Photovoltaic Panel Parameter Estimation Enhancement Using a Modified Quasi-Opposition-Based Killer Whale Optimization Technique
Abstract
:1. Introduction
- Three-diode model (TDM) and four-diode model (FDM): Include more physical effects, such as parasitic phenomena, making them highly accurate but computationally demanding [13].
2. Photovoltaic Cell
2.1. Characteristics of the PV Generator
- The short-circuit current (Isc) represents the maximum current produced when the generator’s terminals are short-circuited;
- The open-circuit voltage (Voc) is the maximum voltage generated when the circuit is open (i.e., no current flows);
- The maximum power point (MPP) is the point on the PV generator’s I-V curve where the output power is maximized. It occurs at the bend of the curve, with Vmpp and Impp as the corresponding voltage and current, respectively.
2.2. Lumped-Parameter Model of PV Cell
2.3. The One-Diode Model
- Photocurrent (Iph) (in amperes, A): The current generated by the PV cell due to incident sunlight;
- Diode ideality factor (n): The quality of the diode and its deviation from ideal behavior;
- Reverse saturation current (Is) (often in micro-amperes, ): A small current that flows through the diode in reverse bias due to thermal generation of carriers;
- Shunt resistance (Rsh) (in ohms, ): Accounts for leakage currents across the PV cell, influencing the cell’s efficiency;
- Series resistance (Rs) (in ohms, ): Represents resistive losses in the cell and interconnections, reducing the output voltage.
3. PV Panels Parameter Extraction via Optimization Techniques
3.1. Techniques of Optimization
- -
- Killer Whale Optimization (KWO): This algorithm leverages the cooperative behavior of killer whales to achieve a strong global search capability and effectively balance between exploration and exploitation [20].
- -
- Improved Opposition-Based Particle Swarm Optimization (IOB-PSO): This enhances convergence and diversity with opposition-based learning, making it well suited for dynamic PV environments [10].
- -
- Improved Cuckoo Search Algorithm (ImCSA): This incorporates adaptive strategies to improve exploration and prevent premature convergence to local optima [7].
- -
- Chaotic Improved Artificial Bee Colony (CIABC): This integrates chaotic initialization and convergence stability mechanisms to improve accuracy and reliability in PV parameter estimation [8].
3.2. Modified Quasi-Opposition-Based Killer Whale Optimization Technique
3.2.1. Killer Whale Optimization (KWO)
- Mammal-Hunting Transients: These whales migrate with their prey, adapting their hunting strategies to follow seasonal movements;
- Fish-Feeding Residents: These whales remain in fixed regions, relying on predictable patterns to locate and capture fish.
3.2.2. Cluster for Search Space
3.2.3. Quasi-Opposition-Based Learning (QOBL)
- Dual Initialization: Both the population and its quasi-opposite population are initialized simultaneously;
- Fitness Evaluation: The fitness function is evaluated for both populations to assess the quality of each solution;
- Selection of Fittest Solutions: Only the fittest solutions from both populations are retained to form the new population.Particle, a member of the population , is written asЄ [a, b] such that, i = 1, 2,…, D and a, b є R;D denotes dimensions, and R designates real numbers;Opposite particle: each member has a single opposed written as
3.2.4. Quasi-Opposition-Based Killer Whale Optimization (QOB-KWO)
- The initialization stage (Quasi Opposition-Based Initialization): This step aims to achieve fitter starting candidate solutions and enhance the initial leader selection. By generating quasi-opposite solutions in this early phase, the algorithm increases the likelihood of starting closer to the global optimum. Key parameters determined during this stage include the following:
- Number of Matrilines and leaders in the population;
- Dimensions of the objective function;
- Global optimum estimation;
- Lower and upper bounds of the optimized variables;
- Number of clusters;
- Number of iterations for the clustering process.
- The KWO main loop (Quasi-Opposition-Based Generation Jumping): During the main iteration process, QOBL is employed to force the current population to jump into some new candidate solutions, which ideally are fitter than the current ones. This “generation jumping” strategy encourages the algorithm to escape potential stagnation zones and explore new, potentially fitter regions of the search space.
