Characteristics and Lag Time of Meteorological Drought Propagation to Hydrological Drought in the Haihe River Basin
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Hydrological Data
2.2.2. Meteorological Data
3. Methods
3.1. Drought Feature Identification
3.1.1. Drought Indices
3.1.2. Copula Function
3.1.3. Trend and Change Point Analysis
3.2. Correlation Between Meteorological and Hydrological Drought
3.3. Identification of Meteorological and Hydrological Drought Events
3.4. Drought Propagation Lag Time
4. Results
4.1. Analysis of Meteorological and Hydrological Drought Characteristics
4.2. Correlation and Propagation Pathways Between Meteorological and Hydrological Drought
4.3. Analysis of the Evolution of Characteristics in the Propagation Events of Meteorological Drought to Hydrological Drought
4.4. Analysis of Lag Time in the Propagation from Meteorological to Hydrological Drought
5. Discussion
5.1. Comparison with Other Studies
Region | Lag Time (Month) | Propagation Threshold (Month) | Source |
---|---|---|---|
Yangtze River Basin, China | 2–4 | - | [15] |
Central Yunnan, China | 1–9 | 1.08–2.57 | [57] |
Pearl River Basin China | 2–5 | - | [56] |
India | 1–3 | - | [77] |
Wei River Basin, China | - | 7.5–27.5 | [76] |
Luanhe River Basin, China | 1–7 | - | [61] |
Henan, China | 1–6 | - | [71] |
Hanjiang, China | 6–10 | - | [48] |
United Kingdom | 1–9 | - | [78] |
Awash Basin, Ethiopia | 4–6 | - | [79] |
Western Cape, South Africa | 1–2 | - | [67] |
South Africa | 1–24 | - | [68] |
5.2. Has the Mechanism of Propagation from Meteorological Drought to Hydrological Drought Changed?
6. Conclusions
- Over the past 60 years, there has been an overall trend of worsening drought severity in the HRB. In 1991, there was a turning point where the SPEI shifted from a decreasing trend to an increasing trend, while the SRI continued to decline, with a greater decrease.
- Joint probability analysis shows that the HRB mainly experiences short-duration, low-peak, and weak-severity hydrological drought events.
- There is a positive correlation between meteorological drought and hydrological drought, with five distinct positive correlations at the monthly scale and two at the seasonal scale, with the strongest correlation at the annual scale.
- There are four main pathways for the propagation of meteorological drought to hydrological drought, with meteorological drought leading to hydrological drought being the main propagation process.
- The propagation of meteorological drought to hydrological drought is divided into three major periods. In the third period (2001–2015), the duration of hydrological drought accounts for 49% of the total duration, with hydrological drought severity exceeding that of meteorological drought.
- Hydrological drought occurrence lags behind meteorological drought by three months.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Hao, Z.; Singh, V.P.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef] [PubMed]
- Konapala, G.; Mishra, A. Quantifying Climate and Catchment Control on Hydrological Drought in the Continental United States. Water Resour. Res. 2020, 56, e2018WR024620. [Google Scholar] [CrossRef]
- Surendran, U.; Kumar, V.; Ramasubramoniam, S.; Raja, P. Development of drought indices for semi-arid region using drought indices calculator (DrinC)—A case study from Madurai District, a semi-arid region in India. Water Resour. Manag. 2017, 31, 3593–3605. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.; Huang, Q.; Huang, G.; Wang, H.; Leng, G.; Wang, L.; Guo, Y. Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability to drought stress of the Loess Plateau in China. Remote Sens. Environ. 2019, 232, 111290. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Huang, Q.; Leng, G.; Wang, H.; He, L.; Fang, W.; Li, P. Assessing GRACE-based terrestrial water storage anomalies dynamics at multi-timescales and their correlations with teleconnection factors in Yunnan Province, China. J. Hydrol. 