Assessing Land Degradation Through Remote Sensing and Geospatial Techniques for Sustainable Development Under the Mediterranean Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Land Use/Land Cover
2.3. Climate of the Study Area
2.4. Geological Formation of the Study Area
2.5. Samples Collection and Analysis
2.6. Data Used
2.7. Modeling Land Degradation (LD)
2.7.1. Wind Erosion Quality Index (WEQI): The Index of Land Susceptibility to Wind Erosion (ILSWE)
The Climatic Erosive Factor (CEF)
Wind-Erodible Fraction Factor (EFF)
Soil Crust Factor (SCF)
Vegetation Cover Factor (VCF)
Surface Roughness Factor (SRF)
2.8. Geostatistical Analysis
2.9. Model Validation
3. Results
3.1. Geology Index (GI)
3.2. Topographic Quality Index (TQI)
3.3. Physical Quality Index (PQI)
3.4. Chemical Quality Index (CQI)
3.5. Wind Erosion Quality Index (WEQI): The Index of Land Susceptibility to Wind Erosion (ILSWE)
3.6. Vegetation Quality Index (VQI)
3.7. The Spatial Distribution of Land Degradation (LD) Hazards
3.8. Land Degradation (LD) Map Validation
4. Discussion
4.1. The Geological Index
4.2. Topographic Quality Index
4.3. Physical Quality Index
4.4. Chemical Quality Index
4.5. Wind Erosion Quality Index
4.6. Vegetation Quality Index
4.7. Land Degradation (LD) Mapping
4.8. Map Validation
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooqi, Z.U.R.; Sohail, M.; Alserae, H.; Qadir, A.A.; Hussain, T.; Ilic, P.; Riaz, S.; Zafar, Z. Management of Soil Degradation: A Comprehensive Approach for Combating Soil Degradation, Food Insecurity, and Climate Change. In Ecosystem Management: Climate Change and Sustainability; Scrivener Publishing LLC.: Beverly, MA, USA, 2024; pp. 55–78. [Google Scholar]
- El-Ramady, H.R.; El-Marsafawy, S.M.; Lewis, L.N. Sustainable agriculture and climate changes in Egypt. Sustain. Agric. Rev. 2013, 12, 41–95. [Google Scholar]
- Gupta, G.S. Land degradation and challenges of food security. Rev. Eur. Stud. 2019, 11, 63. [Google Scholar] [CrossRef]
- Schillaci, C.; Jones, A.; Vieira, D.; Munafò, M.; Montanarella, L. Evaluation of the United Nations Sustainable Development Goal 15.3. 1 indicator of land degradation in the European Union. Land Degrad. Dev. 2023, 34, 250–268. [Google Scholar] [CrossRef]
- Sharma, S.; Beslity, J.O.; Rustad, L.; Shelby, L.J.; Manos, P.T.; Khanal, P.; Reinmann, A.B.; Khanal, C. Remote Sensing and GIS in Natural Resource Management: Comparing tools and emphasizing the importance of in-situ data. Remote Sens. 2024, 16, 4161. [Google Scholar] [CrossRef]
- Prăvălie, R. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Kiprop, A.K. Mapping Land Cover Changes and Identification of Drivers of Degradation to Inform Rehabilitation Strategies in Wenje, Tana River County; University of Nairobi: Nairobi, Kenya, 2023. [Google Scholar]
- Aboukota, M.E.S.; Hassaballa, H.; Elhini, M.; Ganzour, S.K. Land Degradation, Desertification & Environmental Sensitivity to Climate Change in Alexandria and Beheira, Egypt. Egypt. J. Soil Sci. 2024, 64, 167–180. [Google Scholar]
