.Q.; Le, N.S.; Vo, T.M.T.; Le, X.T.; et al. Assessment of potentially toxic and rare earth elements in surface soils of Dong Nai, Vietnam. Environ. Geochem. Health 2025, 47, 31. [Google Scholar] [CrossRef] [PubMed]
- Dodd, M.; Durojaiye, A.; Dupuis, J. Distribution and In Vitro Bioaccessibility of Potentially Toxic Metals in Soils at Select Urban Parks at Eastern Canadian Cities. Soil Syst. 2024, 8, 123. [Google Scholar] [CrossRef]
- Bakker, M.I.; Vorenhout, M.; Sijm, D.T.H.M.; Kolloeffel, C. Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species. Environ. Toxicol. Chem. 1999, 18, 2289–2294. [Google Scholar] [CrossRef] [PubMed]
- Beckett, K.P.; Freer-Smith, P.; Taylor, G. Effective tree species for local air quality management. J. Arboric. 2000, 26, 12–19. [Google Scholar]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Nawrot, B.; Dzierżanowski, K.; Gawroński, S.W. Accumulation of particulate matter, PAHs and heavy metals in canopy of small-leaved lime. Environ. Prot. Nat. Resour. 2011, 49, 52–60. [Google Scholar]
- Xing, Y.; Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 2019, 201, 73–83. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P.; Wang, S.; Zhang, H. Tree distribution, morphology and modelled air pollution in urban parks of Hong Kong. J. Environ. Manag. 2019, 248, 109304. [Google Scholar] [CrossRef] [PubMed]
- Pecina, V.; Juřička, D.; Galiová, M.V.; Kynický, J.; Baláková, L.; Brtnický, M. Polluted brownfield site converted into a public urban park: A place providing ecosystem services or a hidden health threat? J. Environ. Manag. 2021, 291, 112669. [Google Scholar] [CrossRef] [PubMed]
Park | pH H2O | pH KCl | EC | TOC | TN | S | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|
(µS/cm) | g/kg | g/kg | g/kg | % | % | % | |||
Bednarskiego | 7.5 | 7.0 | 183.8 | 47.8 | 2.71 | 0.117 | 56.2 | 38.0 | 5.8 |
Lotników Polskich | 5.4 | 4.6 | 90.6 | 21.3 | 1.53 | 0.221 | 44.2 | 50.2 | 5.6 |
Planty Bieńczyckie | 6.4 | 5.7 | 107.0 | 25.9 | 1.99 | 0.253 | 28.2 | 65.0 | 6.8 |
Jordana | 6.8 | 6.3 | 165.0 | 38.9 | 2.80 | 0.343 | 43.4 | 51.6 | 5.0 |
Jerzmanowskich | 6.0 | 5.3 | 106.6 | 24.5 | 1.82 | 0.282 | 49.6 | 44.6 | 5.8 |
min. | 4.5 | 3.6 | 65.0 | 14.0 | 1.11 | 0.077 | 13.0 | 27.0 | 4.0 |
max. SD | 7.6 0.8 | 7.2 1.0 | 271.0 48.5 | 65.6 13.0 | 3.44 0.68 | 0.511 0.100 | 69.0 16.9 | 74.0 15.2 | 13.0 2.27 |
Park | Cd | Cr | Cu | Ni | Pb | Zn | Hg |
---|---|---|---|---|---|---|---|
mg/kg | |||||||
Soil | |||||||
Bednarskiego | 1.56 | 28.6 | 13.2 | 15.1 | 54.8 | 173.0 | 0.20 |
Lotników Polskich | 0.53 | 27.1 | 8.3 | 8.5 | 31.7 | 92.5 | 0.05 |
Planty Bieńczyckie | 0.58 | 27.2 | 13.1 | 16.0 | 47.2 | 148.5 | 0.06 |
Jordana | 0.89 | 25.5 | 20.4 | 15.9 | 57.9 | 162.4 | 0.19 |
Jerzmanowskich | 0.72 | 22.5 | 22.7 | 12.7 | 44.2 | 119.2 | 0.12 |
min. | 0.29 | 20.4 | 6.2 | 6.4 | 19.3 | 66.9 | 0.03 |
max. | 1.94 | 31.6 | 47.7 | 23.1 | 113.0 | 237.4 | 0.34 |
SD | 0.44 | 3.65 | 8.28 | 4.28 | 22.6 | 50.6 | 0.09 |
Pleurozium schreberi | |||||||
