Mechanisms in Hexavalent Chromium Removal from Aquatic Environment by the Modified Hydrochar-Loaded Bacterium Priestia megaterium Strain BM.1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Bacteria
2.2. Synthesis and Characterization of Materials
2.3. Adsorption Batch Experiment
2.4. Oxidative Stress in Bacteria
2.5. Microbial Secretion Variation and Characterization
2.6. Data Analysis
3. Results and Discussion
3.1. Identification of Bacteria and Characterization of Materials
3.2. Ca-Doped Hydrothermal Carbon Facilitates Hexavalent Chromium Removal by BM.1
3.3. Influencing Factors for Hexavalent Chromium Removal
3.3.1. Dosing Ratio
3.3.2. Concentration
3.3.3. Temperature
3.3.4. pH Values
3.3.5. Co-Existing Ions
3.4. Characterization of BM.1-Ca After Hexavalent ChromiumTreatment with BM.1
3.5. Oxidative Stress Response of Cells and Secretion of Antioxidant Enzymes
3.6. Characteristic Analysis of Extracellular Polymers
3.7. Proposed Mechanism of Hexavalent Chromium Removal
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, T.; Li, Y.; Hu, Y.; Zhang, Y.; Hou, B.; Yin, R.; Lu, H.; Ji, X.; Bai, X.; Lu, A.; et al. Back to chromite as a mineralogical strategy for long-term chromium pollution control. Nat. Commun. 2025, 16, 1975. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, X.; Jiang, Z.; Li, Q.; Huang, P.; Zheng, C. Reductive materials for remediation of hexavalent chromium contaminated soil: A review. Sci. Total Environ. 2021, 773, 145654. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Fang, Z.; Tsang, P.; Fang, J.; Zhao, D. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ. Pollut. 2016, 214, 94–100. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Palanivelu, J.; Hemavathy, R.V. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. Chemosphere 2024, 357, 141933. [Google Scholar] [CrossRef]
- Sharma, N.; Sodhi, K.K.; Kumar, M.; Singh, D.K. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100388. [Google Scholar] [CrossRef]
- Ackerley, D.F.; Gonzalez, C.F.; Park, C.H.; Blake, R.; Keyhan, M.; Matin, A. Chromate-Reducing Properties of Soluble Flavoproteins from Pseudomonasputida and Escherichia coli. Appl. Environ. Microbiol. 2004, 70, 873–882. [Google Scholar] [CrossRef]
- Mohamed, A.; Yu, L.; Fang, Y.; Ashry, N.; Riahi, Y.; Uddin, I.; Huang, Q. Iron mineralhumic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1. Chemosphere 2020, 247, 125902. [Google Scholar] [CrossRef]
- Ma, S.; Song, C.; Chen, Y.; Wang, F.; Chen, H. Hematite enhances the removal of Cr(VI) by Bacillus subtilis BSn5 from aquatic environment. Chemosphere 2018, 208, 579–585. [Google Scholar] [CrossRef]
- An, Q.; Deng, S.; Xu, J.; Nan, H.; Li, Z.; Song, J.L. Simultaneous reduction of nitrate and Cr(VI) by Pseudomonas aeruginosa strain G12 in wastewater. Ecotoxicol. Environ. Saf. 2019, 191, 110001. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, Z.; Wang, Q.; Wang, T.; Song, N.; Yu, H. One-step synthesis of ferrous disulfide and iron nitride modified hydrochar for enhanced adsorption and reduction of hexavalent chromium in Bacillus LD513 by promoting electron transfer and microbial metabolism. Bioresour. Technol. 2024, 396, 130415. [Google Scholar] [CrossRef] [PubMed]
- Nurfarahin, A.; Mohamed, M.; Phang, L. Culture medium development for microbial-derived surfactants production—An overview. Molecules 2018, 23, 1049. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Shi, Z.; Zhang, X.; Zhai, B.; Sun, J. Synthesis and properties of biodegradable hydrogel based on polysaccharide wound dressing. Materials 2023, 16, 1358. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Cao, S.Y.; Zhang, L.; Peng, X.; Wang, X.B.; Ai, Z.H.; Zhang, L.Z. Structural dependent Cr(VI) adsorption and reduction of biochar: Hydrochar versus pyrochar. Sci. Total Environ. 2021, 783, 147084. [Google Scholar] [CrossRef]
- Wan, Y.; Luo, H.; Cai, Y.; Dang, Z.; Yin, H. Selective removal of total Cr from a complex water matrix by chitosan and biochar modified-FeS: Kinetics and underlying mechanisms. J. Hazard. Mater. 2023, 454, 131475. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Pan, X.; Zhao, X.; Guo, P. Eco-utilization of steel slag: Preparation of Fe based calcium silicate hydrate and its application in As(V) removal. Appl. Surf. Sci. 2022, 597, 153763. [Google Scholar] [CrossRef]