- Selmy, S.A.; Kucher, D.E.; Moursy, A.R. Integrating Remote Sensing, GIS, and AI Technologies in Soil Erosion Studies. In Advanced Geoinformatics—Techniques and Applications; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Kawy, W.A.; Darwish, K.M. Assessment of land degradation and implications on agricultural land in Qalyubia Governorate, Egypt. Bull. Natl. Res. Cent. 2019, 43, 70. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.; Afifi, A.A.; Scopa, A. A time series investigation to assess climate change and anthropogenic impacts on quantitative land degradation in the North Delta, Egypt. ISPRS Int. J. Geo-Inf. 2022, 11, 30. [Google Scholar] [CrossRef]
- Abdullahi, M.B.; Elnaggar, A.A.; Omar, M.M.; Murtala, A.; Lawal, M.; Mosa, A.A. Land degradation, causes, implications and sustainable management in arid and semi arid regions: A case study of Egypt. Egypt. J. Soil Sci. 2023, 63, 659–676. [Google Scholar] [CrossRef]
- Abolhasani, A.; Zehtabian, G.; Khosravi, H.; Rahmati, O.; Alamdarloo, E.H.; D’Odorico, P. A new conceptual framework for spatial predictive modelling of land degradation in a semiarid area. Land Degrad. Dev. 2022, 33, 3358–3374. [Google Scholar] [CrossRef]
- Fortesa Bernat, J. Assessing Temporal Variability and Controlling Factors on the Hydrosedimentary Response in Mediterranean Catchments. Ph.D. Thesis, Universitat de les Illes Balears, Palma, Spain, 2020. [Google Scholar]
- AbdelRahman, M.A. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rend. Lincei. Sci. Fis. E Nat. 2023, 34, 767–808. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.; Saleh, A. Assessment of land degradation east of the Nile Delta, Egypt using remote sensing and GIS techniques. Arab. J. Geosci. 2013, 6, 2843–2853. [Google Scholar] [CrossRef]
- El Nahry, A.; Ibraheim, M.; El Baroudy, A. Assessment of soil degradation in the northern part of Nile Delta, Egypt, using remote sensing and GIS techniques. Egypt. J. Remote Sens. Space Sci. 2008, 11, 139–154. [Google Scholar]
- Abowaly, M.E.; Ali, R.A.; Moghanm, F.S.; Gharib, M.S.; Moustapha, M.E.; Elbagory, M.; Omara, A.E.-D.; Elmahdy, S.M. Assessment of soil degradation and hazards of some heavy metals, using remote sensing and GIS techniques in the Northern part of the Nile Delta, Egypt. Agriculture 2022, 13, 76. [Google Scholar] [CrossRef]
- Gad, A. Qualitative and quantitative assessment of land degradation and desertification in egypt based on satellite remote sensing: Urbanization, salinization and wind erosion. In Environmental Remote Sensing in Egypt; Springer: Cham, Switzerland, 2020; pp. 443–497. [Google Scholar]
- Arnous, M.O.; Mansour, B.M. Utilizing multi-temporal thermal data to assess environmental land degradation impacts: Example from Suez Canal region, Egypt. Environ. Sci. Pollut. Res. 2023, 30, 2145–2163. [Google Scholar] [CrossRef]
- El-Gammal, M.; Ali, R.; Abou Samra, R. GIS-based land degradation risk assessment of Damietta governorate, Egypt. Egypt. J. Basic Appl. Sci. 2015, 2, 183–189. [Google Scholar] [CrossRef]
- El-Zeiny, A.; Gad, A.; El-Gammal, M.; Salem, M. Geospatial techniques for detection of vulnerable areas to contamination at Damietta coast, Nile Delta, Egypt. J. Environ. Sci. 2016, 5, 64–69. [Google Scholar]
- Staff, S.S. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Agric. Handb. 1999, 436, 336–337. [Google Scholar]
