Technological Innovation in Engineering Education: A Psychopedagogical Approach for Sustainable Development
Abstract
1. Introduction
- (1)
- How can psychopedagogical principles inform the effective integration of digital technologies in engineering education?
- (2)
- In what ways can the adoption of educational technologies contribute to the sustainability goals, particularly in terms of inclusion, equity, and environmental impact?
- (3)
- What conceptual framework can be proposed to guide future empirical studies at the intersection of technological innovation, psychopedagogy, and sustainable engineering education?
2. Technology and Psychopedagogy in Engineering Education
2.1. Evolution of Engineering Teaching Methodologies in the Digital Age
2.2. Psychopedagogical Principles Applied to Educational Technology
2.3. Benefits and Challenges of the Digitalization of Higher Education in Engineering
3. Technological Strategies for Sustainable Learning
3.1. Artificial Intelligence and Personalization of Teaching: How to Adapt Content to the Pace and Individual Needs of Students
- Autonomy, through self-paced learning and personalized content paths;
- Competence, by offering immediate, specific, and constructive feedback;
- Relatedness, when AI tools are embedded in collaborative platforms that promote interaction and peer learning.
3.2. Virtual and Augmented Reality: Impact on Experiential Learning and Knowledge Retention
3.3. Gamification and Project-Based Learning: Greater Engagement and Development of Socio-Emotional Skills
3.4. Remote Laboratories and Digital Simulations: Accessibility and Reduction in Environmental Impact in Experimental Teaching
4. Psychopedagogical Challenges and Pathways Toward Sustainability
4.1. The Role of Cognitive Load and Motivation in Adapting to New Technologies
4.2. Digital Inclusion and Accessibility: Ensuring That Technological Innovation Benefits All Students
4.3. Mental Health and Well-Being in Digital Education: Challenges of Information Overload and Psychopedagogical Strategies for Its Mitigation
4.4. Sustainability in Technological Education: How to Balance Innovation, Efficiency, and Environmental Impact?
4.5. Interrelation Between Technology, Psychopedagogy, and Sustainability in Engineering Education
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwab, K. The Fourth Industrial Revolution; Crown Business: New York, NY, USA, 2017. [Google Scholar]
- Felder, R.M.; Brent, R. Teaching and Learning STEM: A Practical Guide, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Beagon, U.; Kövesi, K.; Tabas, B.; Nørgaard, B.; Lehtinen, R.; Bowe, B.; Spliid, C.M. Preparing engineering students for the challenges of the SDGs: What competences are required? Eur. J. Eng. Educ. 2023, 48, 1–23. [Google Scholar] [CrossRef]
- Valença, A.K.A. Metodologias ativas no ensino de engenharia: Uma revisão bibliométrica. Rev. Produção Online 2023, 23, 4982. [Google Scholar] [CrossRef]
- Esper, M.V.; Tomei, A.J.; Wendland, J. O papel da psicopedagogia na compreensão/mediação das intoxicações tecnológicas. Construção Psicopedag. 2023, 33, 8–15. [Google Scholar] [CrossRef]
- UNESCO. Agenda Educativa Digital 2021–2025; UNESCO: Paris, France, 2021; Available online: https://siteal.iiep.unesco.org/pt/bdnp/289/agenda-educativa-digital-2021-2025 (accessed on 18 June 2025).
