Improving Indoor Air Quality in a Higher-Education Institution Through Biophilic Solutions †
Abstract
1. Introduction
2. Materials and Methods
2.1. Building Characterization
2.2. Natural Green Structure
Scientific Name | Common Name | Importance as an Indoor Plant | Mechanisms of Photosynthesis |
---|---|---|---|
Dracaena trifasciata or Sansevieria trifasciata or Sansevieria laurentii | Mother-in-law’s tongue or snake plant | Ability to absorb VOCs [47,48,49,50] Ability to absorb PM [48,51,52] | CAM [40,53] |
Chlorophytum comosum | Spider plan | Ability to absorb VOCs [47,49,54,55,56,57] Ability to absorb PM [52,58] High ability to absorb CO2 [59] | C3 [53] |
Scindapsus aureus (Europe) or Epipremnum aureum (USA and Canada) | Golden pothos or Devil’s ivy | Ability to absorb VOCs [47,54] Ability to absorb PM [51,52] High ability to absorb CO2 [59] | C3 [40] |
Dypsis lutescens | Areca palm | Ability to absorb VOCs [60] | C3 [40] |
Aloe vera | Aloe vera | Ability to absorb VOCs [49,50] Ability to absorb PM [52] | CAM [61] |
Ficus benjamina | Ficus | Ability to absorb VOCs [50,62,63] | C3 [40] |
Species | Designation N.º | N.º of Vases | Location | Vases’ Dimensions (cm) Length × Depth × Height or Diameter (∅) × Height |
---|---|---|---|---|
Dracaena trifasciata | 1 | 2 | Side wall—southwest facade | 100 × 40 × 40 |
Chlorophytum comosum | 2 and 7 | 2 3 | Side wall—southwest facade Back wall | 100 × 40 × 40 100 × 40 × 40 |
Scindapsus aureus | 3 and 8 | 4 3 | Suspended side walls: 2 by southwest façade, and 2 by northeast facade Back wall (trellises) | ∅ 37 × 22 100 × 40 × 40 |
Dypsis lutescens | 4 | 2 | Back wall | 40 × 40 × 65 |
Aloe vera | 5 | 2 | Back wall | ∅ 60 × 43.5 |
Ficus benjamina | 6 | 2 | Back wall | ∅ 50 × 100 |
2.3. Air Quality Monitoring
- -
- Temperature (T): sensor, digital sensor; accuracy, ±1 °C; resolution, 0.01 °C;
- -
- Relative humidity (RH): sensor, digital sensor; accuracy, ±5% RH; resolution, 0.01%RH;
- -
- CO2: sensor, non-dispersive infrared (NDIR); accuracy, ±10%; resolution, 1 ppb;
- -
- VOCT: sensor, multi-pixel metal oxide sensor (MOx); accuracy, ±15% ± 8 ppb; resolution, 1 ppb;
- -
- Particulate matter sensor: sensor, laser particle sensor; accuracy, 0 to 30 μg/m3: ±3 μg/m3; resolution, 1 μg/m3.
