Recovery of Soil-Based Ecosystem Services in Abandoned Ski Resorts: The Valcanale Case Study (Bergamo, Italian Alps)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Field and Laboratory Methods
- M (dimensionless) is the textural factor, as follows:
- is the silt fraction content (0.002–0.05 mm) in %;
- is the very fine sand fraction content (0.05–0.1 mm) in %;
- is the clay fraction content <0.002 mm) in %;
- OM is the organic matter content in %;
- s is the soil structure class (s = 1 corresponds to very fine granular soils, s = 2 to fine granular soils, s = 3 to medium or coarse granular soils, and s = 4 to blocky, platy, or massive soils);
- p is the permeability class (p = 1 for very fast permeability, >61 mm h−1, p = 2 for moderately fast permeability, 20.3–61.0 mm h−1, p = 3 for moderate permeability, 5.1–20.3 mm h−1, p = 4 for moderately low permeability, 2.0–5.1 mm h−1, p = 5 for slow permeability, 1.0–2.0 mm h−1, p = 6 for very slow permeability, <1.0 mm h−1).
2.3. Soil-Based Ecosystem Service Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Properties on Ski Runs and at Control Sites
3.2. Carbon Stocks on Ski Runs and at Control Sites
3.3. Soil Erodibility and Erosion
3.4. Floristic Features
3.5. Plant and Soil Correlations
3.6. Soil-Based Ecosystem Service
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenny, H. Factors of Soil Formation, a System of Quantitative Pedology; Agronomy Journal; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1941. [Google Scholar]
- Anderson, D.W. The Effect of Parent Material and Soil Development on Nutrient Cycling in Temperate Ecosystems. Biogeochemistry 1988, 5, 71–97. [Google Scholar] [CrossRef]
- Temme, A.J.A.M.; Lange, K.; Schwering, M.F.A. Time Development of Soils in Mountain Landscapes—Divergence and Convergence of Properties with Age. J. Soils Sediments 2015, 15, 1373–1382. [Google Scholar] [CrossRef]
- Joseph, G.; Henry, H.A.L. Soil Nitrogen Leaching Losses in Response to Freeze–Thaw Cycles and Pulsed Warming in a Temperate Old Field. Soil Biol. Biochem. 2008, 40, 1947–1953. [Google Scholar] [CrossRef]
- Pintaldi, E.; Hudek, C.; Stanchi, S.; Spiegelberger, T.; Rivella, E.; Freppaz, M. Sustainable Soil Management in Ski Areas: Threats and Challenges. Sustainability 2017, 9, 2150. [Google Scholar] [CrossRef]
- Pintar, M.; Mali, B.; Kraigher, H. The Impact of Ski Slopes Management on Krvavec Ski Resort (Slovenia) on Hydrological Functions of Soils. Biologia 2009, 64, 639–642. [Google Scholar] [CrossRef]
- Rixen, C.; Haeberli, W.; Stoeckli, V. Ground Temperatures under Ski Pistes with Artificial and Natural Snow. Arct. Antarct. Alp. Res. 2004, 36, 419–427. [Google Scholar] [CrossRef]
- Walker, L.R. The Biology of Disturbed Habitats; Oxford University Press: Oxford, UK, 2012; ISBN 0-19-957529-0. [Google Scholar]
- Hudek, C.; Barni, E.; Stanchi, S.; D’Amico, M.; Pintaldi, E.; Freppaz, M. Mid and Long-Term Ecological Impacts of Ski Run Construction on Alpine Ecosystems. Sci. Rep. 2020, 10, 11654. [Google Scholar] [CrossRef]
- Schaber, E.; D’Amico, M.E.; Pintaldi, E.; Stanchi, S.; Freppaz, M.; Geitner, C. Soil Function Assessment in High-mountain Environments: Testing the SEPP Tool in a Ski Resort in the Italian Alps. Soil Use Manag. 2023, 39, 485–502. [Google Scholar] [CrossRef]
- Ries, J.B. Landscape Damage by Skiing at the Schauinsland in the Black Forest, Germany. Mt. Res. Dev. 1996, 16, 27. [Google Scholar] [CrossRef]
- Burt, J.W.; Rice, K.J. Not All Ski Slopes Are Created Equal: Disturbance Intensity Affects Ecosystem Properties. Ecol. Appl. 2009, 19, 2242–2253. [Google Scholar] [CrossRef]
- Roux-Fouillet, P.; Wipf, S.; Rixen, C. Long-Term Impacts of Ski Piste Management on Alpine Vegetation and Soils: Ski Piste Impacts on Vegetation and Soil. J. Appl. Ecol. 2011, 48, 906–915. [Google Scholar] [CrossRef]
- Kangas, K.; Tolvanen, A.; Kälkäjä, T.; Siikamäki, P. Ecological Impacts of Revegetation and Management Practices of Ski Slopes in Northern Finland. Environ. Manag. 2009, 44, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Geneletti, D. Impact Assessment of Proposed Ski Areas: A GIS Approach Integrating Biological, Physical and Landscape Indicators. Environ. Impact Assess. Rev. 2008, 28, 116–130. [Google Scholar] [CrossRef]