- Mohamed Hashim, M.; Tlemsani, I.; Duncan Matthews, R. A sustainable university: Digital transformation and beyond. Educ. Inf. Technol. 2022, 27, 8961–8996. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alonso, J.C.; Ayres, P.; Sweller, J. Instructional Visualizations, Cognitive Load Theory, and Visuospatial Processing. In Visuospatial Processing for Education in Health and Natural Sciences; Castro-Alonso, J., Ed.; Springer: Cham, Switzerland, 2019; pp. 111–143. [Google Scholar] [CrossRef]
- Mayer, R.E. Multimedia Learning, 3rd ed.; Cambridge University Press: London, UK, 2021. [Google Scholar]
- Chen, J.; Du, X.; Jiang, D.; Guerra, A.; Nørgaard, B. A review study with a systematic approach: Pedagogical development for educators in higher engineering education. Eur. J. Eng. Educ. 2023, 49, 299–329. [Google Scholar] [CrossRef]
- Galarza, F.A.C.; Guzmán, I.L.A.; Pilamunga, M.E.M.; Bustamante, M.Á.V. La influencia de la tecnología en la educación superior. Un estudio desde la percepción de los estudiantes. Una revisión sistemática. Recimundo 2025, 9, 143–159. [Google Scholar] [CrossRef]
- Mendes, V.A.S.; Oliveira Tenório, H.; de Lucca Jardim Borges, L.; Calixto Carrijo, E.; Marra Alves, C. O uso de tecnologias digitais na aprendizagem ativa na engenharia. SciELO 2024. preprints. [Google Scholar] [CrossRef]
- UNESCO. SDG 4—Education 2030: Part II, Education for Sustainable Development Beyond 2019; UNESCO: Paris, France, 2019; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000366797.locale=en (accessed on 17 June 2025).
- Santos, R.A.; Roberg, V.; Pereira, N.R.; Luciano, S.F.M.; Anais do Seminário de Desenvolvimento, Conhecimento e Tecnologia. Desenvolvimento, Conhecimento e Tecnologia—Volume 2; Faculdade Senac Tubarão: Tubarão, Santa Catarina, Brazil, 2024; Available online: https://artigos.devtec.com.br/index.php/devtec/article/view/25 (accessed on 5 June 2025).
- Dos Santos, S.R. Aprendizagem Baseada em Projetos na formação de engenheiros: Estudo de caso sobre uma experiência curricular. Educ. Teor. E Prática 2023, 34, 67. [Google Scholar] [CrossRef]
- Du, X.Y.; Kolmos, A.; Ahmed, M.A.H.; Spliid, C.; Lyngdorf, N.; Ruan, Y.J. Impact of a PBL-based professional learning program in Denmark on the development of the beliefs and practices of Chinese STEM university teachers. Int. J. Eng. Educ. 2020, 36, 940–954. [Google Scholar]
- Lavado-Anguera, S.; Velasco-Quintana, P.-J.; Terrón-López, M.-J. Project-Based Learning (PBL) as an Experiential Pedagogical Methodology in Engineering Education: A Review of the Literature. Educ. Sci. 2024, 14, 617. [Google Scholar] [CrossRef]
- Bishop, J.; Verleger, M.A. Testing the Flipped Classroom with Model-Eliciting Activities and Video Lectures in a Mid-Level Undergraduate Engineering Course. In Proceedings of the IEEE Frontiers in Education Conference (FIE), Oklahoma City, OK, USA, 23–26 October 2013. [Google Scholar] [CrossRef]
- Bhat, S.; Raju, R.; Bhat, S.; D’Souza, R. Redefining quality in engineering education through the flipped classroom model. Procedia Comput. Sci. 2020, 172, 906–914. [Google Scholar] [CrossRef]
- Campos Fialho, B.; Costa, H.A.; Logsdon, L.; Fabricio, M.M. CAD and BIM Tools in Teaching of Graphic Representation for Engineering. In Proceedings of the XXII Conference of the Iberoamerican Society of Digital Graphics (SIGraDi), São Paulo, Brazil, 7–9 November 2018; Blucher: São Paulo, Brazil, 2018. [Google Scholar] [CrossRef]
- Wankat, P.C.; Oreovicz, F.S. Teaching Engineering; Purdue University Press: West Lafayette, IN, USA, 2015. [Google Scholar]
