Factors Influencing Phycocyanin Synthesis in Microalgae and Culture Strategies: Toward Efficient Production of Alternative Proteins
Abstract
1. Introduction
2. Culture Conditions for Algal Blue Protein Synthesis
2.1. Light
2.2. pH
2.3. Temperature
2.4. Salinity
3. Cultivation Strategies
3.1. Self-Supporting Mode
3.2. Heterotrophic Mode
3.3. Mixed Nutrition
4. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef]
- Rawiwan, P.; Peng, Y.; Paramayuda, I.G.P.B.; Quek, S.Y. Red seaweed: A promising alternative protein source for global food sustainability. Trends Food Sci. Technol. 2022, 123, 37–56. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Bai, F.; Ge, P.; Tan, M. Algal protein: Structural functionality, advanced extraction technologies, and challenges for applications sin food nutrition security. Food Chem. 2025, 477, 143572. [Google Scholar] [CrossRef]
- Razzak, S.A. Comprehensive overview of microalgae-derived carotenoids and their applications in diverse industries. Algal Res. 2024, 78, 103422. [Google Scholar] [CrossRef]
- Garcia-Perez, P.; Cassani, L.; Garcia-Oliveira, P.; Xiao, J.; Simal-Gandara, J.; Prieto, M.A.; Lucini, L. Algal nutraceuticals: A perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics. Food Chem. 2022, 409, 135295. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2020, 7, 1247. [Google Scholar] [CrossRef]
- Xie, H.; Li, H.; Liu, L.; Cai, X.; Wang, T.; Jiao, Q.; Lv, N.; Huang, M.; Wu, R.; Cao, Z.; et al. How the ovalbumin modulates the conformation of zein through protein-protein interactions. Food Hydrocoll. 2024, 159, 110696. [Google Scholar] [CrossRef]
- Thirumdas, R.; Brnčić, M.; Brnčić, S.R.; Barba, F.J.; Gálvez, F.; Zamuz, S.; Lacomba, R.; Lorenzo, J.M. Evaluating the impact of vegetal and microalgae protein sources on proximate composition, amino acid profile, and physicochemical properties of fermented Spanish “chorizo” sausages. J. Food Process. Preserv. 2018, 42, e13817. [Google Scholar] [CrossRef]
- Handbook of Marine Microalgae; Elsevier Inc.: Amsterdam, The Netherlands, 2015.
- Liu, R.; Qin, S.; Li, W. Phycocyanin: Anti-inflammatory effect and mechanism. Biomed. Pharmacother. 2022, 153, 113362. [Google Scholar] [CrossRef]
- Shah, M.A.R.; Zhu, F.; Cui, Y.; Hu, X.; Chen, H.; Kayani, S.-I.; Huo, S. Mechanistic insights into the nutritional and therapeutic potential of Spirulina (Arthrospira) spp.: Challenges and opportunities. Trends Food Sci. Technol. 2024, 151, 104648. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Q.; Wu, Y.; Liu, X.; Gong, Z. Comprehensive insights into microalgae proteins: Nutritional profiles and innovative applications as sustainable alternative proteins in health and food sciences. Food Hydrocoll. 2024, 154, 110112. [Google Scholar] [CrossRef]
- Prandi, B.; Boukid, F.; Van De Walle, S.; Cutroneo, S.; Comaposada, J.; Van Royen, G.; Sforza, S.; Tedeschi, T.; Castellari, M. Protein Quality and Protein Digestibility of Vegetable Creams Reformulated with Microalgae Inclusion. Foods 2023, 12, 2395. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Functional and Bioactive Properties of Protein Extracts Generated from Spirulina platensis and Isochrysis galbanaT-Iso. Appl. Sci. 2021, 11, 3964. [Google Scholar] [CrossRef]
- Andreeva, A.; Budenkova, E.; Babich, O.; Sukhikh, S.; Ulrikh, E.; Ivanova, S.; Prosekov, A.; Dolganyuk, V. Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins. Molecules 2021, 26, 2767. [Google Scholar] [CrossRef] [PubMed]
- Araya, M.; García, S.; Rengel, J.; Pizarro, S.; Álvarez, G. Determination of free and protein amino acid content in microalgae by HPLC-DAD with pre-column derivatization and pressure hydrolysis. Mar. Chem. 2021, 234, 103999. [Google Scholar] [CrossRef]