3.3. Lumped Model Parameters Extraction Using a Modified QOB-KWO
3.4. Algorithm Hyperparameter Tuning
- An improved exploration without losing efficiency (QOBL enhances exploration, reducing the need for a high c1).
- Faster convergence with reduced risk of premature convergence (a strong initial population and continuous improvement are confirmed due to the combination of QOBL and adaptive damping).
- Better balance between exploration and exploitation (early exploration is improved by high w and QOBL, while later exploitation is ensured by strong leader pursuing (c3 = 0.9)).
Algorithm 1: Pseudo code of the modified QOB-KWO |
1. Initialize the killer whale population 2. Create a quasi-opposition based killer whale population 3. Compute fitness value for both populations 4. Create a new population using only the fittest particles from both populations 5. Initially select leaders 6. Find the quasi opposite leaders 7. Compute fitness value for all leaders 8. Select the fittest leaders 9. for It = 1: Itmax 10. Whales population is clustered into groups, each group is guided by a leader 11. All search agents including leaders search for a prey 12. Leader of Matriline decides the potential prey to chase 13. Apply quasi opposition based learning 14. Leader scan for another potential prey 15. All members chase the prey depending on the leader’s decision 16. Matriline create search pattern for the prey 17. If (new potential prey < chased prey) then 18. Move to chase the new potential prey 19. Else Keep chasing old potential prey 20. End If 21. End for 22. Matriline memorize pattern of prey 23. Determine the global optimum value 24. End procedure |
4. Results and Discussion
4.1. Simulation Results and Discussion
4.2. Evaluation of Model Fitting Accuracy
4.3. Results of the Welch’s Two-Sample T-Test
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
MQOB-KWO | Modified Quasi-Opposition-Based Killer Whale Optimization |
QOBL | Quasi-Opposition-Based Learning) |
KWO | Killer Whale Optimization |
PSO | Particle Swarm Optimization |
CSA | Cuckoo Search Algorithm |
ABC | Artificial Bee Colony |
RMSE | Root Mean Square Error |
IAE | Integral Absolute Error |
STC | Standard Test Conditions |
ODM | One-Diode Model |
DDM | Double-Diode Model |
TDM | Three-Diode Model |
FDM | Four-Diode Model |
GWO | Grey Wolf Optimization |
GA | Genetic Algorithm |
NOCT | Nominal Operating Cell Temperature |
MPP | Maximum Power Point |
MCA | Musical Chairs Algorithm |
OBL | Opposition-Based Learning |
CIABC | Chaotic Improved Artificial Bee Colony |
ImCSA | Improved Cuckoo Search Algorithm |
IOB-PSO | Improved Opposition-Based Particle Swarm Optimization |
References
- International Energy Agency (IEA). Renewable Energy Market Report 2023. REN21. In Renewables Global Status Report; IEA: Paris, France, 2022. [Google Scholar]
- IEA—International Energy Agency. 2020. Available online: https://www.iea.org/energy-system/renewables/solar-pv (accessed on 20 December 2024).