- Azevedo, V.; Lira, H.; Moraes, A.; Vasconcelos, B. Uso da realidade aumentada no ensino de projeto de engenharia civil. arq. urb 2023, 36, 67–79. [Google Scholar] [CrossRef]
- Krewer, V.M. A integração de tecnologias emergentes em ambientes virtuais de aprendizagem na era da educação a distância: Tendências e perspectivas futuras no ensino superior. Rev. Multidiscip. Ciências Gerais Focus 2024, 1, 42–54. [Google Scholar] [CrossRef]
- St-Hilaire, F.; Vu, D.D.; Frau, A.; Burns, N.; Faraji, F.; Potochny, J.; Kochmar, E. A new era: Intelligent tutoring systems will transform online learning for millions. arXiv 2022, arXiv:2203.03724. [Google Scholar]
- Soulikias, A.; Cucuzzella, C.; Nizar, F.; Hazbei, M.; Goubran, S. We gain a lot… but what are we losing? A critical reflection on the implications of digital design technologies. Open House Int. 2021, 46.3, 444–458. [Google Scholar] [CrossRef]
- Aguiar, L.R.; Bonilha, G.C.; Mendes, A.C.; de Araújo, B.M.; Barbosa, F.M. Aspectos do Pensamento Computacional Através da Cultura Maker e Aprendizagem Significativa: Um estudo de caso com mulheres iniciantes em cursos de tecnologia da informação. In Anais do XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024); Sociedade Brasileira de Computação: Porto Alegre, Brazil, 2024; pp. 3183–3190. [Google Scholar] [CrossRef]
- Ariza, J.A. Bringing active learning, experimentation, and student-created videos in engineering: A study about teaching electronics and physical computing integrating online and mobile learning. Comput. Appl. Eng. Educ. 2024, 31, 1723–1749. [Google Scholar] [CrossRef]
- Sedubun, S.; Nurhayati, N. Exploring the Efficacy of Project-Based Learning in English Language Teaching: A Literature Review. EDUKASIA J. Pendidik. Pembelajaran 2024, 5, 1089–1092. [Google Scholar] [CrossRef]
- Tang, A. Implementing project-based language learning with adult multilingual learners of English. WAESOL Educ. 2023, 48, 20–26. Available online: https://educator.waesol.org/index.php/WE/article/view/24 (accessed on 5 June 2025).
- Da Silva Beraldo, A.L.; De Oliveira, T.; Stringhini, D. Laboratórios remotos e virtuais no Brasil com foco no ensino: Uma revisão sistemática da literatura. RENOTE 2021, 19, 330–340. [Google Scholar] [CrossRef]
- Silva, J.B.; Bilessimo, S.M.S.; Scheffer, G.R.; Nardi da Silva, I. Laboratórios Remotos como Alternativa para Atividades Práticas em Cursos na Modalidade EAD. EaD Em Foco 2020, 10, 150. [Google Scholar] [CrossRef]
- Maia, V.O.; Freire, S. A diferenciação pedagógica no contexto da educação inclusiva. Rev. Exitus 2020, 10, 1–29. [Google Scholar] [CrossRef]
- Bond, M.; Zawacki-Richter, O.; Nichols, M. Revisiting five decades of educational technology research: A content and authorship analysis of the British Journal of Educational Technology. Br. J. Educ. Technol. 2019, 50, 12–63. [Google Scholar] [CrossRef]
- Filho, M.A.S.A.; Ferreira, A.M.; Oliveira, C.X.; Boechat, G.P.F.; Carmo, J.P.G. Educação híbrida: Explorando a combinação de metodologias ativas presenciais e tecnologia no currículo. Cuad. Educ. Desarro. 2024, 16, e4891. [Google Scholar] [CrossRef]
- Santos Domingues, A.L.; Rossetto, H.H.P.; Junior, O.P.; Carvalho, D.F. Aprimorando o ensino superior por meio da avaliação formativa online: Estratégias e implementação. Rev. Prod. Educ. Pesqui. Ensino 2024, 8, 1589–1607. Available online: https://seer.uenp.edu.br/index.php/reppe/article/view/1555 (accessed on 4 June 2025).