- Badawy, S.; El-Motaium, R.; El-Sayed, M.; Abdel-Lattif, H.; Ghorab, H.; Hossain, M. Environmental impact assessment of Egyptian Damietta governorate soils contamination with cadmium. MOJ Eco. Environ. Sci 2021, 6, 216–228. [Google Scholar]
- EGPC/CONCO-Coral. Geologic Map of Egypt, Scale 1:500000, Cairo, Egypt; EGPC/CONCO-Coral: Cairo, Egypt, 1987. [Google Scholar]
- FAO. Guidelines for Soil Description; FAO: Rome, Italy, 2006. [Google Scholar]
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 51, Version 2.0. R. Burt and Soil Survey Staff (ed.); U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Sandeep, P.; Reddy, G.O.; Jegankumar, R.; Arun Kumar, K. Modeling and assessment of land degradation vulnerability in semi-arid ecosystem of Southern India using temporal satellite data, AHP and GIS. Environ. Model. Assess. 2021, 26, 143–154. [Google Scholar] [CrossRef]
- Kosmas, C.; Ferrara, A.M.S.; Briasouli, H.; Imeson, A. Methodology for mapping environmentally sensitive areas (ESAs) to desertification. In The Medalus Project Mediterranean Desertification and Land Use. Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; European Commission: Brussel, Belgium, 1999; pp. 31–47. [Google Scholar]
- Sharma, T.; Singh, O. Soil erosion susceptibility assessment through geo-statistical multivariate approach in Panchkula district of Haryana, India. Model. Earth Syst. Environ. 2017, 3, 733–753. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Survey Manual in USDA Handbook 18; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2017. [Google Scholar]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda, H. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total Environ. 2020, 703, 135016. [Google Scholar] [CrossRef] [PubMed]
- Abuzaid, A.S.; AbdelRahman, M.A.; Fadl, M.E.; Scopa, A. Land degradation vulnerability mapping in a newly-reclaimed desert oasis in a hyper-arid agro-ecosystem using AHP and geospatial techniques. Agronomy 2021, 11, 1426. [Google Scholar] [CrossRef]
- Haghighi, A.T.; Darabi, H.; Karimidastenaei, Z.; Davudirad, A.A.; Rouzbeh, S.; Rahmati, O.; Sajedi-Hosseini, F.; Klöve, B. Land degradation risk mapping using topographic, human-induced, and geo-environmental variables and machine learning algorithms, for the Pole-Doab watershed, Iran. Environ. Earth Sci. 2021, 80, 1. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Tahoun, S. GIS model-builder based on comprehensive geostatistical approach to assess soil quality. Remote Sens. Appl. Soc. Environ. 2019, 13, 204–214. [Google Scholar] [CrossRef]
- Parmar, M.; Bhawsar, Z.; Kotecha, M.; Shukla, A.; Rajawat, A.S. Assessment of land degradation vulnerability using geospatial technique: A case study of Kachchh District of Gujarat, India. J. Indian Soc. Remote Sens. 2021, 49, 1661–1675. [Google Scholar] [CrossRef]
- López, M.; de Dios Herrero, J.; Hevia, G.G.; Gracia, R.; Buschiazzo, D.E. Determination of the wind-erodible fraction of soils using different methodologies. Geoderma 2007, 139, 407–411. [Google Scholar] [CrossRef]
- Awadhwal, N.; Thierstein, G. Soil crust and its impact on crop establishment: A review. Soil Tillage Res. 1985, 5, 289–302. [Google Scholar] [CrossRef]