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 64). Prog. Photovolt. Res. Appl. 2024, 32, 3–23. [Google Scholar] [CrossRef]
- Spampinato, C.; La Magna, P.; Valastro, S.; Smecca, E.; Arena, V.; Bongiorno, C.; Mannino, G.; Fazio, E.; Corsaro, C.; Neri, F.; et al. Infiltration of CsPbI3:EuI2 Perovskites into TiO2 Spongy Layers Deposited by gig-lox Sputtering Processes. Solar 2023, 3, 347–361. [Google Scholar] [CrossRef]
- Patel, H.; Agarwal, V. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics. IEEE Trans. Energy Convers. 2008, 23, 302–310. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R.; Filho, E.R. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- Kang, T.; Yao, J.; Jin, M.; Yang, S.; Duong, T. A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic Models. Energies 2018, 11, 1060. [Google Scholar] [CrossRef]
- Oliva, D.; Ewees, A.A.; Aziz, M.A.E.; Hassanien, A.E.; Cisneros, M.P. A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells. Energies 2017, 10, 865. [Google Scholar] [CrossRef]
- Touabi, C.; Bentarzi, H. Photovoltaic Panel Parameters Estimation Using Grey Wolf Optimization Technique. Eng. Proc. 2022, 14, 3. [Google Scholar]
- Touabi, C.; Ouadi, A.; Bentarzi, H. Photovoltaic Panel Parameters Estimation Using an Opposition Based Initialization Particle Swarm Optimization. Eng. Proc. 2023, 3, 16. [Google Scholar]
- Gamgula, B.; Saripalli, B.P. Enhanced dynamic inertia particle swarm optimization with velocity clamping for accurate parameter extraction in one-diode and two-diode solar PV models. World J. Eng. 2025; ahead-of-print. [Google Scholar] [CrossRef]
- Nema, S.; Nema, R.K.; Agnihotri, G. MATLAB/Simulink-Based Study of Photovoltaic Cells/Modules/Array and Their Experimental Verification. Int. J. Energy Environ. 2010, 1, 487–500. [Google Scholar]
- Saripalli, B.P.; Gamgula, B.; Ravilisetty, R.; Kumar, P.; Singh, G.; Singh, S. Advanced parameter extraction optimization technique for the four-diode model approach. e-Prime Adv. Electr. Eng. Electron. Energy 2024, 10, 100861. [Google Scholar] [CrossRef]
- Allouhi, A.; Saadani, R.; Buker, M.; Kousksou, T.; Jamil, A.; Rahmoune, M. Energetic, economic and environmental (3E) analyses and LCOE estimation of three technologies of PV grid-connected systems under different climates. Sol. Energy 2019, 178, 25–36. [Google Scholar] [CrossRef]
- Udoka, E.V.H.; Umaru, K.U.; Edozie, E.; Nafuna, R.; Yudaya, N. The Differences between Single Diode Model and Double Diode Models of a Solar Photovoltaic Cells: Systematic Review. J. Eng. Technol. Appl. Sci. JETAS 2023, 5, 57–66. [Google Scholar] [CrossRef]
- Saripalli, B.P.; Singh, G.; Singh, S. A simplified three-diode model for photovoltaic module: Cell modeling and performance analysis. World J. Eng. 2024, 21, 1173–1182. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Alavi, A.H. Krill Herd: A New Bio-Inspired Optimization Algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- Kazimipour, B.; Li, X.; Qin, A.K. Initialization methods for large scale global optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2750–2757. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar]