- Cavonius, L.R.; Albers, E.; Undeland, I. pH-shift processing of Nannochloropsis oculata microalgal biomass to obtain a protein-enriched food or feed ingredient. Algal Res. 2015, 11, 95–102. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Wierenga, P.A.; Gruppen, H. Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour. Technol. 2011, 102, 9121–9127. [Google Scholar] [CrossRef]
- Santiago-Díaz, P.; Rivero, A.; Rico, M.; Gómez-Pinchetti, J.L. Characterization of Novel Selected Microalgae for Antioxidant Activity and Polyphenols, Amino Acids, and Carbohydrates. Mar. Drugs 2021, 20, 40. [Google Scholar] [CrossRef]
- Gressler, V.; Yokoya, N.S.; Fujii, M.T.; Colepicolo, P.; Filho, J.M.; Torres, R.P.; Pinto, E. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 2009, 120, 585–590. [Google Scholar] [CrossRef]
- Baghel, R.S.; Kumari, P.; Reddy, C.R.K.; Jha, B. Growth, pigments, and biochemical composition of marine red alga Gracilaria crassa. J. Appl. Phycol. 2014, 26, 2143–2150. [Google Scholar] [CrossRef]
- Uzlasir, T.; Isik, O.; Uslu, L.H.; Selli, S.; Kelebek, H. Impact of different salt concentrations on growth, biochemical composition and nutrition quality of Phaeodactylum tricornutum and Spirulina platensis. Food Chem. 2023, 429, 136843. [Google Scholar] [CrossRef]
- Cha, J.; Choi, Y.; Sung, C.; Kim, M.; Park, W.K.; Min, K. Bio-mitigation of CO2: The co-production of phycocyanin and optically pure (R)-γ-valerolactone with perfect enantiomeric excess. Bioresour. Technol. 2024, 418, 131895. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Sun, S.; Dai, T.; Zhang, H.; Wu, J.; Gong, E.S. Phycocyanin-chitosan complex stabilized emulsion: Preparation, characteristics, digestibility, and stability. Int. J. Biol. Macromol. 2024, 260, 129253. [Google Scholar] [CrossRef]
- Buliga, D.I.; Mocanu, A.; Rusen, E.; Diacon, A.; Toader, G.; Brincoveanu, O.; Călinescu, L.; Boscornea, A.C. Phycocyanin-Loaded Alginate-Based Hydrogel Synthesis and Characterization. Mar. Drugs 2024, 22, 434. [Google Scholar] [CrossRef]
- Jiang, L.; Yu, S.; Chen, H.; Pei, H. Enhanced phycocyanin production from Spirulina subsalsa via freshwater and marine cultivation with optimized light source and temperature. Bioresour. Technol. 2023, 378, 129009. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, W.; Sun, H.; Mou, H.; Liu, J.; Yu, H.; Dai, L.; Kong, Q.; Yang, S. Phycocyanin from microalgae: A comprehensive review covering microalgal culture, phycocyanin sources and stability. Food Res. Int. 2024, 186, 114362. [Google Scholar] [CrossRef]
- Parshina, E.Y.; Liu, W.; Yusipovich, A.I.; Gvozdev, D.A.; He, Y.; Pirutin, S.K.; Klimanova, E.A.; Maksimov, E.G.; Maksimov, G.V. Spectral and conformational characteristics of phycocyanin associated with changes of medium pH. Photosynth. Res. 2024, 161, 93–103. [Google Scholar] [CrossRef]
- İlter, I.; Koç, M.; Demirel, Z.; Conk Dalay, M.; Kaymak Ertekin, F. Improving the stability of phycocyanin by spray dried microencapsulation. J. Food Process. Preserv. 2021, 45, e15646. [Google Scholar] [CrossRef]
- Wu, Y.; Xue, H.; Liu, F.; Wang, X.; Chen, L.; Chen, M.; Chiou, B.; Zhou, X.; Jiao, X.; Zhong, F. Improving stability of phycocyanin under acidic conditions by surface patch binding induced complexation with gelatin. Food Hydrocoll. 2024, 161, 110876. [Google Scholar] [CrossRef]
- Sonani, R.R.; Rastogi, R.P.; Patel, R.; Madamwar, D. Recent advances in production, purification and applications of phycobiliproteins. World J. Biol. Chem. 2016, 7, 100–109. [Google Scholar] [CrossRef]
- AlFadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F. Tendencies Affecting the Growth and Cultivation of Genus Spirulina: An Investigative Review on Current Trends. Plants 2022, 11, 3063. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-B.; Wu, J.-Y.; Wang, C.-F.; Fu, C.-C.; Shieh, C.-J.; Chen, C.-I.; Wang, C.-Y.; Liu, Y.-C. Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem. Eng. J. 2010, 53, 52–56. [Google Scholar] [CrossRef]
- Madhyastha, H.K.; Vatsala, T.M. Pigment production in Spirulina fussiformis in different photophysical conditions. Biomol. Eng. 2007, 24, 301–305. [Google Scholar] [CrossRef]
- Niangoran, N.U.F.; Buso, D.; Zissis, G.; Prudhomme, T. Influence of Light Intensity and Photoperiod on Energy Efficiency of Biomass and Pigment Production of Spirulina (Arthrospira Platensis); EDP Sciences: Pairs, France, 2021. [Google Scholar]
- Danesi, E.D.G.; Rangel-Yagui, C.O.; Carvalho, J.C.M.; Sato, S. Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 2004, 26, 329–335. [Google Scholar] [CrossRef]
- Borella, L.; Sforza, E.; Bertucco, A. Effect of residence time in continuous photobioreactor on mass and energy balance of microalgal protein production. New Biotechnol. 2021, 64, 46–53. [Google Scholar] [CrossRef]
- Markou, G. Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Appl. Biochem. Biotechnol. 2014, 172, 2758–2768. [Google Scholar] [CrossRef]
- Zittelli, G.C.; Mugnai, G.; Milia, M.; Cicchi, B.; Benavides, A.M.S.; Angioni, A.; Addis, P.; Torzillo, G. Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. Algal Res. 2021, 61, 102583. [Google Scholar] [CrossRef]
- Rivera, C.; Niño, L.; Gelves, G. Modeling of phycocyanin production from Spirulina platensis using different light-emitting diodes. S. Afr. J. Chem. Eng. 2021, 37, 167–178. [Google Scholar] [CrossRef]
- Kilimtzidi, E.; Cuellar Bermudez, S.; Markou, G.; Goiris, K.; Vandamme, D.; Muylaert, K. Enhanced phycocyanin and protein content of Arthrospira by applying neutral density and red light shading filters: A small-scale pilot experiment. J. Chem. Technol. Biotechnol. 2019, 94, 2047–2054. [Google Scholar] [CrossRef]
- Raeisossadati, M.; Moheimani, N.R.; Parlevliet, D. Red and blue luminescent solar concentrators for increasing Arthrospira platensis biomass and phycocyanin productivity in outdoor raceway ponds. Bioresour. Technol. 2019, 291, 121801. [Google Scholar] [CrossRef]
- Mao, R.; Guo, S. Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis. Appl. Microbiol. Biotechnol. 2018, 102, 5245–5254. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Buso, D.; Wang, T.; Lopes, M.; Niangoran, U.; Zissis, G. Effect of Red and Blue LEDs on the Production of Phycocyanin by Spirulina Platensis Based on Photosynthetically Active Radiation. J. Sci. Technol. Light. 2018, 41, 148–152. [Google Scholar] [CrossRef]
- Lima, G.M.; Teixeira, P.C.N.; Teixeira, C.M.L.L.; Filócomo, D.; Lage, C.L.S. Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Res. 2018, 31, 157–166. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Paciulli, M.; Abbaspourrad, A. Extraction of phycocyanin-A natural blue colorant from dried spirulina biomass: Influence of processing parameters and extraction techniques. J. Food Sci. 2020, 85, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Munier, M.; Jubeau, S.; Wijaya, A.; Morançais, M.; Dumay, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chem. 2013, 150, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gillilan, R.; Abbaspourrad, A. Tuning C-Phycocyanin Photoactivity via pH-Mediated Assembly–Disassembly. Biomacromolecules 2021, 22, 5128–5138. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Abbaspourrad, A. Improvement of the Colloidal Stability of Phycocyanin in Acidified Conditions using Whey Protein-Phycocyanin Interactions. Food Hydrocoll. 2020, 105, 105747. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Abbaspourrad, A. Improved pH stability, heat stability, and functionality of phycocyanin after PEGylation. Int. J. Biol. Macromol. 2022, 222, 1758–1767. [Google Scholar] [CrossRef]
