Enhancing Disaster Resilience in Hospitals Through Flow Space-Optimized Evacuation Routes
Abstract
:1. Introduction
2. Research Status
- (i)
- Over-reliance on static shortest-path algorithms neglects dynamic crowd density fluctuations;
- (ii)
- Hospital-specific complexities (e.g., heterogeneous mobility of patients) are insufficiently addressed.
3. Research Methods
3.1. Theoretical Framework of Flow Space for Evacuation Routes
3.1.1. Concept and Connotation of Flow Space Theory
3.1.2. Optimizing Evacuation Routes Using Flow Space Theory
3.1.3. Network Flow Model Optimization and Computation Based on Flow Space Theory
3.2. Comparative Calculation of Evacuation Time Using the Network Flow Model
3.3. Validation of Theoretical Optimization and Network Model Calculations Using Simulation Software
4. Model Construction
4.1. Fundamental Concepts of the Network Flow Model
4.1.1. Parameter Definition
4.1.2. Conventional Evacuation Methods
4.2. Calculation of Evacuation Time
5. Optimize the Evacuation Time of the Route
5.1. Optimization Strategy for Evacuation Routes Based on Flows Space Theory
5.2. Optimized Evacuation Time
6. Simulation
6.1. Simulation Software
6.2. Simulation Settings
6.3. Simulation Result
6.3.1. Simulation of Conventional Evacuation Methods
6.3.2. Simulation After Optimization of Flow Space Theory
6.4. Comparison of Simulation Results
7. Empirical Study on Evacuation Simulation
7.1. Design of Evacuation Simulation
7.2. Analysis of Evacuation Simulation Results
7.3. Implications for Emergency Management
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. (Standard Evacuation Time Calculation Table)
Node Starting Point | Node Endpoint | Edge Label | People | Edge Width | Edge Lengths | Edge Area | Occupant Density | Edge Flow | Edge Capacity | Flow Rate | Walking Time | Queuing Time | Evacuation Time at the Edge | Path Evacuation Time |
1 | A | (1, A) | 2 | 1.3 | 8.146 | 10.590 | 0.189 | 0.182 | 0.455 | 0.741 | 10.996 | 10.996 | ||
2 | A | (2, A) | 0 | 1.0 | 7.617 | 7.617 | 0.000 | 0.000 | 0.350 | |||||
3 | A | (3, A) | 0 | 1.0 | 8.614 | 8.614 | 0.000 | 0.000 | 0.350 | |||||
4 | A | (4, A) | 4 | 1.3 | 5.548 | 7.212 | 0.555 | 0.615 | 0.455 | 0.852 | 6.508 | 0.351 | ||
5 | A | (5, A) | 4 | 1.3 | 4.463 | 5.802 | 0.689 | 0.732 | 0.455 | 0.817 | 5.465 | 0.609 | ||
6 | A | (6, A) | 4 | 1.3 | 5.417 | 7.042 | 0.568 | 0.627 | 0.455 | 0.849 | 6.381 | 0.378 | ||
7 | B | (7, B) | 2 | 1.2 | 4.702 | 5.642 | 0.354 | 0.501 | 0.420 | 1.177 | 3.993 | 0.192 | ||
8 | B | (8, B) | 0 | 1.2 | 6.942 | 8.330 | 0.000 | 0.000 | 0.420 | |||||
9 | B | (9, B) | 0 | 1.2 | 4.524 | 5.429 | 0.000 | 0.000 | 0.420 | |||||
10 | B | (10, B) | 2 | 1.2 | 1.640 | 1.968 | 1.016 | 1.157 | 0.420 | 0.949 | 1.729 | 1.754 | ||
11 | B | (11, B) | 4 | 2.7 | 5.048 | 13.630 | 0.293 | 0.950 | 0.945 | 1.199 | 4.212 | |||
B | A | (B, A) | 8 | 1.5 | 6.882 | 10.323 | 0.775 | 1.200 | 0.525 | 1.032 | 6.669 | 1.285 | 7.954 | |
