Artificial Intelligence and Urban Air Quality: The Role of Government and Public Environmental Attention
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. Literature Review
2.1.1. Related Research on Air Pollution
2.1.2. Related Research on AI
2.2. Research Hypothesis
2.2.1. Direct Effect of AI on AQ
2.2.2. Indirect Effect of AI on AQ
2.2.3. Regulatory Effect of PEA
3. Research Design
3.1. Model
3.2. Variable
4. Results Analysis
4.1. Benchmark Regression
4.2. Robustness Tests
4.2.1. Parallel Trend
4.2.2. Placebo Test
4.2.3. Propensity Score Matching (PSM)-DID
4.2.4. Replace Core Variable
4.2.5. Eliminate Interference from Environmental Policy
4.2.6. Using Clustering Robust Standard Error
4.3. Mechanism Analysis
4.4. Moderating Effect of PEA
4.5. Heterogeneity
4.5.1. Geographic Location
4.5.2. Resource Type
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, C.; Qi, S.; Li, Y. Environmental policy uncertainty and green transformation dilemma of Chinese enterprises. J. Environ. Manag. 2024, 370, 122891. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Sun, Y.; Shi, Y.; Ma, J.; Feng, C.; Chen, Z. Air pollution control policies and impacts: A review. Renew. Sustain. Energy Rev. 2024, 191, 114071. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.; Hao, J. Challenges and perspectives of air pollution control in China. Front. Environ. Sci. Eng. 2024, 18, 68. [Google Scholar] [CrossRef]
- Lee, C.C.; Zou, J.; Chen, P.F. The impact of artificial intelligence on the energy consumption of corporations: The role of human capital. Energy Econ. 2025, 143, 108231. [Google Scholar] [CrossRef]
- Khanal, S.; Zhang, H.; Taeihagh, A. Development of new generation of artificial intelligence in China: When Being’s global ambitions meet local realities. J. Contemp. China 2025, 34, 19–42. [Google Scholar] [CrossRef]
- Gao, H.C.; Wang, H.P.; Dong, Z. Intelligent Driving and Enterprise Green Innovation: A Quasi-Natural Experiment Based on the National Artificial Intelligence Pilot Zone. J. Jiangnan Univ. (Humanit. Soc. Sci.) 2024, 6, 56–69. [Google Scholar]
- Kuznets, S. Economic Growth and Income Inequality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Jones, L.; Manuelli, R. Endogenous Policy Choice: The Case of Pollution and Growth. Rev. Econ. Dyn. 2001, 4, 369–405. [Google Scholar] [CrossRef]
- Hartman, R.; Kwon, O.S. Sustainable Growth and the Environmental Kuznets Curve. J. Econ. Dyn. Control 2005, 29, 1701–1736. [Google Scholar] [CrossRef]
- Tamazian, A.; Rao, B.B. Do Economic, Financial and Institutional Developments Matter for Environmental Degradation? Evidence from Transitional Economies. Energy Econ. 2010, 32, 137–145. [Google Scholar] [CrossRef]
- Friedl, B.; Getzner, M. Determinants of CO2 emissions in a small open economy. Ecol. Econ. 2003, 45, 133–148. [Google Scholar] [CrossRef]
- Benarroch, M.; Thille, H. Transboundary Pollution and the Gains from Trade. J. Int. Econ. 2001, 55, 139–159. [Google Scholar] [CrossRef]
- Keller, W.; Levinson, A. Pollution Abatement Costs and Foreign Direct Investment Inflow to U.S. States. Rev. Econ. Stat. 2002, 84, 691–703. [Google Scholar] [CrossRef]
- Wagner, U.J.; Timmins, C.D. Agglomeration effects in foreign direct investment and the pollution haven hypothesis. Environ. Resour. Econ. 2009, 43, 231–256. [Google Scholar] [CrossRef]
- Letchumanan, R.; Kodama, F. Reconciling the Conflict Between the Pollution-haven Hypothesis and an Emerging Trajectory of International Technology Transfer. Res. Policy 2000, 29, 59–79. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Zhang, W.; Zhan, D.; Li, J. Does foreign direct investment affect environmental pollution in China’s cities? A spatial econometric perspective. Sci. Total Environ. 2018, 613–614, 521–529. [Google Scholar] [CrossRef]