- Rolando, A.; Caprio, E.; Rinaldi, E.; Ellena, I. The Impact of High-altitude Ski-runs on Alpine Grassland Bird Communities. J. Appl. Ecol. 2007, 44, 210–219. [Google Scholar] [CrossRef]
- Song, S.; Zhang, S.; Wang, T.; Meng, J.; Zhou, Y.; Zhang, H. Balancing Conservation and Development in Winter Olympic Construction: Evidence from a Multi-Scale Ecological Suitability Assessment. Sci. Rep. 2018, 8, 14083. [Google Scholar] [CrossRef]
- Keßler, T.; Cierjacks, A.; Ernst, R.; Dziock, F. Direct and Indirect Effects of Ski Run Management on Alpine Orthoptera. Biodivers. Conserv. 2012, 21, 281–296. [Google Scholar] [CrossRef]
- Wipf, S.; Rixen, C.; Fischer, M.; Schmid, B.; Stoeckli, V. Effects of Ski Piste Preparation on Alpine Vegetation. J. Appl. Ecol. 2005, 42, 306–316. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Brunner, S.H.; Kienast, F. Mountain Ecosystem Services: Who Cares? Mt. Res. Dev. 2012, 32, S23–S34. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; Abu El Khair, D.; Comolli, R.; Liga, C.; Mazzucchelli, F.; Proietto, A.; Rota, N.; Colombo, G.; Bassano, B.; et al. Evaluation of Ecosystem Services in a Protected Mountain Area: Soil Organic Carbon Stock and Biodiversity in Alpine Forests and Grasslands. Ecosyst. Serv. 2020, 44, 101135. [Google Scholar] [CrossRef]
- Niedrist, G.; Tasser, E.; Lüth, C.; Dalla Via, J.; Tappeiner, U. Plant Diversity Declines with Recent Land Use Changes in European Alps. Plant Ecol. 2009, 202, 195–210. [Google Scholar] [CrossRef]
- Yaida, Y.A.; Nagai, T.; Oguro, K.; Katsuhara, K.R.; Uchida, K.; Kenta, T.; Ushimaru, A. Ski Runs as an Alternative Habitat for Threatened Grassland Plant Species in Japan. Pal. Grassl. 2019, 42, 16–22. [Google Scholar] [CrossRef]
- Locatelli, B.; Lavorel, S.; Sloan, S.; Tappeiner, U.; Geneletti, D. Characteristic Trajectories of Ecosystem Services in Mountains. Front. Ecol. Environ. 2017, 15, 150–159. [Google Scholar] [CrossRef]
- Balthazar, V.; Vanacker, V.; Molina, A.; Lambin, E.F. Impacts of Forest Cover Change on Ecosystem Services in High Andean Mountains. Ecol. Indic. 2015, 48, 63–75. [Google Scholar] [CrossRef]
- Grigulis, K.; Lavorel, S.; Krainer, U.; Legay, N.; Baxendale, C.; Dumont, M.; Kastl, E.; Arnoldi, C.; Bardgett, R.D.; Poly, F.; et al. Relative Contributions of Plant Traits and Soil Microbial Properties to Mountain Grassland Ecosystem Services. J. Ecol. 2013, 101, 47–57. [Google Scholar] [CrossRef]
- Gilaberte-Búrdalo, M.; López-Martín, F.; Pino-Otín, M.R.; López-Moreno, J.I. Impacts of Climate Change on Ski Industry. Environ. Sci. Policy 2014, 44, 51–61. [Google Scholar] [CrossRef]
- Beaudin, L.; Huang, J.-C. Weather Conditions and Outdoor Recreation: A Study of New England Ski Areas. Ecol. Econ. 2014, 106, 56–68. [Google Scholar] [CrossRef]
- Falk, M.; Vanat, L. Gains from Investments in Snowmaking Facilities. Ecol. Econ. 2016, 130, 339–349. [Google Scholar] [CrossRef]
- Kureha, M. Changing Ski Tourism in Japan: From Mass Tourism to Ecotourism? Glob. Environ. Res. 2008, 12, 137–144. [Google Scholar]
- Abegg, B.; Jetté-Nantel, S.; Crick, F.; de Montfalcon, A. Climate Change in the European Alps: Adapting Winter Tourism and Natural Hazards Management. In Climate Change in the European Alps; Agrawala, S., Ed.; OECD Publishing: Paris, France, 2007; pp. 25–60. ISBN 978-92-64-03168-5. [Google Scholar]
- François, H.; Samacoïts, R.; Bird, D.N.; Köberl, J.; Prettenthaler, F.; Morin, S. Climate Change Exacerbates Snow-Water-Energy Challenges for European Ski Tourism. Nat. Clim. Change 2023, 13, 935–942. [Google Scholar] [CrossRef]
- Chiesa, S.; Ravagnani, D.; Santambrogio, S. Rilevamento Delle Forme di Dissesto Idrogeologico Nell’area Degli Impianti Della Società Valcanale; Ardesio Municipality and Valcanale S.r.l.: Ardesio, Italy, 2014; p. 57. [Google Scholar]
- Oki, K.; Soga, M.; Amano, T.; Koike, S. Abandonment of Ski Pistes Impoverishes Butterfly Communities. Biodivers. Conserv. 2022, 31, 2083–2096. [Google Scholar] [CrossRef]
- Bersezio, R.; Bini, A.; Gelati, R.; Ferliga, C.; Rigamonti, I.; Corbari, D.; Rossi, S.; Tucci, G. Carta Geologica d’Italia Alla Scala 1: 50.000, Foglio 098 Bergamo. 2012. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/98_Bergamo.pdf (accessed on 10 June 2025).