A | J | (A, J) | 22 | 1.5 | 2.992 | 4.488 | 4.902 | 10.294 | 0.525 | 1.400 | 2.137 | 18.608 | 20.745 | 39.695 |
12 | C | (12, C) | 4 | 1.3 | 9.128 | 11.866 | 0.337 | 0.399 | 0.455 | 0.910 | 10.027 | 10.027 | ||
13 | C | (13, C) | 4 | 1.3 | 6.334 | 8.234 | 0.486 | 0.550 | 0.455 | 0.871 | 7.274 | 0.209 | ||
14 | C | (14, C) | 6 | 1.3 | 4.525 | 5.883 | 1.020 | 0.966 | 0.455 | 0.729 | 6.210 | 1.124 | ||
15 | C | (15, C) | 6 | 1.3 | 5.018 | 6.523 | 0.920 | 0.903 | 0.455 | 0.755 | 6.643 | 0.985 | ||
16 | C | (16, C) | 6 | 1.3 | 7.149 | 9.294 | 0.646 | 0.695 | 0.455 | 0.828 | 8.631 | 0.528 | ||
17 | C | (17, C) | 0 | 1.0 | 2.473 | 2.473 | 0.000 | 0.000 | 0.350 | |||||
18 | C | (18, C) | 2 | 1.3 | 0.783 | 1.018 | 1.965 | 1.585 | 0.455 | 0.621 | 1.262 | 2.484 | ||
19 | C | (19, C) | 0 | 1.0 | 7.106 | 7.106 | 0.000 | 0.000 | 0.350 | |||||
20 | D | (20, D) | 0 | 1.0 | 4.971 | 4.971 | 0.000 | 0.000 | 0.350 | |||||
21 | D | (21, D) | 2 | 1.0 | 3.751 | 3.751 | 0.533 | 0.595 | 0.350 | 1.116 | 3.362 | 0.700 | ||
22 | D | (22, D) | 4 | 2.7 | 2.604 | 7.031 | 0.569 | 1.695 | 0.945 | 1.103 | 2.360 | 0.793 | ||
23 | D | (23, D) | 2 | 2.7 | 2.287 | 6.175 | 0.324 | 1.039 | 0.945 | 1.188 | 1.925 | 0.099 | ||
24 | D | (24, D) | 0 | 1.0 | 5.895 | 5.895 | 0.000 | 0.000 | 0.350 | |||||
25 | D | (25, D) | 0 | 1.0 | 4.766 | 4.766 | 0.000 | 0.000 | 0.350 | |||||
D | C | (D, C) | 8 | 1.5 | 8.085 | 12.128 | 0.660 | 1.061 | 0.525 | 1.072 | 7.543 | 1.020 | 8.563 | |
C | J | (C, J) | 36 | 2.6 | 11.506 | 29.916 | 1.203 | 2.305 | 0.910 | 0.737 | 15.621 | 1.532 | 17.154 | 35.744 |
26 | E | (26, E) | 6 | 1.3 | 8.760 | 11.388 | 0.527 | 0.589 | 0.455 | 0.860 | 10.188 | |||
27 | E | (27, E) | 6 | 1.3 | 6.218 | 8.083 | 0.742 | 0.774 | 0.455 | 0.803 | 7.748 | 0.702 | ||
28 | E | (28, E) | 6 | 1.3 | 4.872 | 6.334 | 0.947 | 0.921 | 0.455 | 0.748 | 6.513 | 1.025 | ||
29 | E | (29, E) | 6 | 1.3 | 5.537 | 7.198 | 0.834 | 0.843 | 0.455 | 0.778 | 7.114 | 0.854 | ||
30 | E | (30, E) | 4 | 1.3 | 7.809 | 10.152 | 0.394 | 0.459 | 0.455 | 0.895 | 8.723 | 0.008 | ||
31 | E | (31, E) | 0 | 1.0 | 1.455 | 1.455 | 0.000 | 0.000 | 0.350 | |||||
32 | E | (32, E) | 0 | 1.0 | 1.673 | 1.673 | 0.000 | 0.000 | 0.350 | |||||
33 | E | (33, E) | 0 | 1.0 | 3.338 | 3.338 | 0.000 | 0.000 | 0.350 | |||||
34 | F | (34, F) | 3 | 1.0 | 1.085 | 1.085 | 2.765 | 1.024 | 0.350 | 0.370 | 2.930 | 1.926 | ||
35 | F | (35, F) | 3 | 1.0 | 7.940 | 7.940 | 0.378 | 0.476 | 0.350 | 1.259 | 6.305 | 0.359 | ||
36 | F | (36, F) | 3 | 1.0 | 6.413 | 6.413 | 0.468 | 0.573 | 0.350 | 1.226 | 5.232 | 0.638 | ||
37 | F | (37, F) | 3 | 1.0 | 6.461 | 6.461 | 0.464 | 0.570 | 0.350 | 1.227 | 5.265 | 0.628 | ||
38 | F | (38, F) | 3 | 1.0 | 0.551 | 0.551 | 5.445 | 7.623 | 0.350 | 1.400 | 0.394 | 20.779 | 21.172 | |
F | E | (F, E) | 15 | 1.0 | 3.488 | 3.488 | 4.300 | 6.021 | 0.350 | 1.400 | 2.491 | 16.202 | 18.693 | |
E | K | (E, K) | 43 | 2.6 | 11.114 | 28.896 | 1.488 | 2.664 | 0.910 | 0.688 | 16.143 | 1.927 | 18.070 | 57.935 |