Bednarskiego | 1.04 | 21.1 | 14.8 | 10.0 | 22.4 | 130.3 | 0.12 |
Lotników Polskich | 1.05 | 14.6 | 30.6 | 8.3 | 20.8 | 159.8 | 0.08 |
Planty Bieńczyckie | 0.70 | 27.0 | 14.3 | 12.7 | 18.3 | 141.7 | 0.08 |
Jordana | 0.99 | 30.5 | 33.3 | 13.7 | 29.2 | 156.7 | 0.11 |
Jerzmanowskich | 1.02 | 18.9 | 27.3 | 8.6 | 24.7 | 122.3 | 0.14 |
min. | 0.44 | 11.9 | 11.6 | 5.7 | 13.3 | 105.7 | 0.05 |
max. | 1.92 | 38.1 | 39.0 | 19.7 | 34.1 | 214.4 | 0.22 |
SD | 0.28 | 6.8 | 9.2 | 3.2 | 5.9 | 29.9 | 0.03 |
Linden | |||||||
Bednarskiego | 0.14 | 3.4 | 7.9 | 1.1 | 2.1 | 28.0 | 0.07 |
Lotników Polskich | 0.20 | 2.0 | 18.6 | 2.5 | 1.4 | 48.3 | 0.07 |
Planty Bieńczyckie | 0.17 | 2.5 | 5.7 | 1.4 | 1.8 | 34.2 | 0.06 |
Jordana | 0.15 | 2.5 | 17.0 | 1.5 | 1.5 | 30.3 | 0.09 |
Jerzmanowskich | 0.18 | 2.2 | 13.6 | 3.5 | 1.5 | 34.2 | 0.07 |
min. | 0.11 | 1.5 | 5.4 | 0.6 | 1.0 | 23.8 | 0.05 |
max. | 0.23 | 3.9 | 25.2 | 5.6 | 2.4 | 60.1 | 0.10 |
SD | 0.04 | 0.6 | 7.2 | 1.4 | 0.5 | 10.4 | 0.01 |
Birch | |||||||
Lotników Polskich | 0.55 | 1.4 | 24.3 | 2.3 | 1.2 | 464.7 | 0.05 |
Planty Bieńczyckie | 0.24 | 2.0 | 5.3 | 4.0 | 0.4 | 142.8 | 0.06 |
Jordana | 0.32 | 2.3 | 18.2 | 1.1 | 1.3 | 229.9 | 0.05 |
min. | 0.17 | 1.0 | 5.3 | 0.8 | 0.4 | 142.8 | 0.03 |
max. | 0.86 | 2.7 | 27.5 | 4.0 | 1.6 | 569.7 | 0.06 |
SD | 0.26 | 0.6 | 7.8 | 1.3 | 0.5 | 170.2 | 0.01 |
Sycamore | |||||||
Bednarskiego | 0.30 | 2.4 | 6.4 | 0.9 | 0.8 | 60.7 | 0.05 |
Planty Bieńczyckie | 0.34 | 2.1 | 4.9 | 1.0 | 0.7 | 30.3 | 0.06 |
Jordana | 0.22 | 5.2 | 3.7 | 1.9 | 1.4 | 31.3 | 0.05 |
Jerzmanowskich | 0.27 | 3.3 | 5.9 | 1.3 | 1.1 | 47.8 | 0.05 |
min. | 0.10 | 1.9 | 3.7 | 0.7 | 0.4 | 25.4 | 0.04 |
max. SD | 0.51 0.12 | 5.2 1.1 | 7.4 1.2 | 1.9 0.4 | 1.4 0.4 | 103.4 25.4 | 0.07 0.01 |
Cd | Cr | Cu | Ni | Pb | Zn | Hg | |
---|---|---|---|---|---|---|---|
K-P | |||||||
Bednarskiego | 1.3 | −1.6 | −2.2 | −1.6 | 0.4 | 0.7 | 0.8 |
Lotników Polskich | −0.3 | −1.7 | −2.8 | −2.4 | −0.4 | −0.2 | −1.1 |
Planty Bieńczyckie | −0.1 | −1.7 | −2.2 | −1.4 | 0.0 | 0.4 | −1.1 |
Jordana | 0.5 | −1.8 | −1.5 | −1.5 | 0.5 | 0.6 | 0.7 |
Jerzmanowskich | 0.1 | −2.0 | −1.5 | −1.9 | 0.0 | 0.0 | 0.1 |
min. | −1.1 | −2.1 | −3.2 | −2.8 | −1.1 | −0.7 | −2.1 |
max. | 1.7 | −1.5 | −0.3 | −0.9 | 1.5 | 1.2 | 1.7 |
UCC | |||||||
Bednarskiego | 3.5 | −2.3 | −1.7 | −2.3 | 1.0 | 0.7 | 1.3 |
Lotników Polskich | 1.9 | −2.4 | −2.4 | −3.1 | 0.3 | −0.2 | −0.7 |
Planty Bieńczyckie | 2.1 | −2.4 | −1.7 | −2.1 | 0.6 | 0.5 | −0.6 |
Jordana | 2.7 | −2.4 | −1.1 | −2.2 | 1.2 | 0.7 | 1.2 |
Jerzmanowskich | 2.3 | −2.6 | −1.1 | −2.6 | 0.7 | 0.1 | 0.6 |
min. | 1.1 | −2.8 | −2.8 | −3.5 | −0.4 | −0.6 | −1.6 |
max. | 3.8 | −2.1 | 0.2 | −1.6 | 2.1 | 1.2 | 2.2 |
Local GB | |||||||
Bednarskiego | 7.7 | 2.1 | 2.3 | 9.0 | 3.0 | 3.2 | - |
Lotników Polskich | 6.1 | 2.0 | 1.7 | 8.2 | 2.2 | 2.4 | - |
Planty Bieńczyckie | 6.3 | 2.0 | 2.3 | 9.1 | 2.6 | 3.0 | - |
Jordana | 6.9 | 1.9 | 3.0 | 9.1 | 3.1 | 3.2 | - |
Jerzmanowskich | 6.5 | 1.8 | 3.0 | 8.7 | 2.6 | 2.6 | - |
min. | 5.3 | 1.6 | 1.3 | 7.8 | 1.5 | 1.9 | - |