- Verde, S.; Assini, S.; Andreis, C. Le Serie Di Vegetazione Della Regione Lombardia. In La Vegetazione d’Italia; Palombi and Partners: Roma, Italy, 2010; pp. 52–81. ISBN 88-6060-290-4. [Google Scholar]
- Bona, E.; Federici, G.; Fenaroli, F.; Perico, G. Flora Vascolare Della Lombardia Centro-Orientale; Martini, F., Ed.; Lint: Trieste, Italy, 2012; ISBN 88-8190-293-1. [Google Scholar]
- Giupponi, L.; Giorgi, A. Mount Cavallo Botanical Path: A Proposal for the Valorization of an Area of the Orobie Bergamasche Regional Park (Southern Alps). Ecomont 2017, 9, 5–15. [Google Scholar] [CrossRef]
- Giupponi, L.; Giorgi, A. A Contribution to the Knowledge of Linaria Tonzigii Lona, a Steno-Endemic Species of the Orobie Bergamasche Regional Park (Italian Alps). Ecomont 2019, 11, 16–24. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Zanella, A.; Ponge, J.-F.; Jabiol, B.; Sartori, G.; Kolb, E.; Le Bayon, R.-C.; Gobat, J.-M.; Aubert, M.; De Waal, R.; Van Delft, B.; et al. Humusica 1, Article 5: Terrestrial Humus Systems and Forms—Keys of Classification of Humus Systems and Forms. Appl. Soil Ecol. 2018, 122, 75–86. [Google Scholar] [CrossRef]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora D’italia; Edagricole-New Business Media: Milan, Italy, 2017; Volume 1, ISBN 88-506-5242-9. [Google Scholar]
- Rossi, G.; Montagnani, C.; Gargano, D.; Peruzzi, L.; Abeli, T.; Ravera, S.; Cogoni, A.; Fenu, G.; Magrini, S.; Gennai, M.; et al. Lista Rossa Della Flora Italiana: 1. Policy Species e Altre Specie Minacciate; Ministero dell’Ambiente e della Tutela del Territorio e del Mare: Roma, Italy, 2013. [Google Scholar]
- Rossi, G.; Orsenigo, S.; Gargano, D.; Montagnani, C.; Peruzzi, L.; Fenu, G.; Abeli, T.; Alessandrini, A.; Astuti, G.; Bacchetta, G.; et al. Lista Rossa Della Flora Italiana. 2 Endemiti e Altre Specie Minacciate; Ministero dell’Ambiente e della Tutela del Territorio e del Mare: Roma, Italy, 2020. [Google Scholar]
- Landolt, E.; Bäumler, B.; Erhardt, A.; Hegg, O.; Klötzli, F.; Lämmler, W.; Nobis, M.; Rudmann-Maurer, K.; Schweingruber, F.; Theurillat, J.-P. Flora Indicativa = Ecological Inicator Values and Biological Attributes of the Flora of Switzerland and the Alps: Ökologische Zeigerwerte Und Biologische Kennzeichen Zur Flora Der Schweiz Und Der Alpen; Haupt Verlag: Bern, Switzerland, 2010; ISBN 3-258-07461-5. [Google Scholar]
- van Reeuwijk, L.P. Procedures for Soil Analysis; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration, United States of America: Washington, DC, USA, 1978. [Google Scholar]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating Win-Wins from Trade-Offs? Ecosystem Services for Human Well-Being: A Meta-Analysis of Ecosystem Service Trade-Offs and Synergies in the Real World. Glob. Environ. Chang. 2014, 28, 263–275. [Google Scholar] [CrossRef]
- Costanza, R.; Kubiszewski, I.; Ervin, D.; Bluffstone, R.; Boyd, J.; Brown, D.; Chang, H.; Dujon, V.; Granek, E.; Polasky, S.; et al. Valuing Ecological Systems and Services. F1000 Biol. Rep. 2011, 3, 14. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Zhou, Z.; Ma, X.; Zhang, X. Response of Multiple Mountain Ecosystem Services on Environmental Gradients: How to Respond, and Where Should Be Priority Conservation? J. Clean. Prod. 2021, 278, 123264. [Google Scholar] [CrossRef]