39 | G | (39, G) | 3 | 1.0 | 2.618 | 2.618 | 1.146 | 1.115 | 0.350 | 0.973 | 2.690 | 2.186 | ||
40 | G | (40, G) | 0 | 1.0 | 0.864 | 0.864 | 0.000 | 0.000 | 0.350 | |||||
41 | G | (41, G) | 3 | 1.0 | 3.360 | 3.360 | 0.893 | 0.953 | 0.350 | 1.068 | 3.148 | 1.723 | ||
42 | G | (42, G) | 0 | 1.5 | 2.269 | 3.404 | 0.000 | 0.000 | 0.525 | |||||
43 | G | (43, G) | 3 | 1.0 | 7.886 | 7.886 | 0.380 | 0.479 | 0.350 | 1.258 | 6.267 | 0.368 | 6.635 | |
44 | G | (44, G) | 3 | 1.0 | 7.535 | 7.535 | 0.398 | 0.498 | 0.350 | 1.252 | 6.020 | 0.424 | ||
G | K | (G, K) | 12 | 1.5 | 8.000 | 12.000 | 1.000 | 1.541 | 0.525 | 1.028 | 7.785 | 1.936 | 9.721 | 16.356 |
45 | H | (45, K) | 3 | 1.1 | 4.163 | 4.579 | 0.655 | 0.833 | 0.385 | 1.156 | 3.601 | 1.164 | ||
46 | H | (46, K) | 3 | 1.1 | 2.519 | 2.771 | 1.083 | 1.187 | 0.385 | 0.997 | 2.527 | 2.084 | ||
47 | H | (47, K) | 3 | 1.1 | 2.087 | 2.296 | 1.307 | 1.313 | 0.385 | 0.913 | 2.285 | 2.410 | ||
48 | H | (48, K) | 3 | 1.1 | 3.076 | 3.384 | 0.887 | 1.043 | 0.385 | 1.070 | 2.875 | 1.710 | ||
49 | H | (49, K) | 3 | 1.1 | 4.407 | 4.848 | 0.619 | 0.796 | 0.385 | 1.170 | 3.768 | 1.068 | ||
50 | H | (50, K) | 3 | 1.1 | 2.814 | 3.095 | 0.969 | 1.108 | 0.385 | 1.039 | 2.708 | 1.877 | ||
51 | H | (51, K) | 3 | 1.1 | 2.366 | 2.603 | 1.153 | 1.231 | 0.385 | 0.971 | 2.437 | 2.197 | ||
52 | H | (52, K) | 3 | 1.1 | 3.252 | 3.577 | 0.839 | 1.003 | 0.385 | 1.088 | 2.990 | 1.606 | ||
53 | I | (53, I) | 0 | 1.5 | 0.761 | 1.142 | 0.000 | 0.000 | 0.525 | |||||
54 | I | (54, I) | 4 | 1.3 | 8.312 | 10.806 | 0.370 | 0.434 | 0.455 | 0.902 | 9.220 | 9.220 | ||
55 | I | (55, I) | 4 | 1.3 | 5.614 | 7.298 | 0.548 | 0.609 | 0.455 | 0.854 | 6.572 | 0.338 | ||
56 | I | (56, I) | 4 | 1.3 | 4.432 | 5.762 | 0.694 | 0.736 | 0.455 | 0.815 | 5.436 | 0.617 | ||
57 | I | (57, I) | 2 | 1.3 | 6.234 | 8.104 | 0.247 | 0.420 | 0.455 | 1.308 | 4.766 | |||
H | I | (H, I) | 14 | 2.1 | 6.835 | 14.354 | 0.975 | 2.124 | 0.735 | 1.037 | 6.593 | 1.889 | 8.482 | |
I | K | (I, K) | 38 | 1.5 | 4.598 | 6.897 | 5.510 | 11.570 | 0.525 | 1.400 | 3.284 | 21.039 | 24.323 | 42.025 |
Appendix B. (Optimized Evacuation Time Calculation Table)
Node Starting Point | Node Endpoint | Edge Label | People | Edge Width | Edge Lengths | Edge Area | Occupant Density | Edge Flow | Edge Capacity | Flow Rate | Walking Time | Queuing Time | Evacuation Time at the Edge | Path Evacuation Time |
1 | A | (1, A) | 2 | 1.3 | 8.146 | 10.590 | 0.189 | 0.182 | 0.455 | 0.741 | 10.996 | 10.996 | ||
2 | A | (2, A) | 0 | 1.0 | 7.617 | 7.617 | 0.000 | 0.000 | 0.350 | |||||
3 | A | (3, A) | 0 | 1.0 | 8.614 | 8.614 | 0.000 | 0.000 | 0.350 | |||||
4 | A | (4, A) | 4 | 1.3 | 5.548 | 7.212 | 0.555 | 0.615 | 0.455 | 0.852 | 6.508 | 0.351 | ||
5 | A | (5, A) | 4 | 1.3 | 4.463 | 5.802 | 0.689 | 0.732 | 0.455 | 0.817 | 5.465 | 0.609 | ||
6 | A | (6, A) | 4 | 1.3 | 5.417 | 7.042 | 0.568 | 0.627 | 0.455 | 0.849 | 6.381 | 0.378 | ||