- Schmid, M.; Brianza, E.; Mok, S.Y.; Petko, D. Running in circles: A systematic review of reviews on technological pedagogical content knowledge (TPACK). Comput. Educ. 2024, 214, 105024. [Google Scholar] [CrossRef]
- Nikou, S.A.; Economides, A.A. Mobile-Based Assessment: Integrating acceptance and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Comput. Hum. Behav. 2017, 68, 83–95. [Google Scholar] [CrossRef]
- Gašević, D.; Tsai, Y.S.; Dawson, S.; Pardo, A. How do we start? An approach to learning analytics adoption in higher education. Int. J. Inf. Learn. Technol. 2019, 36, 342–353. [Google Scholar] [CrossRef]
- Portillo, S.; Castellanos, L.; Reynoso, Ó.; Gavotto, O. Enseñanza remota de emergencia ante la pandemia Covid-19 en Educación Media Superior y Educación Superior. Propósitos Represent. 2020, 8, e589. [Google Scholar] [CrossRef]
- Chen, X.; Zou, D.; Xie, H.; Wang, F.L. Past, present, and future of smart learning: A topic-based bibliometric analysis. Int. J. Educ. Technol. High. Educ. 2021, 18, 2. [Google Scholar] [CrossRef]
- Santos, C.M.; Assumpção, G.S.; Castro, A.C. Dispositivos Educacionais, Tecnologias Digitais e os Desafios do Cenário de Transição para um Ensino Híbrido nas Engenharias. Rev. Humanid. Inov. 2023, 9, 32–44. Available online: https://www.researchgate.net/publication/369788228 (accessed on 5 June 2025).
- Selwyn, N. Is Technology Good for Education? John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sailer, M.; Maier, R.; Berger, S.; Kastorff, T.; Stegmann, K. Learning Activities in Technology-Enhanced Learning: A Systematic Review of Meta-Analyses and Second-Order Meta-Analysis in Higher Education. Learn. Individ. Differ. 2024, 112, 102446. [Google Scholar] [CrossRef]
- Zawacki-Richter, O.; Marín, V.I.; Bond, M.; Gouverneur, F. Systematic review of research on artificial intelligence applications in higher education—Where are the educators? Int. J. Educ. Technol. High. Educ. 2019, 16, 39. [Google Scholar] [CrossRef]
- Cuban, L. Reforming the Grammar of Schooling Again and Again. Am. J. Educ. 2020, 126, 665–671. [Google Scholar] [CrossRef]
- Malta, D.P.L.N.; Santos, S.M.A.V.; Carvalho, E.O.; Sacramenta, G.A.O.; Silva, M.R.; Sacramenta, M.S.; Barp, O.C.; Rodrigues, S.C. Inteligência artificial e suas implicações na personalização do ensino: Desafios e oportunidades. Cuad. Educ. Desarro. 2025, 17, e7372. [Google Scholar] [CrossRef]
- Souza, A.P.S.; Conceição, C.J.; Pancoto, M.A.; Cecote, N.Q.B.; Pedra, R.R.; Oliveira, R.M.S.; Pinão, V.R.Z.; Gomes, W.T. Personalização da aprendizagem com inteligência artificial: Como a IA está transformando o ensino e o currículo. Rev. Aracê 2024, 6, 5816–5831. [Google Scholar] [CrossRef]
- Okonkwo, C.W.; Ade-Ibijola, A. Python-bot: A chatbot for teaching python programming. Eng. Lett. 2020, 29, 1. Available online: https://openurl.ebsco.com/EPDB%3Agcd%3A6%3A15007126/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A148993113&crl=c&link_origin=scholar.google.com (accessed on 5 June 2025).
- Sajja, R.; Sermet, Y.; Cikmaz, M.; Cwiertny, D.; Demir, I. Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education. Information 2024, 15, 596. [Google Scholar] [CrossRef]
- Silva Franqueira, A.; Malta, D.P.D.L.N.; dos Santos, F.J.; de Almeida, G.A.; da Silva, L.V.; da Cruz Silva, M.; Woodcock, Z.S.P. Inteligência artificial na personalização da aprendizagem. Obs. Econ. Latinoam. 2024, 22, e4101. [Google Scholar] [CrossRef]
- Sweller, J. Cognitive Load Theory and Teaching English as a Second Language to Adult Learners. Contact Mag. 2017, 43, 10–14. Available online: http://contact.teslontario.org/wp-content/uploads/2017/05/Sweller-CognitiveLoad.pdf (accessed on 5 June 2025).