- Masseroli, A.; Villa, S.; Mariani, G.S.; Bollati, I.M.; Pelfini, M.; Sebag, D.; Verrecchia, E.P.; Trombino, L. Reconsidering the Compound Effect of Geomorphology, Vegetation, and Climate Change on Paleopedogenesis in Sensitive Environments (Northern Apennines, Italy). Catena 2021, 197, 104951. [Google Scholar] [CrossRef]
- Van Vliet-Lanoë, B. Frost and Soils: Implications for Paleosols, Paleoclimates and Stratigraphy. Catena 1998, 34, 157–183. [Google Scholar] [CrossRef]
- Masseroli, A.; Bollati, I.M.; Fracasetti, L.; Trombino, L. Soil Trail as a Tool to Promote Cultural and Geoheritage: The Case Study of Mount Cusna Geosite (Northern Italian Apennines). Appl. Sci. 2023, 13, 6420. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F.; Filippi, N.; Guermandi, M.; Malucelli, F.; Marchi, N.; Staffilani, F.; Tarocco, P. A Methodological Framework to Assess the Multiple Contributions of Soils to Ecosystem Services Delivery at Regional Scale. Geoderma 2016, 261, 190–203. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding Relationships among Multiple Ecosystem Services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Luino, F.; De Graff, J.; Biddoccu, M.; Faccini, F.; Freppaz, M.; Roccati, A.; Ungaro, F.; D’Amico, M.; Turconi, L. The Role of Soil Type in Triggering Shallow Landslides in the Alps (Lombardy, Northern Italy). Land 2022, 11, 1125. [Google Scholar] [CrossRef]
- D’Amico, M.E.; Casati, E.; Abu El Khair, D.; Cavallo, A.; Barcella, M.; Previtali, F. Aeolian Inputs and Dolostone Dissolution Involved in Soil Formation in Alpine Karst Landscapes (Corna Bianca, Italian Alps). Catena 2023, 230, 107254. [Google Scholar] [CrossRef]
- D’Amico, M.E.; Catoni, M.; Terribile, F.; Zanini, E.; Bonifacio, E. Contrasting Environmental Memories in Relict Soils on Different Parent Rocks in the South-Western Italian Alps. Quat. Int. 2016, 418, 61–74. [Google Scholar] [CrossRef]
- Guidi, C.; Vesterdal, L.; Gianelle, D.; Rodeghiero, M. Changes in Soil Organic Carbon and Nitrogen Following Forest Expansion on Grassland in the Southern Alps. For. Ecol. Manag. 2014, 328, 103–116. [Google Scholar] [CrossRef]
- Desie, E.; Van Meerbeek, K.; De Wandeler, H.; Bruelheide, H.; Domisch, T.; Jaroszewicz, B.; Joly, F.; Vancampenhout, K.; Vesterdal, L.; Muys, B. Positive Feedback Loop between Earthworms, Humus Form and Soil pH Reinforces Earthworm Abundance in European Forests. Funct. Ecol. 2020, 34, 2598–2610. [Google Scholar] [CrossRef]
- Edwards, C.A.; Arancon, N.Q. The Influence of Environmental Factors on Earthworms. In Biology and Ecology of Earthworms; Springer: New York, NY, USA, 2022; pp. 191–232. ISBN 978-0-387-74942-6. [Google Scholar]
- Casagrande Bacchiocchi, S.; Zerbe, S.; Cavieres, L.A.; Wellstein, C. Impact of Ski Piste Management on Mountain Grassland Ecosystems in the Southern Alps. Sci. Total Environ. 2019, 665, 959–967. [Google Scholar] [CrossRef]
- Andreetta, A.; Cecchini, G.; Bonifacio, E.; Comolli, R.; Vingiani, S.; Carnicelli, S. Tree or Soil? Factors Influencing Humus Form Differentiation in Italian Forests. Geoderma 2016, 264, 195–204. [Google Scholar] [CrossRef]
- Bonifacio, E.; D’Amico, M.; Catoni, M.; Stanchi, S. Humus Forms as a Synthetic Parameter for Ecological Investigations. Some Examples in the Ligurian Alps (North–Western Italy). Appl. Soil Ecol. 2018, 123, 568–571. [Google Scholar] [CrossRef]