- Wang, G.; Wente, S.; Gertner, G.; Anderson, A. Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images. Int. J. Remote Sens. 2002, 23, 3649–3667. [Google Scholar] [CrossRef]
- Nakae, H.; Inui, R.; Hirata, Y.; Saito, H. Effects of surface roughness on wettability. Acta Mater. 1998, 46, 2313–2318. [Google Scholar] [CrossRef]
- Ramón-Torregrosa, P.; Rodríguez-Valverde, M.; Amirfazli, A.; Cabrerizo-Vílchez, M. Factors affecting the measurement of roughness factor of surfaces and its implications for wetting studies. Colloids Surf. A Physicochem. Eng. Asp. 2008, 323, 83–93. [Google Scholar] [CrossRef]
- Zhen, J.; Pei, T.; Xie, S. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil. Sci. Total Environ. 2019, 659, 363–371. [Google Scholar] [CrossRef]
- Aldabaa, A.A.A.; Yousif, I.A.H. Geostatistical approach for land suitability assessment of some desert soils. Egypt. J. Soil Sci. 2020, 60, 195–209. [Google Scholar] [CrossRef]
- Mousavifard, S.M.; Momtaz, H.; Sepehr, E.; Davatgar, N.; Sadaghiani, M.H.R. Determining and mapping some soil physico-chemical properties using geostatistical and GIS techniques in the Naqade region, Iran. Arch. Agron. Soil Sci. 2013, 59, 1573–1589. [Google Scholar] [CrossRef]
- Hilal, A.; Bangroo, S.A.; Kirmani, N.A.; Wani, J.A.; Biswas, A.; Bhat, M.I.; Farooq, K.; Bashir, O.; Shah, T.I. Geostatistical modeling—A tool for predictive soil mapping. In Remote Sensing in Precision Agriculture; Elsevier: Amsterdam, The Netherlands, 2024; pp. 389–418. [Google Scholar]
- Oliver, M.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Ågren, A.; Lidberg, W.; Strömgren, M.; Ogilvie, J.; Arp, P. Evaluating digital terrain indices for soil wetness mapping—A Swedish case study. Hydrol. Earth Syst. Sci. 2014, 18, 3623–3634. [Google Scholar] [CrossRef]
- FAO. A Provisional Methodology for Soil Degradation Assessment; FAO: Rome, Italy, 1980. [Google Scholar]
- Soil Science Division Staff. Soil Survey Manual. USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017. [Google Scholar]
- Richardson, C.; Sadler, T. Evaluating wind erosion sensitivity for landfill sites in New Mexico using fuzzy analytical hierarchy process (FAHP). Am. J. Civ. Eng 2022, 10, 1–12. [Google Scholar] [CrossRef]
- Abd-Elazem, A.H.; El-Sayed, M.A.; Fadl, M.E.; Zekari, M.; Selmy, S.A.; Drosos, M.; Scopa, A.; Moursy, A.R. Estimating Soil Erodible Fraction Using Multivariate Regression and Proximal Sensing Data in Arid Lands, South Egypt. Soil Syst. 2024, 8, 48. [Google Scholar] [CrossRef]
- Masri, Z.; Van Donk, S.; Bruggeman, A.; Turkelboom, F. Post-harvest summer tillage to control wind erosion in the Khanasser Valley, Syria. Aeolian Res. 2015, 17, 219–229. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Q.; Guan, Q.; Zhang, J.; Yang, X.; Liu, Z. Environmental sensitivity assessment of land desertification in the Hexi Corridor, China. Catena 2023, 220, 106728. [Google Scholar] [CrossRef]
- Abdel-Raheem, K.H.; Khalil, M.M.; Abdelhady, A.A.; Tan, L. Anthropogenic–induced environmental and ecological changes in the Nile Delta over the past half-century. Sci. Total Environ. 2024, 926, 171941. [Google Scholar] [CrossRef] [PubMed]