2019, 574, 836–850. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, S.; Huang, Q.; Wang, H.; Fang, W.; Yang, Y.; Wang, L. Assessing socioeconomic drought based on an improved Multivariate Standardized Reliability and Resilience Index. J. Hydrol. 2019, 568, 904–918. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Van Lanen, H.A. Making the distinction between water scarcity and drought using an observation-modeling framework. Water Resour. Res. 2013, 49, 1483–1502. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.; Wang, H.; Huang, Q.; Leng, G.; Fang, W.; Zhang, Y. Spatio-temporal characteristics of drought structure across China using an integrated drought index. Agric. Water Manag. 2019, 218, 182–192. [Google Scholar] [CrossRef]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global Changes in Drought Conditions Under Different Levels of Warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Wu, F.; Yang, X.; Yuan, X.; Ren, L.; Yuan, S.; Yuan, F.; Jiang, S.; Liu, Y.; Zhang, H. How will drought evolve in global arid zones under different future emission scenarios? J. Hydrol. Reg. Stud. 2024, 51, 101661. [Google Scholar] [CrossRef]
- Zhang, B.; He, C. A modified water demand estimation method for drought identification over arid and semiarid regions. Agric. For. Meteorol. 2016, 230, 58–66. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Chen, Y.; Wang, F.; Liu, Y.; Zhao, W. Anthropogenic drought in the Yellow River basin: Multifaceted and weakening connections between meteorological and hydrological droughts. J. Hydrol. 2023, 619, 129273. [Google Scholar] [CrossRef]
- Zhang, X.; She, D.; Xia, J.; Zhang, L.; Deng, C.; Liu, Z. The changing characteristics of propagation time from meteorological drought to hydrological drought in the Yangtze River basin, China. Atmos. Res. 2023, 290, 106774. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, Y.; Wang, X.; Li, X.; Lei, T. The performance of SPEI integrated remote sensing data for monitoring agricultural drought in the North China Plain. Field Crops Res. 2023, 302, 109041. [Google Scholar] [CrossRef]
- Li, Q.; Fan, G.; Zhou, D.; Yu, S.; Ya, O. Application of meteorological drought composite index in Southwest China in 2009–2010. J. Chengdu Univ. Inf. Technol. 2012, 27, 267–272. [Google Scholar]
- Liu, X.; Pan, Y.; Zhu, X.; Yang, T.; Bai, J.; Sun, Z. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 2018, 564, 984–996. [Google Scholar] [CrossRef]
- Wang, S.; Mo, X.; Hu, S.; Liu, S.; Liu, Z. Assessment of droughts and wheat yield loss on the North China Plain with an aggregate drought index (ADI) approach. Ecol. Indic. 2018, 87, 107–116. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 degrees C and 2.0 degrees C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef]
- Geng, G.; Zhang, B.; Gu, Q.; He, Z.; Zheng, R. Drought propagation characteristics across China: Time, probability, and threshold. J. Hydrol. 2024, 631, 130805. [Google Scholar] [CrossRef]
- Hellwig, J.; de Graaf, I.E.M.; Weiler, M.; Stahl, K. Large-Scale Assessment of Delayed Groundwater Responses to Drought. Water Resour. Res. 2020, 56, e2019WR025441. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global Planet. Change 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Q.; Chang, J.; Leng, G. Linkages between hydrological drought, climate indices and human activities: A case study in the Columbia River basin. Int. J. Climatol. 2016, 36, 280–290. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. Multivariate standardized drought index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal dynamics of global drought. Geophys. Res. Lett. 2017, 44, 2254–2263. [Google Scholar] [CrossRef]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Xie, Y.; Huang, Q.; Wang, H.; Leng, G. Assessing the non-stationarity of low flows and their scale-dependent relationships with climate and human forcing. Sci. Total Environ. 2019, 687, 244–256. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yuan, X.; Yao, H.; Zhao, Y.; AghaKouchak, A. The interactions between hydrological drought evolution and precipitation-streamflow relationship. J. Hydrol. 2021, 597, 126210. [Google Scholar] [CrossRef]