- Huang, H.; Xie, C.; Zhang, F.; Wu, C.; Li, T.; Li, X.; Zhou, D.; Fan, G. Impact of pH and protein/polysaccharide ratio on phycocyanin-okra polysaccharides complex. Int. J. Biol. Macromol. 2024, 284, 138049. [Google Scholar] [CrossRef]
- Buecker, S.; Grossmann, L.; Loeffler, M.; Leeb, E.; Weiss, J. Influence of storage temperature on the stability of heat treated phycocyanin-λ-carrageenan complexes in liquid formulations. Green Chem. 2022, 24, 4174–4185. [Google Scholar] [CrossRef]
- Gonzalez Bautista, E.; Laroche, C. Arthrospira platensis as a Feasible Feedstock for Bioethanol Production. Appl. Sci. 2021, 11, 6756. [Google Scholar] [CrossRef]
- Moraes, C.C.; Sala, L.; Cerveira, G.P.; Kalil, S.J. C-phycocyanin extraction from Spirulina platensis wet biomass. Braz. J. Chem. Eng. 2011, 28, 45–49. [Google Scholar] [CrossRef]
- Lijassi, I.; Arahou, F.; Mansouri, Z.; Wahby, A.; Rhazi, L.; Wahby, I. Comparative Analysis of Effect of Culture Conditions on Growth and C-Phycocyanin Production in Helical and Linear Spirulina. Curr. Microbiol. 2024, 81, 152. [Google Scholar] [CrossRef]
- Purnama, F.N.W.; Agustini, T.W.; Kurniasih, R.A. The effect of different temperature on the stability of phycocyanin on microcapsule Spirulina platensis. IOP Conf. Ser. Earth Environ. Sci. 2020, 530, 012008. [Google Scholar] [CrossRef]
- Jespersen, L.; Strømdahl, L.D.; Olsen, K.; Skibsted, L.H. Heat and light stability of three natural blue colorants for use in confectionery and beverages. Eur. Food Res. Technol. 2004, 220, 261–266. [Google Scholar] [CrossRef]
- Su, C.-H.; Liu, C.-S.; Yang, P.-C.; Syu, K.-S.; Chiuh, C.-C. Solid–liquid extraction of phycocyanin from Spirulina platensis: Kinetic modeling of influential factors. Sep. Purif. Technol. 2014, 123, 64–68. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nunes, R.; De Biasio, F.; Spigno, G.; Gorgoglione, D.; Teixeira, J.A.; Rocha, C.M.R. Influence of thermal and electrical effects of ohmic heating on C-phycocyanin properties and biocompounds recovery from Spirulina platensis. LWT—Food Sci. Technol. 2020, 128, 109491. [Google Scholar] [CrossRef]
- Faieta, M.; Toong, C.; Corradini, M.G.; Ludescher, R.D.; Pittia, P. Degradation kinetics of C-Phycocyanin under isothermal and dynamic thermal treatments. Food Chem. 2022, 382, 132266. [Google Scholar] [CrossRef]
- Antecka, A.; Klepacz-Smółka, A.; Szeląg, R.; Pietrzyk, D.; Ledakowicz, S. Comparison of three methods for thermostable C-phycocyanin separation and purification. Chem. Eng. Process. Process. Intensif. 2021, 171, 108563. [Google Scholar] [CrossRef]
- Liang, Y.; Tang, J.; Luo, Y.; Kaczmarek, M.B.; Li, X.; Daroch, M. Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresour. Technol. 2019, 278, 255–265. [Google Scholar] [CrossRef]
- Markou, G.; Kougia, E.; Arapoglou, D.; Chentir, I.; Andreou, V.; Tzovenis, I. Production of Arthrospira platensis: Effects on Growth and Biochemical Composition of Long-Term Acclimatization at Different Salinities. Bioengineering 2023, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Baky, H.H.; El-Baroty, G.S. Characterization and bioactivity of phycocyanin isolated from Spirulina maxima grown under salt stress. Food Funct. 2012, 3, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, C.; Mitra, M.; Bhayani, K.; Bharadwaj, S.V.V.; Ghosh, T.; Dubey, S.; Mishra, S. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 2017, 244, 1216–1226. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Gu, D.; Huang, F.; Liu, J.; Yu, L.; Yu, X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. Bioresour. Technol. 2023, 393, 130093. [Google Scholar] [CrossRef]