- Grall, C.; Steckler, M.; Pickering, J.; Goodbred, S.; Sincavage, R.; Paola, C.; Akhter, S.; Spiess, V. A base-level stratigraphic approach to determining Holocene subsidence of the Ganges–Meghna–Brahmaputra Delta plain. Earth Planet. Sci. Lett. 2018, 499, 23–36. [Google Scholar] [CrossRef]
- Arnous, M.O.; Hegazi, A.M.; El-Rayes, A.E.; Almoazamy, A.A. Identification of geomorphic signatures of active tectonics in the Wadi Hagul Basin, Northwest Gulf of Suez, Egypt: Insights from SRTM derived geomorphic indices and watershed analysis. J. Coast. Conserv. 2023, 27, 40. [Google Scholar] [CrossRef]
- Zhu, X.; He, H.S.; Zhang, S.; Dijak, W.D.; Fu, Y. Interactive effects of climatic factors on seasonal vegetation dynamics in the Central Loess Plateau, China. Forests 2019, 10, 1071. [Google Scholar] [CrossRef]
- Guan, Q.; Feng, L.; Tang, J.; Park, E.; Ali, T.A.; Zheng, Y. Trends in river total suspended sediments driven by dams and soil erosion: A comparison between the Yangtze and Mekong rivers. Water Resour. Res. 2022, 58, e2022WR031979. [Google Scholar] [CrossRef]
- Yunus, A.P. Geomorphic and lithologic control on bedrock channels in drainage basins of the Western Arabian Peninsula. Arab. J. Geosci. 2016, 9, 133. [Google Scholar] [CrossRef]
- Gad, A.; Mansour, R. Index integrating soil, vegetation, climate and management qualities to evaluate desertification in the Northwestern coast, Egypt. Int. J. Environ. Eng. Dev 2023, 1, 250–265. [Google Scholar] [CrossRef]
- Mohammed, H.; Hansen, A.T. Spatial heterogeneity of low flow hydrological alterations in response to climate and land use within the Upper Mississippi River basin. J. Hydrol. 2024, 632, 130872. [Google Scholar] [CrossRef]
- Daniela, R.; Marco, V. Land use and landscape pattern changes driven by land reclamation in a coastal area: The case of Volturno delta plain, Campania Region, southern Italy. Environ. Earth Sci. 2017, 76, 694. [Google Scholar] [CrossRef]
- Saeed, M.; Khafagi, O.; Bedair, R. Soil Quality Assessment for Wheat Cultivation in El–Menoufia Governorate, Nile Delta, Egypt. J. Soil Sci. Agric. Eng. 2018, 9, 693–698. [Google Scholar] [CrossRef]
- Menon, M.; Sarkar, B.; Crotty, F.; Whalley, R.; Ludwig, B. Editorial for the special issue on ‘Opportunities and Challenges in No-Till Farming’. Eur. J. Soil Sci. 2020, 71, 971–973. [Google Scholar] [CrossRef]
- Cassol, C.; Conceição, P.C.; Amadori, C.; Haskel, M.K.; Freitas, L.A.d.; Tomazoni, A.R. Residual biomass quality index: A tool for conservation agriculture. Rev. Bras. Ciência Solo 2023, 47, e0220150. [Google Scholar] [CrossRef]
- Nunes, A.L.; Bartz, M.L.; Mello, I.; Bortoluzzi, J.; Roloff, G.; Fuentes Llanillo, R.; Canalli, L.; Wandscheer, C.A.; Ralisch, R. No-till System Participatory Quality Index in land management quality assessment in Brazil. Eur. J. Soil Sci. 2020, 71, 974–987. [Google Scholar] [CrossRef]
- Masto, R.; Chhonkar, P.; Purakayastha, T.; Patra, A.; Singh, D. Soil quality indices for evaluation of long-term land use and soil management practices in semi-arid sub-tropical India. Land Degrad. Dev. 2008, 19, 516–529. [Google Scholar] [CrossRef]
- Elbasiouny, H. Assessment of environmental sensitivity to desertification, soil quality and sustainability in an area of the North Nile Delta, Egypt. Egypt. J. Soil Sci. 2018, 58, 399–415. [Google Scholar] [CrossRef]