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 2020, 61, 101860. [Google Scholar] [CrossRef]
- Tang, Y.; Hare, R. Combining gamification and intelligent tutoring systems in a serious game for engineering education. arXiv 2023, arXiv:2305.16568. [Google Scholar] [CrossRef]
- Möller, M.; Nirmal, G.; Fabietti, D.; Stierstorfer, Q.; Zakhvatkin, M.; Sommerfeld, H.; Schütt, S. Revolutionising distance learning: A comparative study of learning progress with AI-driven tutoring. arXiv 2024, arXiv:2403.14642. [Google Scholar] [CrossRef]
- Silva, M.C.F.; Saraiva, A.C.G.T.; Malta, D.P.L.N.; Silva, J.E.C.; Silva, R.F.; Santos, S.A. A integração de inteligência artificial na personalização do ensino: Um novo paradigma para a educação básica. Rev. Aracê 2024, 6, 5956–5972. [Google Scholar] [CrossRef]
- Pedrosa, S.M.P.A.; Zappala-Guimarães, M.A. Realidade virtual e realidade aumentada: Refletindo sobre usos e benefícios na educação. Rev. Educ. E Cult. Contemp. 2019, 16, 123–146. Available online: https://mestradoedoutoradoestacio.periodicoscientificos.com.br/index.php/reeduc/article/view/6258 (accessed on 5 June 2025). [CrossRef]
- Anjos, F.E.V.d.; Martins, A.d.O.; Rodrigues, G.S.; Sellitto, M.A.; Silva, D.O.d. Boosting Engineering Education with Virtual Reality: An Experiment to Enhance Student Knowledge Retention. Appl. Syst. Innov. 2024, 7, 50. [Google Scholar] [CrossRef]
- Matos, C.C.; Coutinho, D.J.G. Desafios educacionais: A resistência do professor às novas tecnologias e a necessidade de capacitação. Rev. Ibero-Am. Humanidades Ciências Educ. 2024, 10, 1069–1079. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Dede, C.J.; Jacobson, J.; Richards, J. Introduction: Virtual, Augmented, and Mixed Realities in Education. In Virtual, Augmented, and Mixed Realities in Education; Liu, D., Dede, C., Huang, R., Richards, J., Eds.; Springer: Singapore, 2017; pp. 1–16. [Google Scholar] [CrossRef]
- França, C.R.; da Silva, T. A Realidade Virtual e Aumentada e o Ensino de Ciências. Educitec-Rev. Estud. E Pesqui. Sobre Ensino Tecnológico 2019, 5, 193–215. Available online: https://sistemascmc.ifam.edu.br/educitec/index.php/educitec/article/view/414 (accessed on 9 June 2025). [CrossRef]
- Luburić, N.; Slivka, J.; Dorić, L.; Prokić, S.; Kovačević, A. A framework for designing software engineering project-based learning experiences based on the 4 C/ID model. Educ. Inf. Technol. 2025, 30, 1947–1977. [Google Scholar] [CrossRef]
- Silva, C.R.T.; Vieira, G.; da Silva Filho, G.L.; Costa, G.S.D.S.; Gomes, I.S.R.; Miranda, M.M.C.; Rosa, Z.A. O uso da gamificação como estratégia no design instrucional. Rev. Ibero-Am. Humanidades Ciências Educ. 2024, 10, 4168–4172. [Google Scholar] [CrossRef]
- Teixeira, R.L.P.; Silva, P.C.D.; de Araújo Brito, M.L. Gamificação para o ensino de engenharia no contexto da indústria 4.0: Metodologia estratégica para a motivação dos estudantes. Rev. Casos Consult. 2021, 12, e23964. [Google Scholar]
- Nemer, E.G.; Ramirez, R.A.; Frohmut, B.D.F.; Bergamo, R.O.C. Um estudo de caso sobre o uso de gamificação e da realidade virtual na educação profissional. Rev. REFAS-Fatec Zona Sul 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Santos, S.M.A.V.; Teixeira, M.L.L.D.; Silva, K.G.D.; Pereira, M.G.; Scholl, M.; Felicio, M.L.; Silva, W.L. Metodologias ativas: Como a gamificação, sala de aula invertida, e aprendizagem baseada em projetos se beneficiam das tecnologias digitais. Contrib. A Las Cienc. Soc. 2024, 17, e10386. [Google Scholar] [CrossRef]
- Freire, E.F.S.; Santos, R.P.; Silva, S.V. Gamificação em engenharia de software: Evidências do processo de ensino-aprendizagem. Educ. Temática Digit. 2024, 26, e023003. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=9318027 (accessed on 5 June 2025).