max. | 8.0 | 2.3 | 4.2 | 9.7 | 4.1 | 3.7 | - |
Rhat | W | BF10 | Measure 2 | Measure 1 |
---|---|---|---|---|
Soil | ||||
1.960 | 0.0002 | 5355.256 | TOC | TN |
1.757 | 0.0002 | 383,975.578 | Zn | Pb |
2.539 | 2850.000 | 77,327.862 | Cd | Ni |
1.454 | 2850.000 | 107,551.599 | Hg | Cr |
Pleurozium schreberi | ||||
3.278 | 0.0003 | 4.218 × 106 | C | N |
2.609 | 0.0005 | 4.190 × 106 | Zn | Pb |
1.764 | 2850.000 | 6.731 × 109 | Cd | Ni |
2.893 | 2850.000 | 483,981.191 | Hg | Cr |
MAI | Species | Park |
---|---|---|
45.55 | Sycamore | Bednarskiego |
19.64 | Linden | |
48.62 | Pleurozium schreberi | |
95.58 | Birch | Lotników Polskich |
56.75 | Linden | |
50.26 | Pleurozium schreberi | |
21.40 | Linden | Planty Bieńczyckie |
20.42 | Sycamore | |
43.03 | Birch | |
47.22 | Pleurozium schreberi | |
13.68 | Linden | Jordana |
10.94 | Sycamore | |
55.58 | Birch | |
64.10 | Pleurozium schreberi | |
17.35 | Sycamore | Jerzmanowskich |
41.07 | Linden | |
48.50 | Pleurozium schreberi |
Hg | Zn | Pb | Ni | Cu | Cr | Cd | Species | Park |
---|---|---|---|---|---|---|---|---|
0.28 | 0.42 | 0.02 | 0.06 | 0.58 | 0.09 | 0.26 | Sycamore | Bednarskiego |
0.49 | 0.16 | 0.04 | 0.09 | 0.52 | 0.11 | 0.08 | Linden | |
0.72 | 0.77 | 0.43 | 0.69 | 1.21 | 0.74 | 0.71 | Pleurozium schreberi | |
1.07 | 5.02 | 0.04 | 0.26 | 3.19 | 0.06 | 1.20 | Birch | Lotników Polskich |
1.41 | 0.47 | 0.04 | 0.30 | 2.12 | 0.07 | 0.33 | Linden | |
1.73 | 1.79 | 0.66 | 0.98 | 3.38 | 0.55 | 1.90 | Pleurozium schreberi | |
0.14 | 0.24 | 0.07 | 0.08 | 0.47 | 0.09 | 0.34 | Linden | Planty Bieńczyckie |
0.57 | 0.16 | 0.01 | 0.08 | 0.42 | 0.08 | 0.62 | Sycamore | |
0.51 | 0.75 | 0.01 | 0.24 | 0.34 | 0.07 | 0.29 | Birch | |
1.68 | 0.88 | 0.54 | 0.88 | 1.17 | 0.98 | 1.16 | Pleurozium schreberi | |
0.61 | 0.18 | 0.03 | 0.10 | 0.73 | 0.10 | 0.19 | Linden | Jordana |
0.24 | 0.20 | 0.03 | 0.13 | 0.17 | 0.17 | 0.20 | Sycamore | |
0.41 | 1.62 | 0.01 | 0.08 | 1.06 | 0.10 | 0.42 | Birch | |
0.74 | 0.99 | 0.53 | 0.86 | 1.67 | 1.21 | 1.11 | Pleurozium schreberi | |
0.37 | 0.37 | 0.02 | 0.08 | 0.23 | 0.14 | 0.37 | Sycamore | Jerzmanowskich |
0.52 | 0.25 | 0.01 | 0.18 | 0.52 | 0.10 | 0.40 | Linden | |
1.03 | 1.22 | 0.68 | 0.75 | 1.41 | 0.85 | 1.31 | Pleurozium schreberi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pająk, M.; Gąsiorek, M.; Szostak, M.; Halecki, W. Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks. Sustainability 2025, 17, 6708. https://doi.org/10.3390/su17156708
Pająk M, Gąsiorek M, Szostak M, Halecki W. Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks. Sustainability. 2025; 17(15):6708. https://doi.org/10.3390/su17156708
Chicago/Turabian StylePająk, Marek, Michał Gąsiorek, Marta Szostak, and Wiktor Halecki. 2025. "Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks" Sustainability 17, no. 15: 6708. https://doi.org/10.3390/su17156708
APA StylePająk, M., Gąsiorek, M., Szostak, M., & Halecki, W. (2025). Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks. Sustainability, 17(15), 6708. https://doi.org/10.3390/su17156708