- Vu, M.; Raghavan, V.; Liong, S.-Y. Ensemble climate projection for hydro-meteorological drought over a river basin in Central Highland, Vietnam. KSCE J. Civ. Eng. 2015, 19, 427–433. [Google Scholar] [CrossRef]
- Van Loon, A.; Laaha, G. Hydrological drought severity explained by climate and catchment characteristics. J. Hydrol. 2015, 526, 3–14. [Google Scholar] [CrossRef]
- Li, R.; Chen, N.; Zhang, X.; Zeng, L.; Wang, X.; Tang, S.; Li, D.; Niyogi, D. Quantitative analysis of agricultural drought propagation process in the Yangtze River Basin by using cross wavelet analysis and spatial autocorrelation. Agric. For. Meteorol. 2020, 280, 107809. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.; Stahl, K.; Hannaford, J.; Di Baldassarre, G.; Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 89–91. [Google Scholar] [CrossRef]
- Ma, F.; Luo, L.; Ye, A.; Duan, Q. Drought Characteristics and Propagation in the Semiarid Heihe River Basin in Northwestern China. J. Hydrometeorol. 2019, 20, 59–77. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yao, H.; Gao, L.; Chen, Y.; Liu, M. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. J. Hydrol. 2017, 551, 495–507. [Google Scholar] [CrossRef]
- Liu, J.; Qin, D.; Wang, H.; Wang, M.; Yang, Z. Dualistic water cycle pattern and its evolution in Haihe River basin. Chin. Sci. Bull. 2010, 55, 1688–1697. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, Y.; Wang, Q.; Liu, R.; Li, E. The impacts of different levels of precipitation on water resources attenuation in the Haihe River Basin. China Rural Water Hydropower 2023, 2023, 55–62. [Google Scholar]
- Yang, H.; Meng, R.; Li, W.; Li, Z.; Zhi, C.; Bao, X.; Li, C.; Liu, F.; Wu, H.; Ren, Y. Groundwater resources of the Haihe River Basin and its development potential. Geol. China 2021, 48, 1032–1051. [Google Scholar]
- Yan, X.; Zhang, B.; Yao, Y.; Yang, Y.; Li, J.; Ran, Q. GRACE and land surface models reveal severe drought in eastern China in 2019. J. Hydrol. 2021, 601, 126640. [Google Scholar] [CrossRef]
- Zhao, A.; Xiang, K.; Zhang, A.; Zhang, X. Spatial-temporal evolution of meteorological and groundwater droughts and their relationship in the North China Plain. J. Hydrol. 2022, 610, 127903. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Q.; Ding, Y.; Zhang, D. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Environ. Sci. Pollut. Res. 2022, 29, 4128–4144. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, N.; Sun, H.; Ye, L.; Zhai, J. Changes and relationships of climatic and hydrological droughts in the Jialing River Basin, China. PLoS ONE 2015, 10, e0141648. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Wang, X.; Cai, H.; Zhou, Z.; Sun, Y.; Shi, H. Propagation of meteorological to hydrological drought for different climate regions in China. J. Environ. Manag. 2021, 283, 111980. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, T.; Lin, Q.; Singh, V.P.; Dong, X.; Chen, C.; Liu, J.; Chang, W.; Wang, G. A new non-stationary hydrological drought index encompassing climate indices and modified reservoir index as covariates. Water Resour. Manag. 2022, 36, 2433–2454. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, J.; Wang, Y.; Yang, Y.; Guo, Y.; Yang, G.; He, B. Temporal and spatial propagation characteristics of meteorological drought to hydrological drought and influencing factors. Atmos. Res. 2024, 299, 107212. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Sang, Y.-F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Ciria, T.P.; Chiogna, G. Intra-catchment comparison and classification of long-term streamflow variability in the Alps using wavelet analysis. J. Hydrol. 2020, 587, 124927. [Google Scholar] [CrossRef]