- Delgado, R.; Sánchez-Marañón, M.; Martín-García, J.M.; Aranda, V.; Serrano-Bernardo, F.; Rosúa, J.L. Impact of Ski Pistes on Soil Properties: A Case Study from a Mountainous Area in the Mediterranean Region. Soil Use Manag. 2007, 23, 269–277. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Mannering, J.V. Relation of Soil Properties to Its Erodibility. Soil Sci. Soc. Am. J. 1969, 33, 131–137. [Google Scholar] [CrossRef]
- Piątek, D.; Bernatek-Jakiel, A. How Does Ski Infrastructure Change Soil Erosion Processes on Hillslope? Land. Degrad. Dev. 2024, 35, 3378–3391. [Google Scholar] [CrossRef]
- Giupponi, L.; Bischetti, G.B.; Giorgi, A. Ecological Index of Maturity to Evaluate the Vegetation Disturbance of Areas Affected by Restoration Work: A Practical Example of Its Application in an Area of the Southern Alps: Ecological Index of Maturity. Restor. Ecol. 2015, 23, 635–644. [Google Scholar] [CrossRef]
- Bertolli, A.; Adorni, M.; Alessandrini, A.; Andreatta, S.; Ardenghi, N.M.G.; Argenti, C.; Bona, E.; Bovio, M.; Dellavedova, R.; Gallino, B. Flora Endemica Nel Nord Italia; Athesia Buch Srl: Bolzano, Italy, 2024; ISBN 88-6839-816-8. [Google Scholar]
- Giupponi, L.; Borgonovo, G.; Leoni, V.; Zuccolo, M.; Bischetti, G.B. Vegetation and Water of Lowland Spring-Wells in Po Plain (Northern Italy): Ecological Features and Management Proposals. Wetl. Ecol. Manag. 2022, 30, 357–374. [Google Scholar] [CrossRef]
- Burt, J.W.; Clary, J.J. Initial Disturbance Intensity Affects Recovery Rates and Successional Divergence on Abandoned Ski Slopes. J. Appl. Ecol. 2016, 53, 607–615. [Google Scholar] [CrossRef]
Profile | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P10 | P11 | P12 | P13 | P14 | P15 | P16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | Canalino | Canalino | Canalino | Collino | Vallone | Vallone | Vallone | Muro/Vallone | Muro/Vallone | Muro/Vallone/Erika | Erika | Erika | Erika | Scala | Scala | Scala |
Elevation (m a.s.l.) | 1550 | 1400 | 1400 | 1520 | 1500 | 1550 | 1550 | 1670 | 1670 | 1650 | 1580 | 1580 | 1530 | 1330 | 1400 | 1400 |
Aspect (°) | 262 | 30 | 315 | 105 | 60 | 80 | 120 | 100 | 160 | 50 | 330 | 330 | 345 | 0 | 40 | 48 |
Steepness (°) | 26 | 12 | 20 | 22 | 15 | 23 | 33 | 27 | 16 | 27 | 25 | 20 | 30 | 43 | 16 | 16 |
Land cover | Scree | Forest renovation | Beech forest | Pasture | Pasture | Eroded area | Grassland, heath, beech trees | Beech forest | Grassland | Heath | Eroded area | Beech forest | Spruce forest | Eroded area | Spruce forest | Grassland |
Tree cover (%) | 5 | 40 | 80 | 0 | 0 | 5 | 50 | 85 | 0 | 50 | 2 | 70 | 85 | 5 | 80 | |
Herbaceous cover (%) | 10 | 80 | 40 | 95 | 99 | 95 | 50 | 15 | 100 | 50 | 20 | 80 | 85 | |||
Stoniness (%) | 90 | 20 | 15 | 5 | 10 | 80 | 10 | 20 | 50 | 15 | 70 | 20 | 90 | |||
Parental material | Limestone and dolostone | Limestone and dolostone | Limestone and dolostone | Limestone | Dolostone and dolomitic limestone | Dolomitic limestone with quartz | Limestone and dolostone | Dolostone | Dolostone and limestone | Limestone and dolostone | Limestone and dolostone | Limestone and dolostone | Limestone and dolostone | Dolostone | Limestone and dolostone | Limestone and dolostone |