7 | B | (7, B) | 2 | 1.2 | 4.702 | 5.642 | 0.354 | 0.501 | 0.420 | 1.177 | 3.993 | 0.192 | ||
8 | B | (8, B) | 0 | 1.2 | 6.942 | 8.330 | 0.000 | 0.000 | 0.420 | |||||
9 | B | (9, B) | 0 | 1.2 | 4.524 | 5.429 | 0.000 | 0.000 | 0.420 | |||||
10 | B | (10, B) | 2 | 1.2 | 1.640 | 1.968 | 1.016 | 1.157 | 0.420 | 0.949 | 1.729 | 1.754 | ||
11 | B | (11, B) | 4 | 2.7 | 5.048 | 13.630 | 0.293 | 0.950 | 0.945 | 1.199 | 4.212 | |||
B | A | (B, A) | 8 | 1.5 | 6.882 | 10.323 | 0.775 | 1.200 | 0.525 | 1.032 | 6.669 | 1.285 | 7.954 | |
A | J | (A, J) | 22 | 1.5 | 2.992 | 4.488 | 4.902 | 10.294 | 0.525 | 1.400 | 2.137 | 18.608 | 20.745 | 39.695 |
12 | C | (12, C) | 4 | 1.3 | 9.128 | 11.866 | 0.337 | 0.399 | 0.455 | 0.910 | 10.027 | 10.027 | ||
13 | C | (13, C) | 4 | 1.3 | 6.334 | 8.234 | 0.486 | 0.550 | 0.455 | 0.871 | 7.274 | 0.209 | ||
14 | C | (14, C) | 6 | 1.3 | 4.525 | 5.883 | 1.020 | 0.966 | 0.455 | 0.729 | 6.210 | 1.124 | ||
15 | C | (15, C) | 6 | 1.3 | 5.018 | 6.523 | 0.920 | 0.903 | 0.455 | 0.755 | 6.643 | 0.985 | ||
16 | C | (16, C) | 6 | 1.3 | 7.149 | 9.294 | 0.646 | 0.695 | 0.455 | 0.828 | 8.631 | 0.528 | ||
17 | C | (17, C) | 0 | 1.0 | 2.473 | 2.473 | 0.000 | 0.000 | 0.350 | |||||
18 | C | (18, C) | 2 | 1.3 | 0.783 | 1.018 | 1.965 | 1.585 | 0.455 | 0.621 | 1.262 | 2.484 | ||
19 | C | (19, C) | 0 | 1.0 | 7.106 | 7.106 | 0.000 | 0.000 | 0.350 | |||||
34 | C | (34, C) | 3 | 1.0 | 11.260 | 11.260 | 0.266 | 0.347 | 0.350 | 1.301 | 8.656 | |||
20 | D | (20, D) | 0 | 1.0 | 4.971 | 4.971 | 0.000 | 0.000 | 0.350 | |||||
21 | D | (21, D) | 2 | 1.0 | 3.751 | 3.751 | 0.533 | 0.595 | 0.350 | 1.116 | 3.362 | 0.700 | ||
22 | D | (22, D) | 4 | 2.7 | 2.604 | 7.031 | 0.569 | 1.695 | 0.945 | 1.103 | 2.360 | 0.793 | ||
23 | D | (23, D) | 2 | 2.7 | 2.287 | 6.175 | 0.324 | 1.039 | 0.945 | 1.188 | 1.925 | 0.099 | ||
24 | D | (24, D) | 0 | 1.0 | 5.895 | 5.895 | 0.000 | 0.000 | 0.350 | |||||
25 | D | (25, D) | 0 | 1.0 | 4.766 | 4.766 | 0.000 | 0.000 | 0.350 | |||||
35 | D | (35, D) | 3 | 1.0 | 7.760 | 7.760 | 0.387 | 0.486 | 0.350 | 1.256 | 6.178 | 0.387 | ||
36 | D | (36, D) | 3 | 1.0 | 11.300 | 11.300 | 0.265 | 0.345 | 0.350 | 1.301 | 8.685 | |||
D | C | (D, C) | 14 | 1.5 | 8.085 | 12.128 | 1.154 | 1.611 | 0.525 | 0.931 | 8.689 | 2.069 | 10.758 | |
C | J | (C, J) | 45 | 2.6 | 11.506 | 29.916 | 1.504 | 2.389 | 0.910 | 0.611 | 18.835 | 1.626 | 20.460 | 31.218 |
26 | E | (26, E) | 6 | 1.3 | 8.760 | 11.388 | 0.527 | 0.589 | 0.455 | 0.860 | 10.188 | 10.188 | ||
27 | E | (27, E) | 6 | 1.3 | 6.218 | 8.083 | 0.742 | 0.774 | 0.455 | 0.803 | 7.748 | 0.702 | ||
28 | E | (28, E) | 6 | 1.3 | 4.872 | 6.334 | 0.947 | 0.921 | 0.455 | 0.748 | 6.513 | 1.025 | ||
29 | E | (29, E) | 6 | 1.3 | 5.537 | 7.198 | 0.834 | 0.843 | 0.455 | 0.778 | 7.114 | 0.854 | ||
30 | E | (30, E) | 4 | 1.3 | 7.809 | 10.152 | 0.394 | 0.459 | 0.455 | 0.895 | 8.723 | 0.008 | ||
31 | E | (31, E) | 0 | 1.0 | 1.455 | 1.455 | 0.000 | 0.000 | 0.350 | |||||
32 | E | (32, E) | 0 | 1.0 | 1.673 | 1.673 | 0.000 | 0.000 | 0.350 | |||||