- Kovacik, J.; Dresler, S. Calcium availability but not its content modulates metal toxicity in Scenedesmus quadricauda. Ecotox. Environ. Saf. 2018, 147, 664–669. [Google Scholar] [CrossRef]
- Luo, Y.; Ye, B.; Ye, J.; Pang, J.; Xu, Q.; Shi, J.; Long, B.; Shi, J. Ca2+ and SO42− accelerate the reduction of Cr(VI) by Penicillium oxalicum SL2. J. Hazard. Mater. 2020, 382, 121072. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Guo, S.; Xiao, C.; Zheng, Y.; Li, Y.; Chi, R. Removal and potential mechanisms of Cr (VI) contamination in phosphate mining wasteland by isolated Bacillus megatherium PMW-03. J. Clean. Prod. 2021, 322, 129062. [Google Scholar] [CrossRef]
- Yu, Y.; Long, Y.; Wu, H. Near-complete recovery of sugar monomers from cellulose and lignocellulosic biomass via a two-step process combining mechanochemical hydrolysis and dilute acid hydrolysis. Energy Fuels 2015, l30, 571–1578. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wei, Y. Facile synthesis of eggshell biochar beads for superior aqueous phosphate adsorption with potential urine P-recovery. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126589. [Google Scholar] [CrossRef]
- Dong, X.; Zhai, X.; Yang, J.; Pei, Y.; Guan, F.; Chen, Y.; Duan, J.; Hou, B. Desulfovibrio-induced gauzy FeS for efficient hexavalent chromium removal: The influence of SRB metabolism regulated by carbon source and electron carriers. J. Colloid Interface Sci. 2024, 674, 938–950. [Google Scholar] [CrossRef]
- Schommer, V.A.; Vanin, A.P.; Nazari, M.T.; Ferrari, V.; Dettmer, A.; Colla, L.M.; Piccin, J.S. Biochar-immobilized Bacillus spp. for heavy metals bioremediation: A review on immobilization techniques, bioremediation mechanisms and effects on soil. Sci. Total Environ. 2023, 881, 163385. [Google Scholar] [CrossRef]
- Shen, J.; Huang, G.; Yao, Y.; Li, M.; Zhang, P.; Zhao, K.; Rosendahl, S. Development of calcium-modified biochar for enhanced phytoremediation of human- induced salt pollutants (HISPs). Chemosphere 2024, 335, 141860. [Google Scholar] [CrossRef]
- Augustynowicz, J.; Lekka, M.B.; Wrobel, P.M. Mechanical, properties of Callitriche cophocarpa leaves under Cr(VI)/Cr(III) influence. Acta Physiol. Plant 2014, 36, 2025–2032. [Google Scholar]
- Gascóa, G.; Paz-Ferreirob, J.; Álvareza, M.L.; Saaa, A.; Méndez, A. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manag. 2018, 79, 395–403. [Google Scholar] [CrossRef]
- Banerjee, S.; Misra, A.; Chaudhury, S.; Dam, B. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. J. Hazard Mater. 2019, 367, 215–223. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Li, Y.; Bao, H.; Xing, J.; Zhu, Y.; Nan, J.; Xu, G. Biochar Acts as an Emerging Soil Amendment andIts Potential Ecological Risks: A Review. Energies 2023, 16, 010410. [Google Scholar]
- Mishra, S.; Chen, S.H.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Bharagava, R.N. Reduction of hexavalent chromium by Microbacterium paraoxydans isolated from tannery wastewater and characterization of its reduced products. J. Water Process. Eng. 2021, 39, 101748. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, A.; Kirrolia, A.; Kumar, R.; Yadav, N.; Bishnoi, N.R.; Lohchab, R.K. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour. Technol. 2011, 102, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, X.; Kou, Z.; Wang, J.; Shang, X.; Chen, C. The adsorption effects and mechanisms of biochar immobilized sulfate-reducing bacteria (SRB) on Cr(VI). J. Agro-Environ. Sci. 2021, 40, 866–875. [Google Scholar]
- Chang, J.; Deng, S.; Liang, Y.; Chen, J. Cr(VI) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from minesoil: Characterization of both Cr(VI) bioreduction and total Cr biosorption processes, Environ. Sci. Pollut. Res. 2019, 26, 28135–28145. [Google Scholar] [CrossRef]
- Kabir, M.M.; Fakhruddin, A.N.M.; Chowdhury, M.A.Z.; Pramanik, M.K.; Fardous, Z. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes. World J. Microbiol. Biotechnol. 2018, 34, 126. [Google Scholar] [CrossRef]