- Peng, J.; Yuan, B.; Sun, M.; Jiang, M.; Wang, M. Computer-based scaffolding for sustainable project-based learning: Impact on high- and low-achieving students. Sustainability 2022, 14, 12907. [Google Scholar] [CrossRef]
- Moura, L.B.A.F.; Bossi, L.A.O.; Salume, P.K. Gamificação: Sua aplicação na educação e as implicações para o contexto do ensino de engenharia. Rev. Ensino Eng. 2021, 40, 128–136. Available online: https://revista.abenge.org.br/index.php/abenge/article/view/1790/1023 (accessed on 9 June 2025).
- Rezende, A.A.; Carrasco, E.; Silva-Salse, À. Aprendizagem baseada em jogos e gamificação como instrumentos para o desenvolvimento do pensamento crítico na matemática: Uma revisão teórica. Rev. Estud. Em Educ. Divers. 2022, 3, 1–18. [Google Scholar] [CrossRef]
- Silva, J.B.; Sales, G.L.; Castro, J.B. Gamificação como estratégia de aprendizagem ativa no ensino de Física. Rev. Bras. Ensino Física 2019, 41, 1–9. [Google Scholar] [CrossRef]
- Segundo, A.H.F.N.; Neto, J.S.D.C.; da Silva, R.F.; Barbosa, P.C.S.; Santana, R.F. Development of a robotic manipulator: Applying interdisciplinarity in Computer Assister Project, Microcontrollers and Industrial Robotics. arXiv 2022, arXiv:2203.16924. [Google Scholar] [CrossRef]
- Cucuzzella, C.; Hazbei, M.; Asgari, M.H. Parametrizing the Unmeasurable: Urban Qualities as Quantitative Parameters for Computer Games. Int. J. Archit. Comput. 2024, 22, 412–431. [Google Scholar] [CrossRef]
- Almeida, F.V.; Hayashi, H.T.; Carrer, A.M.; Arakaki, R. HomeLab: Levando o Laboratório até a Residência do Aluno. Rev. Bras. Informática Educ. 2023, 31, 712–730. Available online: https://journals-sol.sbc.org.br/index.php/rbie/article/view/2807 (accessed on 4 June 2025). [CrossRef]
- Roque, G.R.; Simão, J.P.; Bilessimo, S.M.S.; Silva, J.B.; Neto, J.M.; Izidoro, C.L. Experimentação remota no ensino de superior: Linguagens de programação nas engenharias mecatrônica e automação industrial. Rev. Ensino Eng. 2017, 36, 96–105. Available online: https://revista.abenge.org.br/index.php/abenge/article/view/1354/789 (accessed on 4 June 2025).
- Carvalho, M.; Figueiredo, J.N.; Cavalcanti, G.C.D.; Freire, R.S.; Machado, L.S.; Abrahão, R. Educação ambiental por meio de um app para quantificação de pegada de carbono. Res. Soc. Dev. 2021, 10, 1–16. [Google Scholar] [CrossRef]
- Tawfik, A.A.; Shepherd, C.E.; Gatewood, J.; Gish-Lieberman, J.J. First and Second Order Barriers to Teaching in K-12 Online Learning. TechTrends 2021, 65, 925–938. [Google Scholar] [CrossRef]
- Carvalho Ribeiro, D.B.; da Silva Rodrigues, A.M.; Costa, M.S.; de Oliveira Gonçalves, A.K.; Lima, M.I.B. Inovação no ensino e aprendizagem de empreendedorismo através da gamificação: O planejamento da experiência de aplicação do Classcraft no ensino médio integrado ao técnico de administração. An. CIET Horiz. 2020, 5, 1–12. Available online: https://ciet.ufscar.br/submissao/index.php/ciet/article/view/938 (accessed on 8 June 2025).