- Abdel-razek, M.A. Soil Quality as Indicated by Physical and Chemical Properties in Some Tanta Areas, Nile Delta, Egypt Using Remote Sensing and GIS Techniques. Ann. Agric. Sci. Moshtohor 2021, 59, 747–760. [Google Scholar] [CrossRef]
- Ladisa, G.; Todorovic, M.; Liuzzi, G.T. A GIS-based approach for desertification risk assessment in Apulia region, SE Italy. Phys. Chem. Earth Parts A/B/C 2012, 49, 103–113. [Google Scholar] [CrossRef]
- Gabriele, M.; Brumana, R.; Previtali, M.; Cazzani, A. A combined GIS and remote sensing approach for monitoring climate change-related land degradation to support landscape preservation and planning tools: The Basilicata case study. Appl. Geomat. 2023, 15, 497–532. [Google Scholar] [CrossRef]
Avg. Temperature (°C) | Min. Temperature (°C) | Max. Temperature (°C) | Precipitation/ Rainfall (mm) | Humidity (%) | Rainy Days (d) | |
---|---|---|---|---|---|---|
January | 14.6 | 11.6 | 17.9 | 38 | 63 | 6 |
February | 14.9 | 11.7 | 18.4 | 29 | 63 | 5 |
March | 16.6 | 13.2 | 20.6 | 15 | 63 | 2 |
April | 18.8 | 15.1 | 22.9 | 6 | 65 | 1 |
May | 21.9 | 18 | 26.2 | 1 | 66 | 0 |
June | 25 | 21.3 | 29.2 | 0 | 68 | 0 |
July | 26.9 | 23.3 | 31.2 | 0 | 70 | 0 |
August | 27.4 | 23.9 | 31.6 | 0 | 70 | 0 |
September | 26.2 | 22.9 | 30 | 0 | 66 | 0 |
October | 23.7 | 20.7 | 27.2 | 9 | 65 | 1 |
November | 20.4 | 17.7 | 23.5 | 18 | 63 | 3 |
December | 16.7 | 13.9 | 19.8 | 29 | 62 | 4 |
Average | 20.5 | 17.7 | 24.8 | 12.08 | 65.3 | 1.8 |
Profile | Land Unit | Texture | Sand (%) | Silt (%) | Clay (%) | pH | EC (ds/m) | Bulk Density (g/cm3) | CaCO3 (%) | OM (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Cultivated land | Clay loam | 18 | 45 | 37 | 8.01 | 2.10 | 1.23 | 2.11 | 0.29 |
2 | Cultivated land | Clay | 12 | 17 | 71 | 7.34 | 2.91 | 1.27 | 1.85 | 0.31 |
3 | Cultivated land | Clay | 12 | 24 | 64 | 8.15 | 2.79 | 1.34 | 1.24 | 0.30 |
4 | Cultivated land | Clay loam | 18 | 45 | 37 | 8.21 | 3.01 | 1.42 | 1.13 | 0.47 |
5 | Cultivated land | Clay | 12 | 17 | 71 | 8.32 | 1.76 | 1.26 | 2.03 | 0.78 |
6 | Cultivated land | Clay | 12 | 24 | 64 | 8.67 | 1.88 | 1.52 | 2.28 | 0.61 |
7 | Cultivated land | Clay loam | 19 | 46 | 35 | 7.91 | 2.56 | 1.28 | 2.64 | 0.80 |
8 | Cultivated land | Clay | 17 | 22 | 61 | 7.79 | 1.95 | 1.33 | 0.54 | 0.74 |
9 | Cultivated land | Clay loam | 14 | 27 | 59 | 8.67 | 2.64 | 1.57 | 1.42 | 0.52 |
10 | Cultivated land | Clay | 12 | 23 | 65 | 7.58 | 1.73 | 1.46 | 0.52 | 1.34 |
11 | Cultivated land | Clay loam | 21 | 46 | 33 | 8.01 | 3.01 | 1.40 | 2.14 | 0.82 |
12 | Cultivated land | Clay loam | 15 | 46 | 39 | 7.15 | 3.44 | 1.22 | 2.42 | 1.12 |
13 | Cultivated land | Clay loam | 19 | 47 | 34 | 7.56 | 2.78 | 1.56 | 2.34 | 1.03 |
14 | Cultivated land | Sand | 83 | 7 | 10 | 8.21 | 2.80 | 1.01 | 1.89 | 1.34 |
15 | Cultivated land | Sand | 79 | 12 | 9 | 8.11 | 3.01 | 1.91 | 0.87 | 0.64 |
16 | Cultivated land | Sand | 87 | 8 | 5 | 8.34 | 3.22 | 1.20 | 2.09 | 2.10 |
17 | Cultivated land | Sand | 79 | 12 | 9 | 7.89 | 1.56 | 1.03 | 2.33 | 1.36 |
18 | Cultivated land | Sand | 75 | 16 | 9 | 8.32 | 2.56 | 1.37 | 1.36 | 1.56 |
19 | Cultivated land | Clay loam | 19 | 48 | 33 | 7.45 | 1.23 | 1.27 | 1.98 | 1.64 |
20 | Sabkha | Loamy sand | 66 | 31 | 3 | 7.65 | 20.21 | 1.53 | 2.67 | 1.27 |