- Kisi, O. Wavelet regression model for short-term streamflow forecasting. J. Hydrol. 2010, 389, 344–353. [Google Scholar] [CrossRef]
- Yevjevich, V.M. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Colorado State University: Fort Collins, CO, USA, 1967; Volume 23. [Google Scholar]
- Chen, N.; Li, R.; Zhang, X.; Yang, C.; Wang, X.; Zeng, L.; Tang, S.; Wang, W.; Li, D.; Niyogi, D. Drought propagation in Northern China Plain: A comparative analysis of GLDAS and MERRA-2 datasets. J. Hydrol. 2020, 588, 125026. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, H.; Fu, Q.; Ding, Y.; Li, T.; Liu, S. Investigating the Propagation From Meteorological to Hydrological Drought by Introducing the Nonlinear Dependence With Directed Information Transfer Index. Water Resour. Res. 2021, 57, e2021WR030028. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Bai, Y.; Wang, W. Propagation characteristics of meteorological drought to hydrological drought considering nonlinear correlations—A case study of the Hanjiang River Basin, China. Ecol. Inf. 2024, 80, 102512. [Google Scholar] [CrossRef]
- Haslinger, K.; Koffler, D.; Schöner, W.; Laaha, G. Exploring the link between meteorological drought and streamflow: Effects of climate-catchment interaction. Water Resour. Res. 2014, 50, 2468–2487. [Google Scholar] [CrossRef]
- Guan, B.; Jiang, S.; Zhao, Y.; Li, H.; Dong, Y.; Chang, H.; He, G.; Han, X. Spatial and temporal evolution of drought and its relationship with climate factors in the HaiHe River Basin. Water Resour. Prot. 2023, 39, 59–68. [Google Scholar]
- Zhang, Q.; Miao, C.; Guo, X.; Gou, J.; Su, T. Human activities impact the propagation from meteorological to hydrological drought in the Yellow River Basin, China. J. Hydrol. 2023, 623, 129752. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Wang, X.; Hao, Z.; Singh, V.P.; Hao, F. Propagation from meteorological drought to hydrological drought under the impact of human activities: A case study in northern China. J. Hydrol. 2019, 579, 124147. [Google Scholar] [CrossRef]
- Jiang, T.; Su, X.; Zhang, G.; Zhang, T.; Wu, H. Estimating propagation probability from meteorological to ecological droughts using a hybrid machine learning copula method. Hydrol. Earth Syst. Sci. 2023, 27, 559–576. [Google Scholar] [CrossRef]
- Das, S.; Das, J.; Umamahesh, N. Investigating the propagation of droughts under the influence of large-scale climate indices in India. J. Hydrol. 2022, 610, 127900. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Wang, X.; Peng, X.; Cai, H. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci. Total Environ. 2020, 716, 137166. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.; Guo, X.; Shi, X.; Han, H. Temporal and spatial evolution of drought in Haihe River Basin from 1960 to 2020. Ecol. Indic. 2022, 138, 108809. [Google Scholar] [CrossRef]
- Zhang, T.; Su, X.; Zhang, G.; Wu, H.; Wang, G.; Chu, J. Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin, China. Sci. Total Environ. 2022, 819, 153030. [Google Scholar] [CrossRef]
- Botai, J.O.; Botai, C.M.; de Wit, J.P.; Muthoni, M.; Adeola, A.M. Analysis of drought progression physiognomies in South Africa. Water 2019, 11, 299. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W. Spatial and temporal characterization of the urban drought in the Western Cape, South Africa, from 2015 to 2017. Adv. Earth Sci. 2023, 38, 493–504. [Google Scholar] [CrossRef]
- Ghomash, S.K.B.; Caviedes-Voullieme, D.; Hinz, C. Effects of erosion-induced changes to topography on runoff dynamics. J. Hydrol. 2019, 573, 811–828. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Q.; Chang, J.; Leng, G.; Xing, L. The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China. Agric. Water Manag. 2015, 159, 45–54. [Google Scholar] [CrossRef]