- Zhao, Y.; Ngo, H.H.; Yu, X. Phytohormone-like small biomolecules for microalgal biotechnology. Trends Biotechnol. 2022, 40, 1025–1028. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 2010, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Chen, N.; Shi, M.; Xian, M.; Song, Y.; Liu, J. The metabolism and biotechnological application of betaine in microorganism. Appl. Microbiol. Biotechnol. 2016, 100, 3865–3876. [Google Scholar] [CrossRef]
- Yu, C.; Hu, Y.; Zhang, Y.; Luo, W.; Zhang, J.; Xu, P.; Qian, J.; Li, J.; Yu, J.; Liu, J.; et al. Concurrent enhancement of biomass production and phycocyanin content in salt-stressed Arthrospira platensis: A glycine betaine- supplementation approach. Chemosphere 2024, 353, 141387. [Google Scholar] [CrossRef]
- Verma, R.; Srivastava, A. Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae. Environ. Dev. 2018, 27, 95–106. [Google Scholar] [CrossRef]
- Castillo, T.; Ramos, D.; García-Beltrán, T.; Brito-Bazan, M.; Galindo, E. Mixotrophic cultivation of microalgae: An alternative to produce high-value metabolites. Biochem. Eng. J. 2021, 176, 108183. [Google Scholar] [CrossRef]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- Aliyu, A.; Lee, J.G.M.; Harvey, A.P. Microalgae for biofuels via thermochemical conversion processes: A review of cultivation, harvesting and drying processes, and the associated opportunities for integrated production. Bioresour. Technol. Rep. 2021, 14, 100676. [Google Scholar] [CrossRef]
- Barboza-Rodríguez, R.; Rodríguez-Jasso, R.M.; Rosero-Chasoy, G.; Rosales Aguado, M.L.; Ruiz, H.A. Photobioreactor configurations in cultivating microalgae biomass for biorefinery. Bioresour. Technol. 2023, 394, 130208. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.B. Process Engineering Aspects of Vertical Column Photobioreactors for Mass Production of Microalgae. ChemBioEng Rev. 2016, 3, 101–115. [Google Scholar] [CrossRef]
- Gupta, P.L.; Lee, S.-M.; Choi, H.-J. A mini review: Photobioreactors for large scale algal cultivation. World J. Microbiol. Biotechnol. 2015, 31, 1409–1417. [Google Scholar] [CrossRef]
- Cui, Y.; Rashid, N.; Hu, N.; Rehman, M.S.U.; Han, J.-I. Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers. Manag. 2014, 79, 674–680. [Google Scholar] [CrossRef]
- Fan, J.; Huang, J.; Li, Y.; Han, F.; Wang, J.; Li, X.; Wang, W.; Li, S. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresour. Technol. 2012, 112, 206–211. [Google Scholar] [CrossRef]
- Morales-Sánchez, D.; Martinez-Rodriguez, O.A.; Kyndt, J.; Martinez, A. Heterotrophic growth of microalgae: Metabolic aspects. World J. Microbiol. Biotechnol. 2014, 31, 1–9. [Google Scholar] [CrossRef]
- Nzayisenga, J.C.; Eriksson, K.; Sellstedt, A. Mixotrophic and heterotrophic production of lipids and carbohydrates by a locally isolated microalga using wastewater as a growth medium. Bioresour. Technol. 2018, 257, 260–265. [Google Scholar] [CrossRef]
- Li, X.; Song, M.; Yu, Z.; Wang, C.; Sun, J.; Su, K.; Liu, N.; Mou, Y.; Lu, T. Comparison of heterotrophic and mixotrophic Chlorella pyrenoidosa cultivation for the growth and lipid accumulation through acetic acid as a carbon source. J. Environ. Chem. Eng. 2021, 10, 107054. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Ding, Y.; Yu, Y.; Wang, Y.; Geng, Y.; Li, Y.; Wen, X. Optimization of Heterotrophic Culture Conditions for the Algae Graesiella emersonii WBG-1 to Produce Proteins. Plants 2023, 12, 2255. [Google Scholar] [CrossRef] [PubMed]