- Henriques, S.; Neves, C.; Silva, A.P.; Abrantes, P.; Ramos, M.D.R.; Jacquinet, M.; Bäckström, B.; Falé, I.; Magano, O. Literacia e inclusão digital no ensino superior online: Impactos em adultos diplomados. Sociol. Probl. Práticas 2023, 101, 29–51. [Google Scholar] [CrossRef]
- Burgstahler, S. Creating Inclusive Learning Opportunities in Higher Education: A Universal Design Toolkit; Harvard Education Press: Cambridge, MA, USA, 2020; Available online: https://hep.gse.harvard.edu/9781682535400/creating-inclusive-learning-opportunities-in-higher-education/?utm_source=chatgpt.com (accessed on 11 June 2025).
- Corbí, M.; Rodríguez-Cano, S.; Cuesta-Gómez, J.L.; Morais-Barcina, P.; Merino, M.; Gómez-Gentil, M. Ideal project-inclusive digital education for autistic people learning. In INTED2023 Proceedings; IATED: Valencia, Spain, 2023; p. 7881. Available online: https://library.iated.org/view/CORBI2023IDE (accessed on 18 June 2025).
- Durlak, J.A.; Mahoney, J.L.; Boyle, A.E. What we know, and what we need to find out about universal, school-based social and emotional learning programs for children and adolescents: A review of meta-analyses and directions for future research. Psychol. Bull. 2022, 148, 765–782. [Google Scholar] [CrossRef]
- Valente, S.; Lourenço, A.A.; Dominguez-Lara, S. Teachers in the 21st Century: Emotional Intelligence Skills Make the Difference. In Pedagogy—Challenges, Recent Advances, New Perspectives, and Applications; Şenol, H., Ed.; IntechOpen: London, UK, 2022; pp. 1–15. Available online: https://www.intechopen.com/chapters/80831 (accessed on 18 June 2025).
- Lipson, S.K.; Lattie, E.G.; Eisenberg, D. Increased Rates of Mental Health Service Utilization by U.S. College Students: 10-Year Population-Level Trends (2007–2017). Psychiatr. Serv. 2019, 70, 60–63. [Google Scholar] [CrossRef]
- Salmon, G. E-Moderating: The Key to Teaching and Learning Online; Psychology Press: London, UK, 2004; Available online: https://www.taylorfrancis.com/books/mono/10.4324/9780203816684/moderating-gilly-salmon?utm_source=chatgpt.com (accessed on 11 June 2025).
- Li, J.; Cochrane, K.A.; Leshed, G. Beyond Meditation: Understanding Everyday Mindfulness Practices and Technology Use Among Experienced Practitioners. Proc. ACM Hum. Comput. Interact. 2024, 8, 1–29. [Google Scholar] [CrossRef]
- Poo, M.C.P.; Lau, Y.Y.; Chen, Q. Are Virtual Laboratories and Remote Laboratories Enhancing the Quality of Sustainability Education? Educ. Sci. 2023, 13, 1110. [Google Scholar] [CrossRef]
- Damasceno, E.; Santana, A.C.A.; Pinheiro, L.C.; Santos, C.H.A.; Alves, D.L.; Figueiredo, S.A.; Vieira, G.B.D.; Klauch, J.J.; Pires, R.R.; Costa, L. A Importância da Educação Ambiental na Era Digital. J. Humanit. Soc. Sci. 2024, 29, 55–62. Available online: https://www.iosrjournals.org/iosr-jhss/papers/Vol.29-Issue5/Ser-10/J2905105562.pdf (accessed on 3 June 2025).