- Wang, K.; Yin, H.; Chen, Y. The effect of environmental regulation on air quality: A study of new ambient air quality standards in China. J. Clean. Prod. 2019, 215, 268–279. [Google Scholar] [CrossRef]
- Feng, T.; Du, H.; Lin, Z.; Zuo, J. Spatial spillover effects of environmental regulations on air pollution: Evidence from urban agglomerations in China. J. Environ. Manag. 2020, 272, 110998. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, M.; Wei, X.; Gong, X.; Zhang, S. Internet use and the satisfaction with governmental environmental protection: Evidence from China. J. Clean. Prod. 2019, 212, 1025–1035. [Google Scholar] [CrossRef]
- Yoo, D.K.; Woo, H.C.; Jhung, S.H. Effective removal of particulate matter from air by using zeolite-coated filters. J. Mater. Chem. A 2020, 8, 17960–17968. [Google Scholar] [CrossRef]
- Li, P.; Koziel, J.A.; Paris, R.V.; Macedo, N.; Zimmerman, J.J.; Wrzesinski, D.; Sobotka, E.; Balderas, M.; Walz, W.B.; Liu, D.; et al. Indoor air quality improvement with filtration and UV-C on mitigation of particulate matter and airborne bacteria: Monitoring and modeling. J. Environ. Manag. 2024, 351, 119764. [Google Scholar] [CrossRef] [PubMed]
- Nyhan, M.; Grauwin, S.; Britter, R.; Misstear, B.; McNabola, A.; Laden, F.; Barrett, S.R.; Ratti, C. “Exposure Track”—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution. Environ. Sci. Technol. 2016, 50, 9671–9681. [Google Scholar] [CrossRef]
- Wonohardjo, E.P.; Kusuma, G.P. Air Pollution Mapping using Mobile Sensor Based on Internet of Things. Procedia Comput. Sci. 2019, 157, 638–645. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Z.; Wang, Z.; Wei, L. Has industrial upgrading improved air pollution?—Evidence from China’s digital economy. Sustainability 2022, 14, 8967. [Google Scholar] [CrossRef]
- Wang, R.; Ding, C. Bilateral impact of digital economy on air pollution: Emissions increase and reduction effects. Front. Environ. Sci. 2023, 11, 1134334. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Yu, G.Y.; Sun, X. How does artificial intelligence affect green economic growth?—Evidence from China. Sci. Total Environ. 2022, 834, 155306. [Google Scholar] [CrossRef]
- Li, Y.P.; Qi, A.Q. Replace or create: Analysis of the relationship between the artificial intelligence and youth employment in post epidemic era. Procedia Comput. Sci. 2022, 202, 217–222. [Google Scholar]
- Ma, H.; Gao, Q.; Li, X.; Zhang, Y. AI development and employment skill structure: A case study of China. Econ. Anal. Policy 2022, 73, 242–254. [Google Scholar] [CrossRef]
- Yang, C.H. How artificial intelligence technology affects productivity and employment: Firm-level evidence from Taiwan. Res. Policy 2022, 51, 104536. [Google Scholar] [CrossRef]
- Rammer, C.; Fernández, G.P.; Czarnitzki, D. Artificial intelligence and industrial innovation: Evidence from German firm-level data. Res. Policy 2022, 51, 104555. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.Y.L.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technol. Forecast. Soc. Change 2020, 158, 120142. [Google Scholar] [CrossRef]
- Liang, S.; Yang, J.; Ding, T. Performance evaluation of AI driven low carbon manufacturing industry in China: An interactive network DEA approach. Comput. Ind. Eng. 2022, 170, 108248. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Qian, Y.; Song, S. The effect of artificial intelligence on carbon intensity: Evidence from China’s industrial sector. Socio-Econ. Plan. Sci. 2022, 83, 101002. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, S.; Gan, J.; Liu, B.; Wu, Y. How does the construction of new generation of national AI innovative development pilot zones drive enterprise ESG development? Empirical evidence from China. Energy Econ. 2024, 140, 108011. [Google Scholar] [CrossRef]