- Wan, F.; Zhang, F.; Wang, Y.; Peng, S.; Zheng, X. Study on the propagation law of meteorological drought to hydrological drought under variable time Scale: An example from the Yellow River Water Supply Area in Henan. Ecol. Indic. 2023, 154, 110873. [Google Scholar] [CrossRef]
- Liu, Y.; Shan, F.; Yue, H.; Wang, X. Characteristics of drought propagation and effects of water resources on vegetation in the karst area of Southwest China. Sci. Total Environ. 2023, 891, 164663. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Peña-Gallardo, M.; Hannaford, J.; Murphy, C.; Lorenzo-Lacruz, J.; Dominguez-Castro, F.; López-Moreno, J.I.; Beguería, S.; Noguera, I.; Harrigan, S. Climate, irrigation, and land cover change explain streamflow trends in countries bordering the northeast Atlantic. Geophys. Res. Lett. 2019, 46, 10821–10833. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Cheng, H.; Wang, H.; Zhu, Y. Propagation from meteorological to hydrological drought and its influencing factors in the Huaihe River Basin. Water 2021, 13, 1985. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Peng, J.; Li, J.; Leng, G.; Huang, Q.; Zhao, J.; Yang, F.; He, P.; Meng, X.; et al. GRACE-based dynamic assessment of hydrological drought trigger thresholds induced by meteorological drought and possible driving mechanisms. Remote Sens. Environ. 2023, 298, 113831. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, S.; Huang, Q.; Leng, G.; Fang, W.; Wang, L.; Wang, H. Propagation thresholds of meteorological drought for triggering hydrological drought at various levels. Sci. Total Environ. 2020, 712, 136502. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Shah, D.; Aadhar, S.; Mishra, V. Propagation of Meteorological to Hydrological Droughts in India. J. Geophys. Res. Atmos. 2020, 125, e2020JD033455. [Google Scholar] [CrossRef]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci. 2016, 20, 2483–2505. [Google Scholar] [CrossRef]
- Meresa, H.; Zhang, Y.; Tian, J.; Abrar Faiz, M. Understanding the role of catchment and climate characteristics in the propagation of meteorological to hydrological drought. J. Hydrol. 2023, 617, 128967. [Google Scholar] [CrossRef]
- Meresa, H.; Murphy, C.; Donegan, S.E. Propagation and Characteristics of Hydrometeorological Drought Under Changing Climate in Irish Catchments. J. Geophys. Res. Atmos. 2023, 128, e2022JD038025. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yu, Z.; Yao, H.; Li, W.; Zhang, D. Assessing the impact of human regulations on hydrological drought development and recovery based on a ‘simulated-observed’comparison of the SWAT model. J. Hydrol. 2019, 577, 123990. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Zhao, J.; Leng, G.; Huang, Q.; Zhang, H.; Li, Z. Long-chain propagation pathways from meteorological to hydrological, agricultural and groundwater drought and their dynamics in China. J. Hydrol. 2023, 625, 130131. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, C.; Gou, J.; Wu, J.; Jiao, W.; Song, Y.; Xu, D. Spatiotemporal characteristics of meteorological to hydrological drought propagation under natural conditions in China. Weather Clim. Extrem. 2022, 38, 100505. [Google Scholar] [CrossRef]
- Bin, L.; Xu, K.; Yang, Z.; He, L.; Xu, X.; Lian, J. Water cycle evolution in the Haihe River Basin and its relationship with landscape pattern changes. Ecol. Indic. 2024, 159, 111681. [Google Scholar] [CrossRef]
- He, X.; Wada, Y.; Wanders, N.; Sheffield, J. Intensification of hydrological drought in California by human water management. Geophys. Res. Lett. 2017, 44, 1777–1785. [Google Scholar] [CrossRef]