WRB | Skeletic Dolomitic Regosol (Ochric) | Skeletic Relocatic Dolomitic Regosol (Ochric) | Dolomitic Rendzic Phaeozem (Arenic) | Haplic Luvisol (Siltic) | Calcaric Skeletic Leptic Cambisol (Loamic) | Skeletic Rendzic Leptosol | Haplic Luvisol (Loamic) | Haplic Luvisol (Loamic) | Skeletic Rendzic Leptosol | Eutric Cambisol (Loamic) | Dolomitic Skeletic Leptosol (Ochric) | Skeletic Eutric Cambisol (Loamic) | Eutric Cambisol (Loamic) | Calcaric Transportic Hyperskeletic Regosol (Ochric) | Calcaric Transportic Hyperskeletic Regosol (Ochric) | Calcaric Hyperskeletic Leptosol (Ochric) |
Humus form | Eumull | Hemimoder | Amphi | Eumull | Hemimoder | Eumull | Amphi | Amphi | Hemimoder | Amphi | Eumull | Amphi | Amphi | Eumull | Hemimoder | Hemimoder |
Code | SBES | Function | Input Data |
---|---|---|---|
ABP | Agricultural Biomass Production | Capability of soils to support production of high-quality forage | Soil depth (cm); fine earth (%, 100—stoniness); N content (%); C/N ratio; humus form; pasture quality (plant species composition) |
FBP | Forest Biomass Production | Capability of soils to support highly productive forests | Soil depth (cm); fine earth (%, 100—stoniness); N content (%); C/N ratio; humus form; forest quality (tree height, density, qualitative) |
WRE | Water Retention | Capability of soils to absorb and retain rainwater | Soil depth (cm); fine earth (%, 100—stoniness); clay content (%); structural development; bulk density (g cm−3); porosity (% volume) |
WFP | Water Filtration and Purification | Capability of soils to filter and purify water thanks to exchange properties and pore dimension | Soil depth (cm); fine earth (%, 100—stoniness); clay content (%); organic matter content (%); structural development; bulk density (g cm−3); porosity (% volume) |
LCR | Local Climate Regulation | Related to capability to retain sufficient water to allow evapotranspiration | Soil depth (cm); fine earth (%, 100—stoniness); clay content (%); organic matter content (%); structural development; bulk density (g cm−3); porosity (% volume) |
SEC | Soil Erosion Control | Soil resistance to erosion | Soil erodibility (K in the RUSLE Model [47]; t ha h ha−1 MJ−1 mm−1); erosion evidence in the field |
GCR | Global Climate Regulation | Capacity of soils to store carbon and support productive ecosystems | Cstock (kg m−2); Cstock in O horizons (kg m−2); forest biomass (not measured, qualitative) |
HBI | Habitat and Biodiversity | Capacity of soils to support diverse ecosystems, rare plant species, high soil biodiversity | Total number of plant species; number of protected, endemic, and stenoendemic species; humus form |
CAN | Cultural and Natural Archive | Natural and historical legacies in soils | Endemic plant species; specific soil horizons indicating past environmental conditions. |
RSS | Recreation and Spiritual Services | Capacity of soils to support/create attractive environments | Landforms with geoheritage value [53]; high-quality ecosystems; stenoendemic species |
NCR | Nutrient Cycle Regulation | Dynamics of organic matter decomposition influencing nutrient availability | C/N ratio; humus form; presence of earthworms; Landolt N indicator (reduced according to fine earth content) |
Profile | Horizon | Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Coarse Fraction (%) | Munsell Color (Moist) | Structure (Shape, Dimension, Degree) | Consistence (Moist) |
---|---|---|---|---|---|---|---|---|---|
P01 | C | 0–20 | 90 | 10YR 5/4 | LO | ||||