- Mahboob, S.; Rauf, A.; Ashraf, M.; Sultana, T.; Sultana, S.; Jabeen, F.; Rajoka, M.I.; Al-Balawi, H.F.A.; Al-Ghanim, K.A. High-density growth and crude protein productivity of a thermotolerant Chlorella vulgaris: Production kinetics and thermodynamics. Aquac. Int. 2011, 20, 455–466. [Google Scholar] [CrossRef]
- Xie, T.; Xia, Y.; Zeng, Y.; Li, X.; Zhang, Y. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresour. Technol. 2017, 233, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Graverholt, O.S.; Eriksen, N.T. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl. Microbiol. Biotechnol. 2007, 77, 69–75. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, D.; Cheng, K.-W.; Chen, F. Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis. Biotechnol. Biofuels 2021, 14, 36. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Liu, D.; Zeng, Y.; Tang, S.; Han, Y.; Jiang, Y.; Cai, Z. A growth-boosting synergistic mechanism of Chromochloris zofingiensis under mixotrophy. Algal Res. 2022, 66, 102812. [Google Scholar] [CrossRef]
- Ma, R.; Wang, B.; Chua, E.T.; Zhao, X.; Lu, K.; Ho, S.-H.; Shi, X.; Liu, L.; Xie, Y.; Lu, Y.; et al. Comprehensive Utilization of Marine Microalgae for Enhanced Co-Production of Multiple Compounds. Mar. Drugs 2020, 18, 467. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, W.; Zhai, J.; Wei, H. Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. Bioresour. Technol. 2018, 263, 555–561. [Google Scholar] [CrossRef]
- Pang, N.; Gu, X.; Chen, S.; Kirchhoff, H.; Lei, H.; Roje, S. Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renew. Sustain. Energy Rev. 2019, 112, 450–460. [Google Scholar] [CrossRef]
- Das, P.; Lei, W.; Aziz, S.S.; Obbard, J.P. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour. Technol. 2010, 102, 3883–3887. [Google Scholar] [CrossRef]
- Heredia-Arroyo, T.; Wei, W.; Ruan, R.; Hu, B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Bioresour. Technol. 2011, 102, 3883–3887. [Google Scholar] [CrossRef]
- Russo, N.P.; Ballotta, M.; Usai, L.; Torre, S.; Giordano, M.; Fais, G.; Casula, M.; Dessì, D.; Nieri, P.; Damergi, E.; et al. Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content. Mar. Drugs 2024, 22, 381. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Wiebe, M.G.; Eriksen, N.T. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnol. Bioeng. 2005, 90, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sloth, J.K.; Wiebe, M.G.; Eriksen, N.T. Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzym. Microb. Technol. 2006, 38, 168–175. [Google Scholar] [CrossRef]
- Sloth, J.K.; Jensen, H.C.; Pleissner, D.; Eriksen, N.T. Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Bioresour. Technol. 2017, 238, 296–305. [Google Scholar] [CrossRef]
- Sørensen, L.; Hantke, A.; Eriksen, N.T. Purification of the photosynthetic pigment C-phycocyanin from heterotrophicGaldieria sulphuraria. J. Sci. Food Agric. 2013, 93, 2933–2938. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, W.; Wong, Y.-S.; Yang, F.; Bai, Y. Accumulation of selenium in mixotrophic culture of Spirulina platensis on glucose. Bioresour. Technol. 2005, 97, 2260–2265. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Rahmawati, S.D.; Sari, I.W.; Achmad, Z.; Setyoningrum, T.M.; Jaya, D.; Murni, S.W.; Djarot, I.N. Enhancement of phycocyanin and carbohydrate production from Spirulina platensis growing on tofu wastewater by employing mixotrophic cultivation condition. Biocatal. Agric. Biotechnol. 2023, 47, 102600. [Google Scholar] [CrossRef]
- Hu, J.; Nagarajan, D.; Zhang, Q.; Chang, J.-S.; Lee, D.-J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol. Adv. 2017, 36, 54–67. [Google Scholar] [CrossRef]