- Xu, L.; Luo, M.; Jiang, C.; Wei, X.; Kong, P.; Liang, X.; Liu, H. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl. Biochem. Biotechnol. 2011, 166, 933–941. [Google Scholar] [CrossRef]
- Sheng, Y.; Bibby, K.; Grettenberger, C.; Kaley, B.; Macalady, J.L.; Wang, G.; Burgos, W.D. Geochemical and temporal infuences on the enrichment of acidophilic iron-oxidizing bacterial communities. Appl. Environ. Microb. 2016, 82, 3611–3621. [Google Scholar] [CrossRef]
- Sau, G.B.; Chatterjee, S.; Mukherjee, S.K. Chromate reduction by cell-free extract of Bacillus firmus KUCr1. Pol. J. Microbiol. 2010, 59, 185–190. [Google Scholar] [CrossRef]
- Hora, A.; Shetty, K. Inhibitory and stimulating effect of single and multi-metal ions on hexavalent chromium reduction by Acinetobacter sp. Cr-B2. World J. Microbiol. Biotechnol. 2014, 30, 3211–3219. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, L.; Liu, Y.; Tang, W.; Fang, T.; Xing, B. A novel ternary magnetic Fe3O4/g-C3N4/Carbon layer composite for efficient removal of Cr (VI): A combined approach using both batch experiments and theoretical calculation. Sci. Total Environ. 2020, 730, 138928. [Google Scholar] [CrossRef]
- Zha, S.; Yu, A.; Wang, Z.; Shi, Q.; Cheng, X.; Liu, C.; Deng, C.; Zeng, G.; Luo, S.; Zhao, Z.; et al. Microbial strategies for effective hexavalent chromium removal: A comprehensive review. Chem. Eng. J. 2024, 489, 151457. [Google Scholar] [CrossRef]
- Villegas, L.B.; Pereira, C.E.; Colin, V.L.; Abate, C.M. The effect of sulphate and phosphate ions on Cr(VI) reduction by Streptomyces sp. MC1, including studies of growth and pleomorphism. Int. Biodeter. Biodegr. 2013, 82, 149–156. [Google Scholar] [CrossRef]
- Fang, J.; Sun, P.; Xu, S.; Luo, T.; Lou, J.; Han, J.; Song, Y. Impact of Cr(VI) on P removal performance in enhanced biological phosphorus removal (EBPR) system based on the anaerobic and aerobic metabolism. Bioresour. Technol. 2012, 121, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, Y.; Chao, C.; Liu, Y.; Liu, Y.; Zhang, C.; Tong, Y.; Bamanu, B.; Nuramkhaan, M. Recovery mechanism of bio-promoters on Cr(VI) suppressed denitrification: Toxicity remediation and enhanced electron transmission. Water Res. 2024, 252, 121230. [Google Scholar] [CrossRef]
- Hossan, S.; Hossain, S.; Islam, M.R.; Kabir, M.H.; Ali, S.; Islam, M.S.; Imran, K.M.; Moniruzzaman, M.; Mou, T.J.; Parvez, A.K.; et al. Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. Int. J. Environ. Res. Public Health 2020, 17, 6013. [Google Scholar] [CrossRef]
- Hemambika, B.; Kannan, V.R. Intrinsic characteristics of Cr6+-resistant bacteria isolated from an electroplating industry polluted soils for plant growth-promoting activities. Appl. Biochem. Biotechnol. 2012, 167, 1653–1667. [Google Scholar] [CrossRef]
- Imron, M.F.; Setiawan, W.; Putranto, T.W.C.; Abdullah, S.R.S.; Kurniawan, S.B. Biosorption of chromium by live and dead cells of Bacillus nitratireducens isolated from textile effluent. Chemosphere 2024, 359, 142389. [Google Scholar] [CrossRef]
- Guan, Y.; Huang, B.; Qian, C.; Wang, L.; Yu, H. Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge. Water Res. 2017, 113, 89–96. [Google Scholar] [CrossRef]
- Tian, T.; Zhou, K.; Li, Y.; Liu, D.; Yu, H. Phosphorus recovery from wastewater prominently through a Fe (II)–P oxidizing pathway in the autotrophic iron dependent denitrification process. Environ. Sci. Technol. 2020, 54, 11576–11583. [Google Scholar] [CrossRef]
- An, H.; Tian, T.; Wang, Z.; Jin, B.; Zhou, J. Role of extracellular polymeric substances in the immobilization of hexavalent chromium by Shewanella putrefaciens CN32 unsaturated biofilms. Sci. Total Environ. 2022, 810, 151184. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Siddika, A.; Rahman, K.; Nahar, K. Supplementation with Ascophyllum nodosum extracts mitigates arsenic toxicity by modulating reactive oxygen species metabolism and reducing oxidative stress in rice. Ecotoxicol. Environ. Saf. 2023, 255, 114819. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Yin, H.; Cao, Y.; Peng, H.; Lu, G.; Liu, Z.; Dang, Z. Cadmium-induced stress response of Phanerochaete chrysosporium during the biodegradation of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47). Ecotoxicol. Environ. Saf. 2018, 154, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Kaur, J.; Grewal, S.K.; Singh, I. Effect of heat stress on antioxidative defense system and its amelioration by heat acclimation and salicylic acid pre-treatments in three pigeonpea genotypes. Indian J. Agric. Biochem. 2019, 32, 106–110. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, H.; Li, Q.; Gao, N.; Yao, Y.; Xu, H. Combined remediation of Cd phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotoxicol. Environ. Saf. 2015, 120, 386–393. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Jin, Y.; Zhao, X.; Cai, Z. Adsorption of Pb(II), Cd(II) and Zn(II) by extracellular polymeric substances extracted from aerobic granular sludge: Efficiency of protein. J. Environ. Chem. Eng. 2015, 3, 1223–1232. [Google Scholar] [CrossRef]
- Shou, W.; Kang, F.; Lu, J. Nature and value of freely dissolved EPS ecosystem services: Insight into molecular coupling mechanisms for regulating metal toxicity. Environ. Sci. Technol. 2018, 52, 457–466. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, X.; Peng, C.; Shao, P.; Wei, F.; Li, S.; Liu, T.; Yang, L.; Ding, L.; Luo, X. Bioreduction performance of Cr (VI) by microbial extracellular polymeric substances (EPS) and the overlooked role of tryptophan. J. Hazard Mater. 2022, 433, 128822. [Google Scholar] [CrossRef]
- Xu, R.; Cao, J.; Feng, G.; Luo, J.; Feng, Q.; Ni, B.; Fang, F. Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning. Chem. Eng. J. 2022, 430, 132893. [Google Scholar] [CrossRef]
- Tian, J.; Han, Y.; Yin, P.; Zhang, J.; Guo, T.; Li, H.; Hou, Y.; Song, Y.; Guo, J. Response of dissimilatory perchlorate reducing granular sludge (DPR-GS) system to high-strength perchlorate and starvation stress in UASB reactor: Performance, kinetics and recovery mechanism. J. Environ. Chem. Eng. 2023, 11, 109414. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Das, S. Spectra metrology for interaction of heavy metals with extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 reveals static quenching and complexation dynamics of EPS with heavy metals. J. Hazard. Mater. 2024, 466, 133617. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, D.; Wu, X.; Xue, Y. Continuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortium. J. Hazard. Mater. 2021, 416, 125800. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhou, H.; Yin, H.; Wei, X.; Dang, Z. Functional bacterial consortium responses to biochar and implications for BDE-47 transformation: Performance, metabolism, community assembly and microbial interaction. Environ. Pollut. 2022, 313, 120120. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wanga, Z.; Bhatnagar, A.; Jeyakumar, P.; Wang, H.; Wang, Y.; Li, X. Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications. J. Hazard. Mater. 2021, 416, 125915. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Ouyang, X.; Li, Y.; Zhang, J.; Liu, J.; Yin, H. Mechanisms in Hexavalent Chromium Removal from Aquatic Environment by the Modified Hydrochar-Loaded Bacterium Priestia megaterium Strain BM.1. Sustainability 2025, 17, 5172. https://doi.org/10.3390/su17115172
Wu M, Ouyang X, Li Y, Zhang J, Liu J, Yin H. Mechanisms in Hexavalent Chromium Removal from Aquatic Environment by the Modified Hydrochar-Loaded Bacterium Priestia megaterium Strain BM.1. Sustainability. 2025; 17(11):5172. https://doi.org/10.3390/su17115172
Chicago/Turabian StyleWu, Mingyu, Xiaofang Ouyang, Yingchao Li, Junxin Zhang, Jiale Liu, and Hua Yin. 2025. "Mechanisms in Hexavalent Chromium Removal from Aquatic Environment by the Modified Hydrochar-Loaded Bacterium Priestia megaterium Strain BM.1" Sustainability 17, no. 11: 5172. https://doi.org/10.3390/su17115172
APA StyleWu, M., Ouyang, X., Li, Y., Zhang, J., Liu, J., & Yin, H. (2025). Mechanisms in Hexavalent Chromium Removal from Aquatic Environment by the Modified Hydrochar-Loaded Bacterium Priestia megaterium Strain BM.1. Sustainability, 17(11), 5172. https://doi.org/10.3390/su17115172