ACb | 20–40 | 72 | 22 | 7 | 60 | 10YR 6/2 | GR, ME, W | VF | |
P02 | OH | 0–2 | 10YR 2/1 | LO | |||||
A1 | 2–6. | 40 | 10YR 2/2 | GR, FI, M | FR | ||||
A2 | 6–30/45 | 70 | 25 | 5 | 50 | 10YR 4/2 upper part, 10YR 4/3 lower part | GR, FI, M | FR | |
C | 30/45–80 | 85 | SR | LO | |||||
P03 | OF | 0–7 | LO | ||||||
OH | 7–18 | LO | |||||||
A | 18–35/45 | 65 | 27 | 8 | 50 | 7.5YR 3/2 | GR, CO, W | VF | |
C | 35/45–85/95 | 60 | 7.5YR 5/4 | BS, ME, W | LO | ||||
AB | 85/95–90/105 | 20 | 7.5YR 4/3 | GR, CO, S | VF | ||||
CB | 105–112 | 85 | 7.5YR 5/4 | BS, ME, W | LO | ||||
P04 | A1 | 4–28. | 10 | 10YR 3/4 | BS, ME, S | FR | |||
A2 | 28–48 | 10 | 10YR 4/3 | PL, ME, M | FR | ||||
A3 | 48–53 | 5 | 10YR 2/2 | GR, CO, S | FR | ||||
A4 | 53–58 | 5 | Black | PL, ME, M/GR, CO, M | FR | ||||
Bt1 | 58–65 | 21 | 54 | 25 | 5 | 10R 4/4 | BA, ME, S | FR | |
Bt2 | 65–110 | 10 | 10YR 5/8 | BS, ME, S | FR | ||||
BC | 110–140 | 15 | 10YR 5/6 | BS, ME, S | FI | ||||
2Bt3 | 140–180+ | 0 | 10YR 5/8 | PR, CO, S | FI | ||||
P05 | OF | 0–2 | LO | ||||||
A | 2–15 | 80 | 15 | 5 | 60 | 10YR 2/2 | GR, FI, M | VF | |
Bw | 15–35 | 40 | 10YR 4/4 | BD, ME, M | FR | ||||
P06 | A | 0–8 | 80 | 2.5YR 4/2 | GR, ME, W | VF | |||
BC | 8–35 | 61 | 30 | 9 | 90 | 10YR 5/4 | GR, ME, W | VF | |
P07 | OL | 0–2 | |||||||
OH | 2–4. | LO | |||||||
A | 4–13. | 48 | 31 | 21 | 50 | 7.5YR 3/2 | GR, CO, S | FR | |
BA | 13–30 | 30 | 7.5YR 3/4 | BS, ME, M/GR, CO, M | FR | ||||
Bw | 30–55 | 30 | 7.5YR 4/6 | BS, ME, M | FR | ||||
C | 55–80 | 90 | 10YR 6/4 | SR | LO | ||||
P08 | OL | 0–3 | |||||||
OF | 3–5 | LO | |||||||
OH | 5–12 | LO | |||||||
A | 12–20/25 | 50 | 10YR 4/3 | GR, ME, M | FR | ||||
Bw | 20/25–85 | 26 | 43 | 31 | 30 | 10YR 5/6 | BS/BA, ME, M | FR | |
Bt | 85– | 70 | 10YR 4/6 | BA, ME, S | FR | ||||
P09 | OH | 0–1 | LO | ||||||
A | 1–3 | 58 | 35 | 8 | 50 | 10YR 3/2 | GR, ME, W | VF | |
C | 3–25 | 50 | 2.5Y 5/4 | SR | LO | ||||
P10 | OL | 0–1 | |||||||
OF | 1–2. | LO | |||||||
OH | 2–4. | LO | |||||||
A1 | 4–14. | 10 | 7.5YR 4/6 | GR, ME, S | VF | ||||
A2 | 14–23 | 41 | 30 | 29 | 10 | 7.5YR 4/3 | GR, ME, M | FR | |
Bw1 | 23–30 | 10 | 7.5YR 5/6 | BS, ME, M/GR, CO, M | FR | ||||
Bw2 | 30–45 | 10 | 7.5YR 5/8 | BS, ME, M | FR | ||||
B@g | 45–60 | 2 | 10YR 5/6 | PL, ME, M | VI | ||||
CB | 60–85 | 3 | 10YR 6/8 | PL, ME, W | FI | ||||
P11 | A | 0–10 | 48 | 28 | 24 | 80 | 10YR 5/6 | GR, ME, M | VF |
CB | 10–20 | 80 | 10YR 4/4 | BS, ME, W | VF | ||||
P12 | OH | 0–3 | |||||||
A | 3–15 | 31 | 43 | 26 | 40 | 10YR 3/4 | GR, FI-CO, S | FR | |
Bw | 15–27 | 5 | 10YR 5/8 | BS, ME, W/GR, CO, M | FR | ||||
BC | 27–35 | 80 | 10YR 4/6 | SR | LO | ||||
CB | 35–70 | 90 | 10YR 5/4 | SR | LO | ||||
P13 | OL | 0–0.5 | |||||||
OF | 0.5–1 | ||||||||
AE | 1–17. | 36 | 43 | 21 | 20 | 10YR 4/2 | BS, ME, W/GR, ME, M | VF | |
Bw1 | 17–30 | 0 | 10YR 4/6 | BS, CO, S | FR | ||||
Bw2 | 30–55 | 20 | 10YR 4.5/6 | BS, CO, S | FR | ||||
P14 | BC | 0–50 | 60 | 29 | 11 | 90 | BS, ME, W/GR, ME, M | FR | |
P15 | OL | 0–1 | |||||||
A | 1–7 | 81 | 17 | 2 | 90 | 10YR 3/6 | GR, FI, W | VF | |
CB | 7–30 | 90 | 10YR 3/6 | SR | VF | ||||
P16 | OL | 0–1 | |||||||
A | 1–20 | 75 | 22 | 3 | 20 | 10YR 2/2 | BS, ME, W/GR, fi, M | VF | |
CB | 20–35 | 90 | 10YR 5/6 | SR | LO |
Profile | Hor. | pH | CaCO₃ (%) | BD (kg/m3) | C org (%) | N tot (%) | C/N |
---|---|---|---|---|---|---|---|