Microalgae | Essential Amino Acid Content g/100 g Protein | Non-Essential Amino Acid Content g/100 g Protein | References | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ile | Leu | Lys | Met | Phe | Thr | Trp | Val | Ala | Arg | Asp | Cys | Glu | Gly | His | Pro | Ser | Tyr | ||
Chlorella vulgaris | 3.38 | 7.30 | 12.32 | 2.47 | 3.57 | 4.37 | - | 5.70 | 8.97 | 10.30 | 14.11 | 1.22 | 13.35 | 7.03 | 2.21 | 7.95 | 4.49 | 2.81 | [13] |
Spirulina sp. | 0.46 | 0.76 | 0.26 | 0.19 | 0.44 | 0.36 | - | 0.55 | 0.50 | 0.43 | 0.72 | 0.07 | 0.77 | 0.41 | 0.18 | 0.34 | 0.36 | 0.28 | [14] |
Genus Spirulina | 4.48 | 9.81 | 7.11 | 1.93 | 7.85 | 4.57 | 1.16 | 7.81 | 11.48 | 6.02 | 10.12 | 1.94 | 14.36 | 5.25 | 2.19 | 5.17 | 3.31 | 7.85 | [15] |
Tetraselmis chui | 2.65 | 5.08 | 4.11 | 1.79 | 3.56 | 3.71 | - | 3.87 | 5.52 | 8.29 | 11.40 | 1.06 | 10.61 | 4.55 | 1.22 | 4.46 | 2.59 | 2.10 | [13] |
Nannochloropsis oceanica | 4.18 | 7.11 | 5.93 | 2.18 | 5.04 | 4.96 | - | 5.56 | 6.56 | 5.78 | 10.96 | 0.58 | 10.62 | 5.89 | 1.71 | 4.91 | 3.56 | 2.93 | [13] |
Nostoc sp. | 3.68 | 9.41 | 6.47 | 2.23 | 7.15 | 5.31 | 1.02 | 7.15 | 9.88 | 6.15 | 9.18 | 1.54 | 12.38 | 6.54 | 2.01 | 5.28 | 3.16 | 6.84 | [15] |
Dunaliella salina | 4.09 | 9.58 | 5.99 | 2.79 | 6.98 | 5.16 | 0.18 | 7.23 | 10.99 | 8.16 | 9.56 | 1.63 | 12.41 | 8.71 | 1.73 | 5.23 | 4.81 | 4.86 | [15] |
Pleurochrysis carterae | 4.22 | 9.93 | 7.24 | 2.41 | 7.69 | 5.67 | 1.14 | 7.55 | 11.51 | 6.88 | 9.19 | 2.03 | 15.17 | 7.02 | 1.89 | 5.12 | 3.48 | 7.69 | [15] |
Haematococcus pluvialis | 1.93 | 4.47 | 2.54 | 0.53 | 2.20 | 2.35 | - | 2.23 | 5.00 | 2.80 | 5.38 | ND | 7.12 | 3.45 | ND | - | 3.37 | 1.36 | [16] |
Acutodesmus acuminatus | 4.34 | 6.69 | 4.46 | 1.31 | 4.51 | 4.29 | - | 3.20 | 8.00 | 3.83 | 7.54 | ND | 9.20 | 5.71 | ND | - | 4.80 | 2.74 | [16] |
Botryococcus braunii | 2.55 | 5.35 | 3.01 | 0.67 | 3.69 | 2.94 | - | 2.38 | 5.64 | 3.58 | 3.12 | ND | 7.91 | 3.65 | 0.43 | - | 3.69 | 1.74 | [16] |
Skeletonema costatum | 6.74 | 3.37 | 2.91 | 1.05 | 4.07 | 6.05 | - | 3.84 | 3.02 | 7.91 | 7.44 | ND | 10.58 | 3.49 | 1.28 | - | 4.19 | 14.65 | [16] |
Nannochloropsis oculata | 1.00 | 2.00 | 1.50 | 0.43 | 1.20 | 1.20 | 0.41 | 1.50 | 1.60 | 1.50 | 2.10 | 0.25 | 2.60 | 1.40 | 0.44 | 2.40 | 1.10 | 0.88 | [17] |
Tetraselmis sp. | 4.06 | 9.45 | 6.52 | 2.78 | 5.62 | 5.17 | 1.61 | 5.73 | 9.39 | 5.01 | - | 1.39 | - | 6.40 | 2.01 | 6.22 | 4.39 | 3.63 | [18] |
Chloromonas cf. reticulata | 1.33 | - | 3.16 | 4.08 | 1.98 | - | - | 1.97 | - | 2.13 | 1.47 | - | 2.38 | - | 0.61 | 5.17 | - | - | [19] |
Pseudopediastrum boryanum | 1.34 | - | 3.62 | 13.72 | 2.00 | - | - | 2.02 | - | 0.71 | 1.14 | - | 1.95 | - | 0.56 | 4.99 | - | - | [19] |
Chloroidium saccharophilum | 1.14 | - | 3.65 | 2.99 | 1.49 | - | - | 1.85 | – | 0.60 | 0.34 | - | 3.05 | - | 0.18 | 3.17 | - | - | [19] |
Laurencia filiformis | 2.73 | 4.37 | 5.46 | 1.64 | 2.73 | 3.28 | 1.09 | 2.73 | 3.83 | 3.28 | 8.20 | 0.55 | 7.65 | - | 1.09 | 2.73 | 3.28 | 3.28 | [20] |
Gracilaria crassa | 3.83 | 5.16 | 3.83 | 0.82 | - | 3.64 | - | 2.12 | 4.49 | 4.04 | 11.76 | 0.40 | 8.59 | 3.43 | 1.20 | 2.65 | 4.23 | 1.99 | [21] |
Phaeodactylum tricornutum | 3.23 | 2.42 | - | 2.49 | 2.87 | 3.28 | 2.25 | 1.63 | 3.67 | 2.89 | 2.22 | 2.88 | 2.52 | 2.53 | ND | 1.00 | 3.66 | 1.42 | [22] |
Factor | Open Systems | Photobioreactors or Closed Systems |
---|---|---|
Space required | High | Low |
Evaporation | High | No evaporation |
Water losses | Extremely high | Almost none |
CO2 sequestration rate | Low | High |
CO2 losses | High | Almost none |
Temperature | Highly variable | Required cooling |
Weather dependence | Production is impossible during rain | Insignificant because they allow production in any weather conditions |