33 | E | (33, E) | 0 | 1.0 | 3.338 | 3.338 | 0.000 | 0.000 | 0.350 | |||||
36 | F | (36, F) | 3 | 1.0 | 6.413 | 6.413 | 0.468 | 0.573 | 0.350 | 1.226 | 5.232 | 0.638 | ||
37 | F | (37, F) | 3 | 1.0 | 6.461 | 6.461 | 0.464 | 0.570 | 0.350 | 1.227 | 5.265 | 0.628 | ||
38 | F | (38, F) | 3 | 1.0 | 0.551 | 0.551 | 5.445 | 7.623 | 0.350 | 1.400 | 0.394 | 20.779 | 21.172 | |
F | E | (F, E) | 9 | 1.0 | 3.488 | 3.488 | 2.580 | 1.133 | 0.350 | 0.439 | 7.943 | 2.237 | ||
E | K | (E, K) | 37 | 2.6 | 11.114 | 28.896 | 1.280 | 2.409 | 0.910 | 0.724 | 15.360 | 1.647 | 17.007 | 48.367 |
39 | G | (39, G) | 3 | 1.0 | 2.618 | 2.618 | 1.146 | 1.115 | 0.350 | 0.973 | 2.690 | 2.186 | ||
40 | G | (40, G) | 0 | 1.0 | 0.864 | 0.864 | 0.000 | 0.000 | 0.350 | |||||
41 | G | (41, G) | 3 | 1.0 | 3.360 | 3.360 | 0.893 | 0.953 | 0.350 | 1.068 | 3.148 | 1.723 | ||
42 | G | (42, G) | 0 | 1.5 | 2.269 | 3.404 | 0.000 | 0.000 | 0.525 | |||||
43 | G | (43, G) | 3 | 1.0 | 7.886 | 7.886 | 0.380 | 0.479 | 0.350 | 1.258 | 6.267 | 0.368 | 6.635 | |
44 | G | (44, G) | 3 | 1.0 | 7.535 | 7.535 | 0.398 | 0.498 | 0.350 | 1.252 | 6.020 | 0.424 | ||
G | K | (G, K) | 12 | 1.5 | 8.000 | 12.000 | 1.000 | 1.541 | 0.525 | 1.028 | 7.785 | 1.936 | 9.721 | 16.356 |
45 | H | (45, K) | 3 | 1.1 | 4.163 | 4.579 | 0.655 | 0.833 | 0.385 | 1.156 | 3.601 | 1.164 | ||
46 | H | (46, K) | 3 | 1.1 | 2.519 | 2.771 | 1.083 | 1.187 | 0.385 | 0.997 | 2.527 | 2.084 | ||
47 | H | (47, K) | 3 | 1.1 | 2.087 | 2.296 | 1.307 | 1.313 | 0.385 | 0.913 | 2.285 | 2.410 | ||
48 | H | (48, K) | 3 | 1.1 | 3.076 | 3.384 | 0.887 | 1.043 | 0.385 | 1.070 | 2.875 | 1.710 | ||
49 | H | (49, K) | 3 | 1.1 | 4.407 | 4.848 | 0.619 | 0.796 | 0.385 | 1.170 | 3.768 | 1.068 | 4.836 | |
50 | H | (50, K) | 3 | 1.1 | 2.814 | 3.095 | 0.969 | 1.108 | 0.385 | 1.039 | 2.708 | 1.877 | ||
51 | H | (51, K) | 3 | 1.1 | 2.366 | 2.603 | 1.153 | 1.231 | 0.385 | 0.971 | 2.437 | 2.197 | ||
52 | H | (52, K) | 3 | 1.1 | 3.252 | 3.577 | 0.839 | 1.003 | 0.385 | 1.088 | 2.990 | 1.606 | ||
53 | I | (53, I) | 0 | 1.5 | 0.761 | 1.142 | 0.000 | 0.000 | 0.525 | |||||
54 | I | (54, I) | 4 | 1.3 | 8.312 | 10.806 | 0.370 | 0.434 | 0.455 | 0.902 | 9.220 | 9.220 | ||
55 | I | (55, I) | 4 | 1.3 | 5.614 | 7.298 | 0.548 | 0.609 | 0.455 | 0.854 | 6.572 | 0.338 | ||
56 | I | (56, I) | 4 | 1.3 | 4.432 | 5.762 | 0.694 | 0.736 | 0.455 | 0.815 | 5.436 | 0.617 | ||
57 | I | (57, I) | 2 | 1.3 | 6.234 | 8.104 | 0.247 | 0.420 | 0.455 | 1.308 | 4.766 | |||
H | I | (H, I) | 14 | 2.1 | 6.835 | 14.354 | 0.975 | 2.124 | 0.735 | 1.037 | 6.593 | 1.889 | ||
I | K | (I, K) | 38 | 1.5 | 4.598 | 6.897 | 5.510 | 11.570 | 0.525 | 1.400 | 3.284 | 21.039 | 24.323 | 38.379 |
References
- Wheeler-McAnally, R. The John Sealy Hospital Fire Evacuation. Crit. Care Nurse 2024, 44, 64–70. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Li, W.H. Crowd evacuation path planning and simulation method based on deep reinforcement learning and repulsive force field. Appl. Intell. 2025, 55, 297. [Google Scholar] [CrossRef]