- Biyanto, T.R.; Matradji, B.; Irawan, S.; Febrianto, H.Y.; Afdanny, N.; Rahman, A.H.; Gunawan, K.S.; Pratama, J.A.; Bethiana, T.N. Killer Whale Algorithm: An Algorithm Inspired by the Life of Killer Whale. Procedia Comput. Sci. 2017, 124, 151–157. [Google Scholar] [CrossRef]
- Sutikno, T.; Pamungkas, A.; Pau, G.; Yudhana, A.; Facta, M. A Review of Recent Advances in Metaheuristic Maximum Power Point Tracking Algorithms for Solar Photovoltaic Systems Under Partial-Shading Conditions. Indones. J. Sci. Technol. 2022, 7, 131–158. [Google Scholar] [CrossRef]
- Messenger, R.A.; Ventre, J. Photovoltaic Systems Engineering, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Touabi, C.; Ouadi, A.; Zemmouri, R.; Bentarzi, H. PC-Based Real-Time Platform for PV Module Characterization and ODM Parameters Identification. In Proceedings of the 1st International Conference on Advanced Renewable Energy Systems. ICARES 2022, Tipaza, Algeria, 18–20 December 2022; Mellit, A., Belmili, H., Seddik, B., Eds.; Springer Proceedings in Energy: Singapore, 2024. [Google Scholar]
- Eltamaly, A.M.; Rabie, A.H. A Novel Musical Chairs Optimization Algorithm. Arab. J. Sci. Eng. 2023, 48, 10371–10403. [Google Scholar] [CrossRef]
- Au, W.W.; Ford, J.K.; Horne, J.K.; Allman, K.A.N. Echolocation signals of free-ranging Killer whales (Orcinus orca) and modeling of foraging for Chinook salmon (Oncorhynchus tshawytscha). J. Acoust. Soc. Am. 2004, 115, 901–909. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Rawa, M.; Calasan, M.; Abusorrah, A.; Alhussainy, A.A.; Al-Turki, Y.; Ali, Z.M.; Sindi, H.; Mekhilef, S.; Aleem, S.H.E.A.; Bassi, H. Single Diode Solar Cells—Improved Model and Exact Current–Voltage Analytical Solution Based on Lambert’s W Function. Sensors 2022, 22, 4173. [Google Scholar] [CrossRef]
- Ćalasana, M.; Abdel Aleem, S.H.E.; Zobaa, A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar] [CrossRef]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An Overview of Variants and Advancements of PSO Algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Li, X.-L.; Serra, R.; Olivier, J. A Multi-Component PSO Algorithm with Leader Learning Mechanism for Structural Damage Detection. Appl. Soft Comput. 2022, 116, 108315. [Google Scholar] [CrossRef]
- Fathy, A.; Rezk, H. Parameter Estimation of Photovoltaic System Using Imperialist Competitive Algorithm. Renew. Energy 2017, 111, 307–320. [Google Scholar] [CrossRef]
Specification | STM6-40/36 | STP6-120/36 |
---|---|---|
Manufacturer | Anhui Schutten Solar Energy Co., Ltd. | Anhui Schutten Solar Energy Co., Ltd. |
Model Number | STM6-40/36 | STP6-120/36 |
Cell Type | Monocrystalline Silicon | Polycrystalline Silicon |
Number of Cells | 36 | 36 |
Open Circuit Voltage (Voc) | 21.02 V | 19.21 V |
Short Circuit Current (Isc) | 1.663 A | 7.48 A |
Voltage at Pmax (Vmp) | 16.98 V | 14.93 V |
Current at Pmax (Imp) | 1.50 A | 6.83 A |
Temperature [°C] | 51 | 55 |
Algorithm Parameters | Selected Value | Description | Justification |
---|---|---|---|
Cognitive Factor c1 | 0.5 | Controls personal learning or self-exploration | Since QOBL enhances diversity, c1 is reduced to limit excessive randomness and self-exploration [29,30,31]. |
Social Factor c2 | 2 | Governs social learning or group influence | To preserve strong group guidance and alignment with biological inspiration, c2 is maintained as in the original KWO [20]. |