- Jehanzaib, M.; Shah, S.A.; Yoo, J.; Kim, T.-W. Investigating the impacts of climate change and human activities on hydrological drought using non-stationary approaches. J. Hydrol. 2020, 588, 125052. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Z.; Liu, J.; Yan, Z.; Xu, C.Y.; Jiang, Y.; Jia, Y.; Wang, H. A novel framework for investigating the mechanisms of climate change and anthropogenic activities on the evolution of hydrological drought. Sci. Total Environ. 2023, 900, 165685. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, S.; Ren, L.; Xu, C.-Y.; Menzel, L.; Yuan, F.; Xu, Q.; Liu, Y.; Yang, X. Separating the effects of climate change and human activities on drought propagation via a natural and human-impacted catchment comparison method. J. Hydrol. 2021, 603, 126913. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, T.; Zhou, Z.; Cai, H.; Cao, Z. Detecting nonlinear information about drought propagation time and rate with nonlinear dynamic system and chaos theory. J. Hydrol. 2023, 623, 129810. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Chen, N.; Li, B.; Ma, H.; Xu, L.; Li, R.; Niyogi, D. Drought propagation modification after the construction of the Three Gorges Dam in the Yangtze River Basin. J. Hydrol. 2021, 603, 127138. [Google Scholar] [CrossRef]
- van Langen, S.C.; Costa, A.C.; Ribeiro Neto, G.G.; van Oel, P.R. Effect of a reservoir network on drought propagation in a semi-arid catchment in Brazil. Hydrol. Sci. J. 2021, 66, 1567–1583. [Google Scholar] [CrossRef]
- Colombo, P.; Ribeiro Neto, G.G.; Costa, A.C.; Mamede, G.L.; Van Oel, P.R. Modeling the influence of small reservoirs on hydrological drought propagation in space and time. J. Hydrol. 2024, 629, 130640. [Google Scholar] [CrossRef]
- Murgatroyd, A.; Hall, J.W. The Resilience of Inter-basin Transfers to Severe Droughts With Changing Spatial Characteristics. Front. Environ. Sci. 2020, 8, 571647. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Rangecroft, S.; Coxon, G.; Werner, M.; Wanders, N.; Di Baldassarre, G.; Tijdeman, E.; Bosman, M.; Gleeson, T.; Nauditt, A. Streamflow droughts aggravated by human activities despite management. Environ. Res. Lett. 2022, 17, 044059. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Huang, Q.; Leng, G.; Wang, H.; Bai, Q.; Zhao, J.; Ma, L.; Wang, L.; Du, M. Propagation dynamics from meteorological to groundwater drought and their possible influence factors. J. Hydrol. 2019, 578, 124102. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, S.; Ren, L.; Xu, C.-Y.; Yuan, F.; Liu, Y.; Yang, X. An approach for identification and quantification of hydrological drought termination characteristics of natural and human-influenced series. J. Hydrol. 2020, 590, 125384. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zheng, H.; Duan, Q.; Lei, X.; Li, H. Meteorological and hydrological drought on the Loess Plateau, China: Evolutionary characteristics, impact, and propagation. J. Geophys. Res. Atmos. 2018, 123, 11,569–11,584. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, F. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. J. Hydrol. 2009, 374, 373–383. [Google Scholar] [CrossRef]
- Long, D.; Yang, W.; Scanlon, B.R.; Zhao, J.; Liu, D.; Burek, P.; Pan, Y.; You, L.; Wada, Y. South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nat. Commun. 2020, 11, 3665. [Google Scholar] [CrossRef]
- Jin, H.; Li, X.; Zhang, Y.; He, L.; Zhang, G.; Ma, W. Prospective Evolution of Meteorological Drought in the Haihe River Basin and Its Connection With Large-Scale Atmospheric Circulations Using CMIP6 Multimodel Ensemble. J. Geophys. Res. Atmos. 2023, 128, e2023JD038954. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Gao, L.; Yao, H.; Chen, Y.; Liu, M. Response of hydrological drought to meteorological drought under the influence of large reservoir. Adv. Meteorol. 2016, 2016, 2197142. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.; Huang, Q.; Huang, G.; Wang, H.; Leng, G.; Wang, L. Identifying drought propagation by simultaneously considering linear and nonlinear dependence in the Wei River basin of the Loess Plateau, China. J. Hydrol. 2020, 591, 125287. [Google Scholar] [CrossRef]
- Peterson, T.J.; Saft, M.; Peel, M.; John, A. Watersheds may not recover from drought. Science 2021, 372, 745–749. [Google Scholar] [CrossRef]
Component | Distribution | Parameters (Shape, Location, Scale) | AIC | K-S Test p-Value |