- Zhu, J.; Dang, P.; Zhang, J.; Cao, Y.; Wu, J.; Li, W.; Hu, Y.; You, J. The impact of spatial scale on layout learning and individual evacuation behavior in indoor fires: Single-scale learning perspectives. Int. J. Geogr. Inf. Sci. 2024, 38, 77–99. [Google Scholar] [CrossRef]
- Ye, R.; Li, J.C.; Lu, H.C.; Wang, Y.; Pan, Y.; Wang, J. A study on the arch mechanism of pedestrian evacuation and congestion alleviation strategies at building exits. J. Build. Eng. 2024, 88, 109159. [Google Scholar] [CrossRef]
- Abir, I.M.; Ibrahim, A.M.; Toha, S.F. A review on the hospital evacuation simulation models. Int. J. Disaster Risk Reduct. 2022, 77, 103083. [Google Scholar] [CrossRef]
- Shi, Y.L.; Yang, J.Y.; Keith, M.; Song, K.; Li, Y.; Guan, C. Spatial Accessibility Patterns to Public Hospitals in Shanghai: An Improved Gravity Model. Prof. Geogr. 2022, 74, 265–289. [Google Scholar] [CrossRef]
- Saltos, D.N.; Kristensen, S.R. How economic policies which drive competition amongst hospitals impacts quality of care: The case of the English NHS (A systematic review). Am. J. Surg. 2025, 244, 116237. [Google Scholar] [CrossRef]
- Xu, J.; Peng, Y.; Ye, C.; Gao, S.; Cheng, M. Hospital Flow Simulation and Space Layout Planning Based on Low-Trust Social Force Model. IEEE Access 2024, 12, 90135–90144. [Google Scholar] [CrossRef]
- Zayas, V.; Mokha, A.; Low, S. Constructing Hospitals for Functionality after Earthquakes: Saves Lives and Costs! Buildings 2023, 13, 2741. [Google Scholar] [CrossRef]
- Shimoto, M.; Cho, K.; Kurata, M.; Hitomi, M.; Kato, Y.; Aida, S.; Sugiyama, O.; Maki, N.; Ohtsuru, S. Hospital Evacuation Implications After the 2016 Kumamoto Earthquake. Disaster Med. Public Health Prep. 2023, 16, 2680–2682. [Google Scholar] [CrossRef]
- Kodur, V.; Jha, A.; Lajnef, N. Critical Egress Parameters Governing Assisted Evacuation in Hospital Buildings. Fire 2024, 7, 85. [Google Scholar] [CrossRef]
- Al Bochi, A.; Roberts, B.W.; Sajid, W.; Ghulam, Z.; Weiler, M.; Sharma, Y.; Marquez-Chin, C.; Pong, S.; Vette, A.H.; Dutta, T. Evacuation Solutions for Individuals with Functional Limitations in the Indoor Built Environment: A Scoping Review. Buildings 2023, 13, 2779. [Google Scholar] [CrossRef]
- Weber, L.; Mohn, S.B.; Vecchio, F.; Fili, A. Beyond deportation: Researching the control of outward mobility using a space of flows logic. Glob. Netw. 2020, 20, 65–84. [Google Scholar] [CrossRef]
- Li, J.W.; Qian, J.; Liu, Y.L. A Novel Analysis Method of Geographical Centrality Based on Space of Flows. ISPRS Int. J. Geo-Inf. 2015, 6, 153. [Google Scholar] [CrossRef]
- Berglund, E. Forest, flows and identities in finland’s information society. Cult. Stud. 2008, 22, 412–430. [Google Scholar] [CrossRef]