- Abdillah, L.A.; Rofiq, A.A.; Indriani, D.E. Information technology utilization in environmentally friendly higher education. arXiv 2018, arXiv:1811.10856. [Google Scholar] [CrossRef]
- Martínez Valdivia, E.; Pegalajar Palomino, M.D.C.; Burgos-Garcia, A. Active methodologies and curricular sustainability in teacher training. Int. J. Sustain. High. Educ. 2023, 24, 1364–1380. [Google Scholar] [CrossRef]
- Patiño, A.; Ramírez-Montoya, M.S.; Buenestado-Fernández, M. Active learning and education 4.0 for complex thinking training: Analysis of two case studies in open education. Smart Learn. Environ. 2023, 10, 8. [Google Scholar] [CrossRef]
- Machado, C.F.; Davim, J.P. Sustainability in the Modernization of Higher Education: Curricular Transformation and Sustainable Campus—A Literature Review. Sustainability 2023, 15, 8615. [Google Scholar] [CrossRef]
Technology | Applications in Engineering | Potential Benefits | Psychopedagogical Challenges | Integration Strategies |
---|---|---|---|---|
Augmented Reality (AR) | 3D project visualization | Visual learning, engagement | Cognitive overload, accessibility | Simplified UI, scaffolder tasks, multimodal cues |
Virtual Reality (VR) | Immersive simulations | Experiential learning | Need for pedagogical mediation | Guided progression, feedback loops, social tasks |
Gamification | Assessments and motivation | Increase in intrinsic motivation | Poor design can cause frustration | Clear goals, meaningful rewards, autonomy support |
Remote Laboratories | Distance experiments | Flexibility, scalability | Lack of social interaction | Collaborative tools, synchronous sessions |
Artificial Intelligence (AI) | Personalized teaching | Adaptive feedback | Algorithmic opacity | Transparent algorithms, explainable feedback |
Psychopedagogical Principle | Purpose | Integration Strategies with Technology |
---|---|---|
Cognitive Load (Sweller) | Reduce unnecessary overload | Simple interface, avoid distractions |
Intrinsic Motivation (Ryan & Deci) | Foster autonomous engagement | Gamification with clear goals and feedback |
Active Learning (Mayer) | Promote knowledge construction | Hands-on activities with VR/AR |
Digital Inclusion | Ensure equitable access | Accessible, mobile-friendly platforms |
Socio-emotional Well-being | Support mental health and motivation | Empathetic design, adaptive pacing |
Pillar | Key Elements | Contributions to Engineering Education |
---|---|---|
Technology | Digital tools (VR, gamification, remote laboratories), personalization, accessibility | Expands access, reduces environmental impact, facilitates pedagogical innovation |
Psychopedagogy | Cognitive load management, intrinsic motivation, inclusion, mental health, active methodologies | Ensures effective learning, emotional support, inclusion, and engagement |
Sustainability | Reduction in resource consumption, electronic waste management, social inclusion, energy efficiency | Promotes environmental responsibility, social equity, and economic viability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, A.; Navarro-Loli, J.S.; Domínguez-Lara, S. Technological Innovation in Engineering Education: A Psychopedagogical Approach for Sustainable Development. Sustainability 2025, 17, 6429. https://doi.org/10.3390/su17146429
Lourenço A, Navarro-Loli JS, Domínguez-Lara S. Technological Innovation in Engineering Education: A Psychopedagogical Approach for Sustainable Development. Sustainability. 2025; 17(14):6429. https://doi.org/10.3390/su17146429
Chicago/Turabian StyleLourenço, Abílio, Jhonatan S. Navarro-Loli, and Sergio Domínguez-Lara. 2025. "Technological Innovation in Engineering Education: A Psychopedagogical Approach for Sustainable Development" Sustainability 17, no. 14: 6429. https://doi.org/10.3390/su17146429
APA StyleLourenço, A., Navarro-Loli, J. S., & Domínguez-Lara, S. (2025). Technological Innovation in Engineering Education: A Psychopedagogical Approach for Sustainable Development. Sustainability, 17(14), 6429. https://doi.org/10.3390/su17146429