- Feng, L.; Qi, J.; Zheng, Y. How can AI reduce carbon emissions? Insights from a quasi-natural experiment using generalized random forest. Energy Econ. 2025, 141, 108040. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, K.; Dong, X.; Dong, K. Is smart transportation associated with reduced carbon emissions? The case of China. Energy Econ. 2022, 105, 105715. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, J.; Shi, L.; Forrest, J.Y.-L.; Yang, Z. Can artificial intelligence improve green economic growth? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 16418–16437. [Google Scholar] [CrossRef]
- Gao, Y. Unleashing the mechanism among environmental regulation, artificial intelligence, and global value chain leaps: A roadmap toward digital revolution and environmental sustainability. Environ. Sci. Pollut. Res. 2023, 30, 28107–28117. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Wei, X.; Zeng, C. Towards low-carbon development: The role of industrial robots in decarbonization in Chinese cities. J. Environ. Manag. 2023, 330, 117216. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Pan, A.; Han, M.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Liu, Y. The effect of manufacturing intelligence on green innovation performance in China. Technol. Forecast. Soc. Change 2022, 178, 121569. [Google Scholar] [CrossRef]
- Ahlers, A.L.; Shen, Y. Breathe easy? Local nuances of authoritarian environmentalism in China’s battle against air pollution. China Q. 2018, 234, 299–319. [Google Scholar] [CrossRef]
- Johnson, J.S.; Friend, S.B.; Lee, H.S. Big data facilitation, utilization, and monetization: Exploring the 3Vs in a new product development process. J. Prod. Innov. Manag. 2017, 34, 640–658. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, H.T.; Liu, Q. Border Pollution Governance in China: Evidence from the Pilot Project of Environmental Protection Supervision Center and Establishment Emission Data. Econ. Res. J. 2021, 56, 113–126. [Google Scholar]
- Zhou, C.B.; Qi, S. Can carbon emission trading policy break China’s urban carbon lock-in? J. Environ. Manag. 2024, 353, 120129. [Google Scholar]
- Tang, X.; Chen, W.; Wu, T. Do authoritarian governments respond to public opinion on the environment? Evidence from China. Int. J. Environ. Res. Public Health 2018, 15, 266. [Google Scholar] [CrossRef]
- Cai, S.; Ma, Q.; Wang, S.; Zhao, B.; Brauer, M.; Cohen, A.; Martin, R.V.; Zhang, Q.; Li, Q.; Wang, Y.; et al. Impact of air pollution control policies on future PM2.5 concentrations and their source contributions in China. J. Environ. Manag. 2018, 227, 124–133. [Google Scholar] [CrossRef]
- Yu, Y.; Dai, C.; Wei, Y.; Ren, H.; Zhou, J. Air pollution prevention and control action plan substantially reduced PM2.5 concentration in China. Energy Econ. 2022, 113, 106206. [Google Scholar] [CrossRef]
- Hayes, R.B.; Lim, C.; Zhang, Y.; Cromar, K.; Shao, Y.; Reynolds, H.R.; Silverman, D.T.; Jones, R.R.; Park, Y.; Jerrett, M.; et al. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int. J. Epidemiol. 2020, 49, 25–35. [Google Scholar] [CrossRef]
- La Ferrara, E.; Duryea, S.; Chong, A.E. Soap Operas and Fertility: Evidence from Brazil. Am. Econ. J. Appl. Econ. 2012, 4, 1–31. [Google Scholar] [CrossRef]
- Lee, C.C.; Qin, S.; Li, Y. Does industrial robot application promote green technology innovation in the manufacturing industry? Technol. Forecast. Soc. Change 2022, 183, 121893. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chen, D.K. Air Pollution, Government Regulations and High-quality Economic Development. Econ. Res. J. 2018, 53, 20–34. [Google Scholar]