---|---|---|---|---|
Peak | Log-normal | (0.462, 0, 1.353) | 47.68 | 0.786 |
GEV | (−0.375, 1.087, 0.418) | 48.24 | 0.785 | |
Gamma | (4.633, 0, 0.327) | 49.56 | 0.639 | |
Weibull | (2.142, 0, 1.719) | 52.46 | 0.655 | |
Normal | (1.5132, 0.760) | 56.63 | 0.398 | |
Severity | GEV | (−0.909, 3.326, 1.991) | 133.38 | 0.807 |
Log-normal | (0.831, 0, 5.283) | 137.32 | 0.658 | |
Gamma | (1.379, 0, 5.741) | 143.84 | 0.382 | |
Weibull | (1.088, 0, 8.228) | 144.86 | 0.402 | |
Normal | (7.917, 8.921) | 169.94 | 0.061 | |
Duration | GEV | (−0.450, 3.889, 1.938) | 120.73 | 0.878 |
Log-normal | (0.601, 0, 5.093) | 120.76 | 0.752 | |
Gamma | (2.578, 0, 2.429) | 125.33 | 0.380 | |
Weibull | (1.467, 0, 7.004) | 128.75 | 0.335 | |
Normal | (6.261, 4.989) | 143.2 | 0.074 |
Variable | Copula Function | Parameter Estimation Methods | AIC | Parameter (θ) |
---|---|---|---|---|
P&S | Clayton | Maximum Likelihood Estimate | −3.62 | 5.25 |
Gumbel | −32.26 | 12.60 | ||
Frank | −36.25 | 3.62 | ||
P&D | Clayton | 1.31 | 2.43 | |
Gumbel | −14.23 | 6.71 | ||
Frank | −17.98 | 2.22 | ||
D&S | Clayton | −1.07 | 8.38 | |
Gumbel | −37.96 | 18.97 | ||
Frank | −42.12 | 5.19 |
Period | Meteorological Drought Duration (Month) | Meteorological Severity | Meteorological Peak | Hydrological Drought Duration (Month) | Hydrological Severity | Hydrological Peak |
---|---|---|---|---|---|---|
1960–1971 | 32 | 11.1 | 2.3 | 27 | 4.7 | 1.2 |
1980–1997 | 40 | 13.9 | 2.4 | 48 | 8.9 | 1.6 |
2001–2015 | 55 | 15.8 | 2.5 | 72 | 22.0 | 2.5 |
1960–2017 | 127 | 14.0 | 2.4 | 147 | 14.5 | 2.0 |
Human Activities | Influencing Natural Pathways | The Impact on Hydrological Drought | Source of Literature |
---|---|---|---|
Reservoir storage/release | Changing the annual/interannual river flow process | Enhancing hydrological drought during the flood season; weakening non-flood season | [81,90,101] |
Inter-basin water transfer | Increase river flow | Reducing the impact of hydrological drought | [48,82] |
River water abstraction | Reduce river flow | Reducing the impact of hydrological drought | [28] |
Groundwater extraction | Causing a decrease in groundwater levels, reduction or disappearance of groundwater recharge to river base flow | Enhancing hydrological droughts | [95] |
Agricultural irrigation | Increase in surface water consumption | Exacerbating the occurrence of hydrological drought | [21,96] |
Water and soil conservation projects | Increased evaporation from surface soil | Exacerbating the occurrence of hydrological drought | [97] |
Returning farmland to forests | Increased surface soil water evaporation consumption | Exacerbates the occurrence of hydrological drought | [62,102] |
Urbanization | Decrease in precipitation recharge to soil and groundwater | Exacerbates the occurrence of hydrological drought | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Guan, B.; Zhai, J.; Wang, Q.; Zhao, Y.; Cao, Y.; Zhang, L. Characteristics and Lag Time of Meteorological Drought Propagation to Hydrological Drought in the Haihe River Basin. Sustainability 2025, 17, 5134. https://doi.org/10.3390/su17115134
Liu K, Guan B, Zhai J, Wang Q, Zhao Y, Cao Y, Zhang L. Characteristics and Lag Time of Meteorological Drought Propagation to Hydrological Drought in the Haihe River Basin. Sustainability. 2025; 17(11):5134. https://doi.org/10.3390/su17115134
Chicago/Turabian StyleLiu, Kuan, Buliao Guan, Jiaqi Zhai, Qingming Wang, Yong Zhao, Yankun Cao, and Longlong Zhang. 2025. "Characteristics and Lag Time of Meteorological Drought Propagation to Hydrological Drought in the Haihe River Basin" Sustainability 17, no. 11: 5134. https://doi.org/10.3390/su17115134
APA StyleLiu, K., Guan, B., Zhai, J., Wang, Q., Zhao, Y., Cao, Y., & Zhang, L. (2025). Characteristics and Lag Time of Meteorological Drought Propagation to Hydrological Drought in the Haihe River Basin. Sustainability, 17(11), 5134. https://doi.org/10.3390/su17115134