Leader Factor c3 | 0.9 | Determines the influence of the best leader | This value ensures strong convergence toward the global best [32], balanced by QOBL to avoid premature convergence. |
Damping Ratio (inertia weight) w | 0.2–0.9 (Adaptive) | Controls the trade-off between exploration and exploitation across iterations | Adaptive scheme: high w at start encourages exploration; low w at end supports exploitation [10,29,31]. QOBL counteracts excessive convergence |
No. of whales | 80 | Number of members in the population. | Empirically chosen to ensure sufficient diversity while maintaining reasonable computational cost. |
Maximum Iteration | 80 | Total number of optimization cycles. | Provides a balanced trade-off between solution quality and computational time for typical PV parameter estimation problems. |
Parameter | Search Range |
---|---|
[0.95 × , 1.05 × ] | |
[1µA, 5 µA] | |
[1,2] | |
[, 1500 Ω] | |
[0, ] |
Module | Type | Temperature [°C] | ||
---|---|---|---|---|
STM6-40/36 | Monocrystalline | 36 | 51 | NA |
STP6-120/36 | Polycrystalline | 36 | 55 | NA |
Meth. | Parameters | Error | ||||
---|---|---|---|---|---|---|
N | RMSE | |||||
CIABC [8] | 1.664 | 1.676 | 1.498 | 4.400 | 15.617 | 1.819 × 10−3 |
ImCSA [7] | 1.664 | 2.000 | 1.533 | 2.914 | 15.841 | 1.795 × 10−3 |
IOB-PSO [10] | 1.663 | 2.884 | 1.570 | 1.5 × 10−3 | 598.735 | 1.7723 × 10−3 |
KWO | 1.663 | 2.529 | 1.560 | 3.987 × 10−2 | 591.080 | 1.7761 × 10−3 |
MQOB-KWO * | 1.663 | 2.886 | 1.570 | 1.412 × 10−3 | 599.026 | 1.7723 × 10−3 |
Item | Experimental Data | MQOB-KWO | KWO | |||
---|---|---|---|---|---|---|
V (V) | I (A) | (A) | IAE | (A) | IAE | |
1 | 0.118 | 1.663 | 1.66299 | 0.00001 | 1.662881 | 0.000118 |
2 | 2.237 | 1.661 | 1.662883 | 0.001883 | 1.662774 | 0.001773 |
3 | 5.434 | 1.653 | 1.662656 | 0.009656 | 1.662551 | 0.00955 |
4 | 7.26 | 1.65 | 1.662376 | 0.012376 | 1.66228 | 0.01228 |
5 | 9.68 | 1.645 | 1.661227 | 0.016227 | 1.66118 | 0.01618 |
6 | 11.59 | 1.64 | 1.658032 | 0.018032 | 1.658109 | 0.018109 |
7 | 12.6 | 1.636 | 1.654022 | 0.018022 | 1.654238 | 0.018238 |
8 | 13.37 | 1.629 | 1.648716 | 0.019716 | 1.649102 | 0.020102 |
9 | 14.09 | 1.619 | 1.640797 | 0.021797 | 1.641416 | 0.022416 |
10 | 14.88 | 1.597 | 1.626785 | 0.029785 | 1.627781 | 0.03078 |
11 | 15.59 | 1.581 | 1.606602 | 0.025602 | 1.608101 | 0.027101 |
12 | 16.4 | 1.542 | 1.568928 | 0.026928 | 1.571652 | 0.029652 |
13 | 16.71 | 1.524 | 1.549129 | 0.025129 | 1.551946 | 0.027946 |
14 | 16.98 | 1.5 | 1.528046 | 0.028046 | 1.531332 | 0.031331 |
15 | 17.13 | 1.485 | 1.514681 | 0.029681 | 1.518265 | 0.033264 |
16 | 17.32 | 1.465 | 1.495826 | 0.030826 | 1.499831 | 0.03483 |
17 | 17.91 | 1.388 | 1.420512 | 0.032512 | 1.426243 | 0.038243 |
18 | 19.08 | 1.118 | 1.155525 | 0.037525 | 1.168442 | 0.050441 |
Sum of IAE | 0.383753 | 0.422362 |
Meth. | Parameters | Error | ||||
---|---|---|---|---|---|---|
n | RMSE | |||||
CIABC [8] | 7.4841 | 1.29 | 1.2149 | 5.1000 | 9.89 | 1.6286 × 10−2 |
ImCSA [7] | 7.4827 | 1.00 | 1.1977 | 5.3869 | 10.00 | 1.5865 × 10−2 |
IOB-PSO [10] | 7.4570 | 1.28 | 1.2200 | 0.1882 | 1499.84 | 1.5654 × 10−2 |
KWO | 7.4570 | 1.31 | 1.2200 | 0.1872 | 1481.56 | 1.5697 × 10−2 |
MQOB-KWO * | 7.4600 | 1.44 | 1.2200 | 0.1766 | 1499.58 | 1.4124 × 10−2 |