- Liu, N.; Liu, Y.; Yu, X. The impact of public environmental concern on environmental pollution: The moderating effect of government environmental regulation. PLoS ONE 2023, 18, e0290255. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Qiao, L. Government environmental concern and urban green development efficiency: Structural and technological perspectives. J. Clean. Prod. 2024, 450, 142016. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Shi, M.; Liu, J.; Tan, Z. Public environmental concern, government environmental regulation and urban carbon emission reduction—Analyzing the regulating role of green finance and industrial agglomeration. Sci. Total Environ. 2024, 924, 171549. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, J.; Kahn, M.E.; Deng, Y. The nascent market for “green” real estate in Being. Eur. Econ. Rev. 2012, 56, 974–984. [Google Scholar] [CrossRef]
- Zhou, C.; Qi, S. Has the pilot carbon trading policy improved China’s green total factor energy efficiency? Energy Econ. 2022, 114, 106268. [Google Scholar] [CrossRef]
Variable | Obs | Definition | Mean | SD |
---|---|---|---|---|
AQ | 3014 | The logarithm of PM2.5 concentration | 3.706 | 2.231 |
EC | 3014 | The logarithm of per capita GDP | 10.705 | 0.552 |
OU | 3014 | The logarithm of the proportion of FDI to GDP | −6.411 | 1.226 |
CS | 3014 | The logarithm of the total population | 8.112 | 1.587 |
FIN | 3014 | The logarithm of the balance of deposits in financial institutions | 14.423 | 2.807 |
GIN | 3014 | The general public budget expenditure/GDP | 0.198 | 1.159 |
(1) | (2) | (3) | |
---|---|---|---|
AQ | AQ | AQ | |
AI | −0.0834 * | −0.12 *** | −0.124 ** |
(0.0468) | (0.0372) | (0.0524) | |
EC | 0.191 *** | 0.301 *** | |
(0.0281) | (0.0681) | ||
OPEN | −0.0187 * | 0.0294 * | |
(0.0108) | (0.0175) | ||
CS | 0.116 *** | 0.426 *** | |
(0.0156) | (0.152) | ||
GIN | 0.300 * | 0.225 | |
(0.176) | (0.235) | ||
FIN | 2.795 *** | −0.591 | |
(0.968) | (1.225) | ||
City | N | Y | Y |
Year | N | N | Y |
R2 | 0.555 | 0.182 | 0.561 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
AQ | AQ | AQ | AQ | |
AI | −0.139 *** | −0.053 *** | −0.116 ** | −0.123 * |
(0.051) | (0.017) | (0.052) | (0.067) | |
CV | Y | Y | Y | Y |
City | Y | Y | Y | Y |
Year | Y | Y | Y | Y |
R2 | 0.555 | 0.513 | 0.562 | 0.56 |
(1) | (2) | |
---|---|---|
GEA | AQ | |
AI | 0.12 ** | −0.116 ** |
(0.046) | (0.052) | |
GEA | −0.064 *** | |
(0.018) | ||
CV | Y | Y |
City | Y | Y |
Year | Y | Y |
R2 | 0.817 | 0.567 |
(1) | (2) | |
---|---|---|
AQ | AQ | |
AI*PEA | −0.0338 *** | −0.0276 ** |
(0.013) | (0.0129) | |
CV | N | Y |
City | Y | Y |
Year | Y | Y |
R2 | 0.559 | 0.562 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Mid-West Region | Eastern Region | Resource-Based | Non-Resource-Based | |
AQ | AQ | AQ | AQ | |
AI | −0.12 * | −0.152 *** | −0.095 * | −0.176 *** |
(0.0721) | (0.0575) | (0.0527) | (0.0586) | |
CV | Y | Y | Y | Y |
City | Y | Y | Y | Y |
Year | Y | Y | Y | Y |
R2 | 0.609 | 0.516 | 0.559 | 0.563 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C. Artificial Intelligence and Urban Air Quality: The Role of Government and Public Environmental Attention. Sustainability 2025, 17, 5702. https://doi.org/10.3390/su17135702
Zhou C. Artificial Intelligence and Urban Air Quality: The Role of Government and Public Environmental Attention. Sustainability. 2025; 17(13):5702. https://doi.org/10.3390/su17135702
Chicago/Turabian StyleZhou, Chaobo. 2025. "Artificial Intelligence and Urban Air Quality: The Role of Government and Public Environmental Attention" Sustainability 17, no. 13: 5702. https://doi.org/10.3390/su17135702
APA StyleZhou, C. (2025). Artificial Intelligence and Urban Air Quality: The Role of Government and Public Environmental Attention. Sustainability, 17(13), 5702. https://doi.org/10.3390/su17135702