21 | Sabkha | Sand | 88 | 7 | 5 | 8.42 | 17.66 | 1.63 | 0.57 | 0.98 |
22 | Lake shore | Sand | 87 | 7 | 6 | 8.89 | 22,89 | 1.76 | 2.90 | 0.81 |
23 | Lake shore | Sand | 78 | 13 | 9 | 8.01 | 32.17 | 1.35 | 3.72 | 1.34 |
24 | Lake shore | Sandy loam | 81 | 11 | 8 | 8.76 | 39.32 | 1.65 | 1.67 | 0.97 |
25 | Lake shore | Loamy sand | 49 | 31 | 20 | 8.35 | 23.12 | 1.57 | 4.34 | 1.30 |
Parameter | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Reference | Index |
---|---|---|---|---|---|---|---|
Parent Material | Shale, schist, basic, ultra-basic, conglomerates, unconsolidated | Limestone, marble, granite, rhyolite, ignimbrite, gneiss, siltstone, sandstone | Marl, Pyroclastic | - | - | [31] | Geology |
Slope (%) | Gently sloping: <5 | Sloping: 5–10 | Strongly sloping: 10–15 | Moderately steep: 15–30 | Steep: 30–60 | [32] | Topography |
Aspect | North | South | Flat | East | West | ||
Topographic Wetness Index (TWI) | Very high: >5 | High: 5–4 | Moderate: 4–3 | Low: 3–2 | Very low: <2 | ||
Curvature | Linear: −0.1 to 0.1 | Convex: >0.1 | Concave: <−0.1 | - | - | ||
Depth (cm) | Very deep: >150 | Deep: 150–100 | Moderately deep: 100–50 | Shallow: 50–30 | Very shallow: <30 | [28] | Physical Soil Quality |
Gravel (%) | Few: <5 | Common: 5–15 | Many: 15–40 | Abundant: 40–80 | Dominant: >80 | ||
Texture | Clay | Sandy clay, silty clay | Sandy clay loam, silty clay loam, clay loam | Sandy loam, loam, silt loam, silt | Sand, loamy sand | ||
Bulk Density (BD, Mg/m3) | None: <1.2 | Slight: 1.2–1.4 | Moderate: 1.4–1.6 | Strong: 1.6–1.8 | Extreme: >1.8 | ||
pH | Neutral: 6.6–7.3 | Slightly alkaline: 7.4–7.8 | Moderately alkaline: 7.9–8.4 | Strongly alkaline: 8.5–9.0 | Very strongly alkaline: >9.0 | [33] | Chemical Soil Quality |
Electrical Conductivity (EC, dS/m) | None: <4 | Slight: 4–8 | Moderate: 8–16 | Strong: 16–32 | Extreme: >32 | ||
Exchangeable Sodium Percentage (ESP) | None: <10 | Slight: 10–15 | Moderate: 15–30 | Strong: 30–50 | Extreme: >50 | ||
Organic Matter (OM, g/kg) | Very high: >50 | High: 50–30 | Moderate: 30–17 | Low: 17–10 | Very low: <10 | ||
CaCO3 (g/kg) | Non-calcareous: 0 | Slightly calcareous: 0–20 | Moderately calcareous: 20–100 | Strongly calcareous: 100–250 | Extremely calcareous: >250 | ||
Gypsum (g/kg) | Non-gypsiferous: 0 | Slightly gypsiferous: 0–50 | Moderately gypsiferous: 50–150 | Strongly gypsiferous: 150–600 | Extremely gypsiferous: >600 | ||
Climate Erosivity Factor (CEF) | Very low: <20 | Low: 20–50 | Moderate: 50–70 | Severe: 70–100 | Extreme: >100 | [34] | Wind Erosion |
Soil Erodible Fraction (EFF, %) | Very slight: <0.2 | Slight: 0.2–0.3 | Moderate: 0.3–0.4 | High: 0.4–0.5 | Very high: >0.5 | ||
Surface Crust Factor (SCF) | Very high: <0.1 | High: 0.1–0.3 | Moderate: 0.3–0.5 | Low: 0.5–0.7 | Very low: >0.7 | ||
Surface Roughness Factor (SRF) | Very high: <0.15 | High: 0.15–0.3 | Moderate: 0.3–0.5 | Low: 0.5–0.7 | Very low: >0.7 | ||
Vegetation Cover Factor (VCF) | Very high density: >0.8 | High density: 0.8–0.6 | Moderate density: 0.6–0.4 | Low density: 0.4–0.2 | Very low density: <0.2 | ||
NDVI | Very high: >0.6 | High: 0.6–0.5 | Moderate: 0.5–0.4 | Low: 0.4–0.3 | Very low: <0.3 | [35] | Vegetation |
Class | Rate | |