- Wang, J.H.; Jin, B.W.; Li, J.; Chen, F.; Wang, Z.; Sun, J. Method for guiding crowd evacuation at exit: The buffer zone. Saf. Sci. 2019, 118, 88–95. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Wang, Z.; Li, Q.; Dou, Z.; Xie, W.; Zhang, Z.; Wang, R.; Nie, W. Optimal Evacuation Route Planning of Urban Personnel at Different Risk Levels of Flood Disasters Based on the Improved 3D Dijkstra’s Algorithm. Sustainability 2022, 14, 10250. [Google Scholar] [CrossRef]
- Zhu, Q.K.; Li, J.W.; Du, Y.F. Simulation Study of Personnel Evacuation in Fire Scenarios of Old School Buildings. J. Syst. Simul. 2024, 36, 2043–2053. [Google Scholar] [CrossRef]
- Khalili, S.M.; Mojtahedi, M.; Steinmetz-Weiss, C.; Sanderson, D. A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches. Buildings 2024, 14, 176. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Ling, W.; Yang, Z.; Wei, X.; Wang, H. A congestion prediction model for optimizing emergency evacuation design of university libraries in China. J. Build. Eng. 2025, 99, 111537. [Google Scholar] [CrossRef]
- Enshan, C.; van de Spek, S.; van der Hoeven, F.; Triggianese, M. Evaluate user satisfaction for urban design of railway station areas: An assessment framework using agent-based simulation. Environ. Impact Assess. Rev. 2025, 110, 107685. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.G. Utilizing and optimizing non-disrupted lines for evacuating passengers in Urban rail transit networks during disruptions. Transp. B Transp. Dyn. 2025, 13, 2440588. [Google Scholar] [CrossRef]
- Ye, S.; Li, Z.Q.; Xi, J.C. A Model for Estimating the Tourism Carrying Capacity of a Tourism Corridor: A Case Study of the Qinghai–Tibet Plateau. Sustainability 2024, 16, 5466. [Google Scholar] [CrossRef]
- Rungta, M.; Lim, G.J.; Baharnemati, M. Optimal egress time calculation and path generation for large evacuation networks. Ann. Oper. Res. 2012, 201, 403–421. [Google Scholar] [CrossRef]
- Pan, Z.; Wei, Q.; Torp, O.; Lau, A. Influence of Evacuation Walkway Design Parameters on Passenger Evacuation Time along Elevated Rail Transit Lines Using a Multi-Agent Simulation. Sustainability 2019, 11, 6049. [Google Scholar] [CrossRef]
- Lovreglio, R.; Kuligowski, E. A pre-evacuation study using data from evacuation drills and false alarm evacuations in a university library. Fire Saf. J. 2022, 131, 103595. [Google Scholar] [CrossRef]
- Siam, M.R.K.; Staes, B.M.; Lindell, M.K.; Wang, H. Lessons Learned From the 2018 Attica Wildfire: Households’ Expectations of Evacuation Logistics and Evacuation Time Estimate Components. Fire Technol. 2025, 61, 795–827. [Google Scholar] [CrossRef]
- Guo, W.H.; He, Y.W. Optimized Wayfinding Signage Positioning in Hospital Built Environment through Medical Data and Flows Simulations. Buildings 2022, 12, 1426. [Google Scholar] [CrossRef]
- Chen, S.; Lin, Y. Search for All Minimal Paths in a General Large Flow Network. IEEE Trans. Reliab. 2012, 61, 949–956. [Google Scholar] [CrossRef]
- GB/T31593.9-2015; Fire Safety Engineering Part 9: Guidance on Evaluation of Behaviour and Movement. Standards Press of China: Beijing, China, 2015.