Item | Experimental Data | MQOB-KWO | KWO | |||
---|---|---|---|---|---|---|
V (V) | I (A) | (A) | IAE | (A) | IAE | |
1 | 17.65 | 3.83 | 3.822788 | 0.007212 | 3.964621 | 0.134621 |
2 | 17.41 | 4.29 | 4.266257 | 0.023742 | 4.388067 | 0.098067 |
3 | 17.25 | 4.56 | 4.540371 | 0.019628 | 4.650033 | 0.090033 |
4 | 17.1 | 4.79 | 4.781844 | 0.008155 | 4.880965 | 0.090964 |
5 | 16.9 | 5.07 | 5.080803 | 0.010803 | 5.167098 | 0.097097 |
6 | 16.76 | 5.27 | 5.274742 | 0.004742 | 5.352861 | 0.082861 |
7 | 16.34 | 5.75 | 5.784055 | 0.034055 | 5.841305 | 0.091305 |
8 | 16.08 | 6 | 6.048192 | 0.048192 | 6.095004 | 0.095004 |
9 | 15.71 | 6.36 | 6.363382 | 0.003381 | 6.398129 | 0.038128 |
10 | 15.39 | 6.58 | 6.584936 | 0.004935 | 6.611483 | 0.031482 |
11 | 14.93 | 6.83 | 6.833544 | 0.003543 | 6.851195 | 0.021194 |
12 | 14.58 | 6.97 | 6.977264 | 0.007264 | 6.989932 | 0.019931 |
13 | 14.17 | 7.1 | 7.106175 | 0.006175 | 7.114481 | 0.014481 |
14 | 13.59 | 7.23 | 7.233647 | 0.003646 | 7.237744 | 0.007743 |
15 | 13.16 | 7.29 | 7.298052 | 0.008052 | 7.300064 | 0.010063 |
16 | 12.74 | 7.34 | 7.34343 | 0.003429 | 7.34399 | 0.003989 |
17 | 12.36 | 7.37 | 7.373483 | 0.003483 | 7.37309 | 0.00309 |
18 | 11.81 | 7.38 | 7.403794 | 0.023794 | 7.402447 | 0.022447 |
19 | 11.17 | 7.41 | 7.425879 | 0.015879 | 7.423841 | 0.013841 |
20 | 10.32 | 7.44 | 7.442219 | 0.002218 | 7.439672 | 0.000328 |
21 | 9.74 | 7.42 | 7.448452 | 0.028451 | 7.445712 | 0.025712 |
22 | 9.06 | 7.45 | 7.452881 | 0.00288 | 7.450003 | 0.000003 |
Sum of IAE | 0.273669 | 0.992393 |
Meth. | Coefficient of Determination | |
---|---|---|
STM6−40/36 | STP6−120/36 | |
KWO | 0.959142 | 0.997253 |
MQOB-KWO * | 0.967861 | 0.999782 |
RMSE | Worst | Median | Best | Mean | Standard Deviation |
---|---|---|---|---|---|
KWO | 2.963 × 10−3 | 1.835 × 10−3 | 1.17761 × 10−3 | 1.915 × 10−3 | 2.26 × 10−4 |
MQOB-KWO * | 1.951 × 10−3 | 1.785 × 10−3 | 1.17723 × 10−3 | 1.806 × 10−3 | 4.4 × 10−5 |
RMSE | Worst | Median | Best | Mean | Standard Deviation |
---|---|---|---|---|---|
KWO | 1.9932 × 10−2 | 1.7926 × 10−2 | 1.5697 × 10−2 | 1.7771 × 10−2 | 1.223 × 10−3 |
MQOB-KWO * | 1.8633 × 10−2 | 1.7335 × 10−2 | 1.4124× 10−2 | 1.7168 × 10−2 | 1.179 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touabi, C.; Ouadi, A.; Bentarzi, H.; Recioui, A. Photovoltaic Panel Parameter Estimation Enhancement Using a Modified Quasi-Opposition-Based Killer Whale Optimization Technique. Sustainability 2025, 17, 5161. https://doi.org/10.3390/su17115161
Touabi C, Ouadi A, Bentarzi H, Recioui A. Photovoltaic Panel Parameter Estimation Enhancement Using a Modified Quasi-Opposition-Based Killer Whale Optimization Technique. Sustainability. 2025; 17(11):5161. https://doi.org/10.3390/su17115161
Chicago/Turabian StyleTouabi, Cilina, Abderrahmane Ouadi, Hamid Bentarzi, and Abdelmadjid Recioui. 2025. "Photovoltaic Panel Parameter Estimation Enhancement Using a Modified Quasi-Opposition-Based Killer Whale Optimization Technique" Sustainability 17, no. 11: 5161. https://doi.org/10.3390/su17115161
APA StyleTouabi, C., Ouadi, A., Bentarzi, H., & Recioui, A. (2025). Photovoltaic Panel Parameter Estimation Enhancement Using a Modified Quasi-Opposition-Based Killer Whale Optimization Technique. Sustainability, 17(11), 5161. https://doi.org/10.3390/su17115161