P01 | C | / | 78 | 1275 | 0.52 | 0.05 | 11.3 |
ACb | 8.25 | 70 | 1094 | 1.11 | 0.09 | 12.0 | |
P02 | A1 | 7.4 | 68 | 544 | 11.19 | 0.95 | 11.8 |
A2 | 8.0 | 70 | 802 | 3.79 | 0.22 | 17.2 | |
C | 78 | 1490 | 0.21 | 0.02 | 10.5 | ||
P03 | A | 7.6 | 64 | 662 | 8.089 | 0.58 | 13.9 |
C | 8.4 | 77 | 1502 | 0.20 | 0.04 | 5.0 | |
AB | 7.7 | 43 | 668 | 6.64 | 0.55 | 12.1 | |
CB | 8.4 | 74 | 1502 | 0.20 | 0.04 | 5.5 | |
P04 | A1 | 7.2 | 0 | 939 | 2.13 | 0.19 | 11.2 |
A2 | 7.9 | 12 | 882 | 2.71 | 0.41 | 6.6 | |
A3 | 7.4 | 2 | 436 | 17.60 | - | - | |
A4 | 7.5 | 0 | 909 | 2.40 | 0.23 | 10.4 | |
Bt1 | 7.6 | 1 | 1368 | 0.35 | 0.01 | 37.8 | |
Bt2 | 7.6 | 0 | 1357 | 0.37 | 0.01 | 39.9 | |
BC | 7.7 | 0 | 896 | 2.55 | 0.10 | 26.8 | |
2Bt3 | 7.6 | 0 | 1188 | 0.75 | 0.05 | 13.8 | |
P05 | A | 7.3 | 5 | 866 | 2.90 | 0.35 | 8.3 |
Bw | 7.5 | 1 | 1669 | 0.10 | 0.01 | 10.0 | |
P06 | A | 7.4 | 78 | 1009 | 1.59 | 0.10 | 16.4 |
BC | 8.1 | 87 | 1502 | 0.20 | 1.07 | 0.2 | |
P07 | A | 6.9 | 0 | 556 | 10.63 | 0.96 | 11.1 |
BA | 7.6 | 1 | 609 | 8.51 | 0.99 | 8.6 | |
Bw | 7.5 | 1 | 768 | 4.36 | 0.48 | 9.1 | |
P08 | A | 6.2 | 0 | 747 | 4.78 | 0.39 | 12.3 |
Bw | 7.3 | 0 | 901 | 2.50 | 0.28 | 9.0 | |
Bt | 7.2 | 0 | 978 | 1.81 | 0.14 | 12.7 | |
P09 | A | 7.1 | 17 | 1502 | 0.20 | 0.08 | 2.4 |
C | 8.1 | 34 | 1335 | 0.40 | 0.39 | 1.0 | |
P10 | A1 | 6.1 | 0 | 702 | 5.77 | 0.40 | 14.3 |
A2 | 7.1 | 0 | 576 | 9.80 | 0.75 | 13.1 | |
Bw1 | 7.8 | 8.1 | 1220 | 0.65 | 0.01 | 71.7 | |
Bw2 | 6.2 | 0 | 1204 | 0.70 | 0.04 | 17.5 | |
B@g | 7.6 | 7.6 | 1667 | 0.74 | 0.03 | 24.7 | |
CB | 7.6 | 12.1 | 1667 | 0.41 | 0.02 | 20.5 | |
P11 | A | 7.8 | 13.2 | 818 | 3.5 | 0.40 | 9.0 |
CB | 8.1 | 25.8 | 1092 | 1.1 | 0.10 | 11.7 | |
P12 | A | 5.7 | 0 | 731 | 5.11 | 0.41 | 12.4 |
Bw | 6.1 | 0 | 977 | 1.82 | 0.13 | 14.2 | |
BC | 7.5 | 29 | 1502 | 0.20 | 0.1 | 2.4 | |
CB | 10.5 | 44 | 1009 | 1.59 | 0.14 | 11.2 | |
P13 | AE | 5.7 | 0 | 758 | 4.56 | 0.44 | 10.3 |
Bw1 | 7.2 | 0 | 573 | 9.91 | 0.04 | 267.3 | |
Bw2 | 7 | 1.1 | 1035 | 1.42 | 0.11 | 13.2 | |
P14 | BC | 7.3 | 70 | 1502 | 0.20 | 0.12 | 1.6 |
P15 | A | 7.2 | 21 | 440 | 17.32 | 1.07 | 16.2 |
CB | 7.6 | 84 | 1502 | 0.20 | - | - | |
P16 | A | 7.3 | 0 | 497 | 13.60 | 1.41 | 9.6 |
CB | 8.2 | 86 | 1125 | 0.97 | 0.08 | 12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arosio, C.; Giupponi, L.; Giorgi, A.; Cislaghi, A.; D’Amico, M.E. Recovery of Soil-Based Ecosystem Services in Abandoned Ski Resorts: The Valcanale Case Study (Bergamo, Italian Alps). Sustainability 2025, 17, 5418. https://doi.org/10.3390/su17125418
Arosio C, Giupponi L, Giorgi A, Cislaghi A, D’Amico ME. Recovery of Soil-Based Ecosystem Services in Abandoned Ski Resorts: The Valcanale Case Study (Bergamo, Italian Alps). Sustainability. 2025; 17(12):5418. https://doi.org/10.3390/su17125418
Chicago/Turabian StyleArosio, Cristian, Luca Giupponi, Annamaria Giorgi, Alessio Cislaghi, and Michele Eugenio D’Amico. 2025. "Recovery of Soil-Based Ecosystem Services in Abandoned Ski Resorts: The Valcanale Case Study (Bergamo, Italian Alps)" Sustainability 17, no. 12: 5418. https://doi.org/10.3390/su17125418
APA StyleArosio, C., Giupponi, L., Giorgi, A., Cislaghi, A., & D’Amico, M. E. (2025). Recovery of Soil-Based Ecosystem Services in Abandoned Ski Resorts: The Valcanale Case Study (Bergamo, Italian Alps). Sustainability, 17(12), 5418. https://doi.org/10.3390/su17125418