---|---|---|
Land degradation | Very low | <0.2 |
Low | 0.2–0.4 | |
Moderate | 0.4–0.6 | |
High | 0.6–0.8 | |
Very high | >0.8 |
Land Degradation Index | Quality Class | Area % | Spatial Distribution |
---|---|---|---|
Topographic Quality Index (TQI) | Very high | 3.16% | ███ |
High | 3.86% | ████ | |
Moderate | 47.82% | ███████████████████████ | |
Low | 41.37% | █████████████████████ | |
Very low | 3.79% | ████ | |
Physical Quality Index (PQI) | Very high | 0.00% | |
High | 14.03% | ███████ | |
Moderate | 68.14% | ███████████████████████████████ | |
Low | 17.83% | █████████ | |
Very low | 0.00% | ||
Chemical Quality Index (CQI) | Very high | 4.05% | ████ |
High | 33.70% | ███████████████ | |
Moderate | 51.54% | ███████████████████████ | |
Low | 10.71% | █████ | |
Very low | 0.00% | ||
Wind Erosion Quality Index (WEQI) | Very high | 0.00% | |
High | 27.41% | █████████████ | |
Moderate | 65.73% | █████████████████████████████ | |
Low | 6.86% | ███ | |
Very low | 0.00% | ||
Vegetation Quality Index (VQI) | Very high | 31.41% | ███████████████ |
High | 21.54% | ██████████ | |
Moderate | 20.67% | ██████████ | |
Low | 15.59% | ███████ | |
Very low | 10.79% | █████ |
Metric | Depth | Gravel | Bulk Density (g/cm3) | Sand | Silt | Clay | EC (ds/m) | ESP | CaCO3 (%) | Gypsum | pH | OM | EF | SCF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Expo. | Sph. | Sph. | Sph. | Expo. | Sph. | Gaus. | Gaus. | Expo. | Expo. | Expo. | Sph. | Expo. | Sph. |
ME | −0.022 | 0.146 | −0.003 | −0.019 | 0.040 | 0.082 | −0.117 | 0.117 | 0.128 | 0.062 | −0.005 | −0.011 | 0.006 | −0.008 |
RMSE | 15.364 | 6.778 | 0.119 | 12.650 | 8.505 | 6.751 | 14.792 | 6.880 | 18.104 | 11.401 | 0.404 | 2.325 | 0.091 | 0.026 |
MSE | 0.004 | −0.071 | −0.037 | −0.014 | −0.062 | −0.125 | −0.009 | 0.030 | −0.053 | −0.037 | −0.034 | −0.016 | 0.069 | −0.142 |
RMSSE | 1.391 | 1.308 | 1.410 | 1.270 | 1.378 | 1.466 | 1.316 | 1.431 | 1.554 | 1.447 | 1.430 | 1.364 | 1.246 | 1.260 |
ASE | 15.211 | 8.688 | 0.117 | 13.631 | 8.378 | 6.980 | 15.415 | 6.556 | 19.706 | 10.507 | 0.386 | 2.291 | 0.098 | 0.315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.A.; Elnagar, A.S.; Rebouh, N.Y.; Fadl, M.E. Assessing Land Degradation Through Remote Sensing and Geospatial Techniques for Sustainable Development Under the Mediterranean Conditions. Sustainability 2025, 17, 6087. https://doi.org/10.3390/su17136087
Ali EA, Elnagar AS, Rebouh NY, Fadl ME. Assessing Land Degradation Through Remote Sensing and Geospatial Techniques for Sustainable Development Under the Mediterranean Conditions. Sustainability. 2025; 17(13):6087. https://doi.org/10.3390/su17136087
Chicago/Turabian StyleAli, Elsherbiny A., Ahmed S. Elnagar, Nazih Y. Rebouh, and Mohamed E. Fadl. 2025. "Assessing Land Degradation Through Remote Sensing and Geospatial Techniques for Sustainable Development Under the Mediterranean Conditions" Sustainability 17, no. 13: 6087. https://doi.org/10.3390/su17136087
APA StyleAli, E. A., Elnagar, A. S., Rebouh, N. Y., & Fadl, M. E. (2025). Assessing Land Degradation Through Remote Sensing and Geospatial Techniques for Sustainable Development Under the Mediterranean Conditions. Sustainability, 17(13), 6087. https://doi.org/10.3390/su17136087