Process control | Difficult | Easy |
Shear | Low | High |
Cleaning | None | Required |
Contamination risk | High | None |
Algal species variability | Restricted microalgae species may be cultivated | Nearly all microalgae species may be cultivated |
Biomass quality | Not susceptible | Susceptible |
Population density | Low | High |
Harvesting efficiency | Low | High |
Cost of harvesting | High | Lower |
Light utilization capability | Poor | Good |
Most costly parameters | Mixing | Oxygen and temperature control |
Energy requirement (W) | High | Low |
Capital investments | Low | High |
Biomass concentration | Low during production, approx. 0.1–0.2 g/L | High, approx. 2–8 g/L |
Microalga | Carbon Source | Cultivation Mode | Phycocyanin Content | Reference |
---|---|---|---|---|
Galdieria sulphuraria 074G | Glucose 50 g/L | Heterotrophic | 3.6 mg/g | [96] |
Fructose 50 g/L | Heterotrophic | 3.4 mg/g | [96] | |
Sucrose 50 g/L | Heterotrophic | 4.3 mg/g | [96] | |
Molasses 7.5 g/L plus Glucose 45 g/L | Heterotrophic | 11.2 mg/g | [96] | |
Sugar beet molasses sucrose 50 g/L, total sugar up to 750 g/L | Heterotrophic | 350 mg/L | [96] | |
G. sulphuraria 074G | Glucose 500 g/L | Heterotrophic | 1.4–2.9 g/L | [87] |
Glucose, fructose, glycerol 5 g/L | Heterotrophic | 2–4 mg/g | [97] | |
Heterotrophic, carbon-limited, nitrogen-replete | 8–12 mg/g | [97] | ||
Glucose 5 g/L | Heterotrophic | 18 mg/g | [98] | |
Restaurant waste with glucose 5 g/L | Heterotrophic | 20 mg/g | [98] | |
Bakery waste with glucose 5 g/L | Heterotrophic | 21.8 mg/g | [98] | |
G. sulphuraria strain 074G | Glucose 5 g/L | Heterotrophic | 25–30 mg/g | [99] |
Spirulina platensis | Glucose 2 g/L−1 | Mixotrophic | 0.279 g/L−1 | [100] |
Spirulina platensis | Glucose 2 g/L−1, Se 250 mg L−1 | Mixotrophic | 0.295 g/L−1 | [100] |
Spirulina platensis | Glucose 0.67 g/L | Mixotrophic | 26.93 mg/L/d | [101] |
Cultivation Methods | Carbon Source | Energy | Bioaccumulation | Growth Rate | Price | Specificities |
---|---|---|---|---|---|---|
Photoautotrophic mode | Inorganic | Light energy | Low | Slower | Low | Low cost, slow growth, and limited bioaccumulation |
Heterotrophic mode | Organic | Organism | High | Quick | High | Rapid growth rate, high biomass and yield accumulation, and susceptibility to contamination |
Mixotrophic mode | Inorganic and organic | Light energy and an organism | High | Quick | Moderate | High cost, combines the advantages of autotrophs and heterotrophs, and prone to contamination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xie, Y.; Zhou, Z.; Ruan, R.; Zhou, C.; Cheng, Y. Factors Influencing Phycocyanin Synthesis in Microalgae and Culture Strategies: Toward Efficient Production of Alternative Proteins. Sustainability 2025, 17, 5962. https://doi.org/10.3390/su17135962
Wang X, Xie Y, Zhou Z, Ruan R, Zhou C, Cheng Y. Factors Influencing Phycocyanin Synthesis in Microalgae and Culture Strategies: Toward Efficient Production of Alternative Proteins. Sustainability. 2025; 17(13):5962. https://doi.org/10.3390/su17135962
Chicago/Turabian StyleWang, Xinyi, Yufeng Xie, Ziang Zhou, Roger Ruan, Cheng Zhou, and Yanling Cheng. 2025. "Factors Influencing Phycocyanin Synthesis in Microalgae and Culture Strategies: Toward Efficient Production of Alternative Proteins" Sustainability 17, no. 13: 5962. https://doi.org/10.3390/su17135962
APA StyleWang, X., Xie, Y., Zhou, Z., Ruan, R., Zhou, C., & Cheng, Y. (2025). Factors Influencing Phycocyanin Synthesis in Microalgae and Culture Strategies: Toward Efficient Production of Alternative Proteins. Sustainability, 17(13), 5962. https://doi.org/10.3390/su17135962