Date/Time | 8:00–10:00 | 10:00–13:00 | 13:00–16:00 | 16:00–19:00 | 19:00–20:00 | 20:00–22:00 | |
---|---|---|---|---|---|---|---|
The first day | The number of patients | 42 | 40 | 43 | 41 | 45 | 40 |
the number of family members | 14 | 23 | 26 | 34 | 25 | 12 | |
the number of hospital staff | 14 | 15 | 11 | 11 | 14 | 7 | |
The second day | The number of patients | 40 | 44 | 42 | 43 | 46 | 41 |
the number of family members | 13 | 25 | 28 | 35 | 27 | 13 | |
the number of hospital staff | 13 | 14 | 10 | 10 | 13 | 7 | |
The third day | The number of patients | 43 | 41 | 40 | 42 | 44 | 42 |
the number of family members | 15 | 24 | 25 | 34 | 28 | 14 | |
the number of hospital staff | 14 | 15 | 11 | 11 | 14 | 7 | |
The fourth day | The number of patients | 41 | 43 | 42 | 40 | 45 | 40 |
the number of family members | 14 | 25 | 26 | 33 | 27 | 12 | |
the number of hospital staff | 13 | 14 | 10 | 10 | 13 | 7 | |
The fifth day | The number of patients | 44 | 42 | 41 | 43 | 47 | 43 |
the number of family members | 15 | 24 | 22 | 35 | 26 | 13 | |
the number of hospital staff | 14 | 15 | 11 | 11 | 14 | 7 |
Patient Type | Symptom | Number |
---|---|---|
Patients with mobility | Those with simple bone fractures and minor injuries that do not affect their ability to act independently. | 27 |
Patients who need assistance | Those with fractures of the limbs or who have undergone abdominal surgery and are unable to move on their own and require assistance to move. | 16 |
Severely ill patients | Those who have suffered from car accidents or undergone major surgeries and have completely lost their ability to move. | 2 |
Number of Simulations | Strategy | Total Evacuation Time | Pure Evacuation Time | Result Analysis |
---|---|---|---|---|
The first time | The shortest-path principle | 84 s | 84 s | Chaos occurred at the scene during the first simulation. |
The second time | Flow space | 73 s | 73 s | The performance results are similar to the model calculations and software simulation results, and the congestion at the sink node has been alleviated. |
The third time | Earthquake scenario + Flow space | 82 s | 70 s | After two drills and calm thinking during the earthquake-evasion time, the evacuation process was skillfully completed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xia, J.; Haiyirete, X. Enhancing Disaster Resilience in Hospitals Through Flow Space-Optimized Evacuation Routes. Sustainability 2025, 17, 5419. https://doi.org/10.3390/su17125419
Wu Y, Xia J, Haiyirete X. Enhancing Disaster Resilience in Hospitals Through Flow Space-Optimized Evacuation Routes. Sustainability. 2025; 17(12):5419. https://doi.org/10.3390/su17125419
Chicago/Turabian StyleWu, Yilai, Jingwei Xia, and Xuekelaiti Haiyirete. 2025. "Enhancing Disaster Resilience in Hospitals Through Flow Space-Optimized Evacuation Routes" Sustainability 17, no. 12: 5419. https://doi.org/10.3390/su17125419
APA StyleWu, Y., Xia, J., & Haiyirete, X. (2025). Enhancing Disaster Resilience in Hospitals Through Flow Space-Optimized Evacuation Routes. Sustainability, 17(12), 5419. https://doi.org/10.3390/su17125419