2.4. Statistical Methods
3. Results and Discussion
3.1. IAQ-Parameter-Monitoring Results and Statistical Analysis
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
1st Period (n = 30) | 2nd Period (n = 35) | 3rd Period (n = 25) | 4th Period (n = 10) | 5th Period (n = 70) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GR | NR | GR | NR | GR | NR | GR | NR | GR | NR | |
T (°C) | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.026 | p = 0.064 | p = 0.115 | p = 0.298 | p < 0.001 | p < 0.001 |
HR (%) | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.058 | p = 0.041 | p = 0.013 | p = 0.076 | p = 0.325 | p < 0.001 | p < 0.001 |
CO2 (ppm) | p < 0.001 | p < 0.001 | p = 0.143 | p = 0.196 | p = 0.062 | p = 0.055 | p = 0.096 | p = 0.652 | p = 0.001 | p < 0.001 |
VOCT (µg/m3) | p < 0.001 | p < 0.001 | p = 0.607 | p = 0.386 | p < 0.001 | p = 0.098 | p = 0.113 | p = 0.468 | p = 0.002 | p = 0.001 |
PM10 (µg/m3) | p < 0.001 | p = 0.048 | p = 0.002 | p = 0.012 | p = 0.002 | p = 0.024 | p = 0.111 | p = 0.410 | p < 0.001 | p = 0.005 |
PM2.5 (µg/m3) | p < 0.001 | p = 0.020 | p < 0.001 | p = 0.003 | p = 0.041 | p = 0.013 | p = 0.191 | p = 0.015 | p < 0.001 | p < 0.001 |
1st (n = 30) | 2nd (n = 35) | 3rd (n = 25) | 4th (n = 10) | 5th (n = 70) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GR | NR | GR | NR | GR | NR | GR | NR | GR | NR | ||
T (°C) | Min | 15.7 | 15.2 | 16.3 | 15.8 | 18.7 | 18.0 | 18.6 | 18.0 | 17.7 | 17.2 |
Q1 | 15.8 | 15.2 | 16.6 | 16.1 | 18.9 | 18.3 | 18.7 | 18.2 | 17.7 | 17.3 | |
Median | 15.8 | 15.3 | 16.8 | 16.3 | 19.1 | 18.4 | 18.9 | 18.4 | 17.8 | 17.3 | |
Q3 | 16.1 | 15.6 | 17.8 | 17.1 | 19.5 | 18.5 | 19.3 | 18.6 | 18.0 | 17.5 | |
Max | 16.3 | 15.8 | 19.2 | 18.2 | 20.1 | 19.0 | 19.4 | 18.7 | 19.2 | 18.4 | |
IQR | 0.3 | 0.4 | 1.3 | 1.0 | 0.5 | 0.3 | 0.6 | 0.4 | 0.3 | 0.2 | |
Skewness | 0.81 | 0.84 | 1.10 | 0.96 | 0.92 | 0.83 | 0.17 | −0.02 | 2.01 | 2.25 | |
Kurtosis | −1.00 | −0.96 | −0.39 | −0.50 | 0.00 | 0.28 | −1.93 | −1.77 | 3.74 | 5.02 | |
HR (%) | Min | 65.3 | 64.8 | 65.9 | 69.1 | 63.2 | 67.0 | 65.3 | 69.4 | 65.4 | 69.3 |
Q1 | 65.4 | 65.1 | 68.4 | 69.8 | 64.2 | 68.3 | 66.3 | 70.1 | 68.6 | 71.9 | |
Median | 65.5 | 65.2 | 68.9 | 70.4 | 65.2 | 69.6 | 66.9 | 70.6 | 70.6 | 73.9 | |
Q3 | 67.1 | 67.6 | 69.4 | 71.5 | 65.8 | 70.1 | 67.2 | 71.0 | 71.9 | 75.0 | |
Max | 68.4 | 68.9 | 69.7 | 72.4 | 66.3 | 70.4 | 67.3 | 71.1 | 72.8 | 75.8 | |
IQR | 1.6 | 2.5 | 0.9 | 1.6 | 1.6 | 1.8 | 0.9 | 0.9 | 3.3 | 3.1 | |
Skewness | 1.09 | 0.68 | −1.48 | 0.40 | −0.46 | −0.74 | −1.40 | −0.76 | −0.76 | −0.67 | |
Kurtosis | −0.34 | −1.18 | 1.18 | −1.01 | −1.151 | −0.76 | 2,00 | −0.52 | −0.52 | −0.73 | |
CO2 (ppm) | Min | 435.0 | 451.0 | 837.0 | 885.0 | 1538.0 | 1961.0 | 1904.0 | 2392.0 | 1755.0 | 2146.0 |
Q1 | 436.0 | 452.0 | 1091.0 | 1149.0 | 1832.5 | 2034.5 | 1997.5 | 2413.3 | 1978.8 | 2420.3 | |
Median | 436.5 | 470.0 | 1325.0 | 1402.0 | 1920.0 | 2141.0 | 2032.5 | 2446.5 | 2316.0 | 2872.0 | |
Q3 | 689.0 | 751.3 | 1582.0 | 1684.0 | 2068.5 | 2312.0 | 2180.8 | 2484.5 | 2662.5 | 3263.8 | |
Max | 830.0 | 955.0 | 1771.0 | 1922.0 | 2153.0 | 2422.0 | 2193.0 | 2503.0 | 2941.0 | 3499.0 | |
IQR | 253.0 | 299.3 | 491.0 | 535.0 | 236.0 | 277.5 | 183.3 | 71.3 | 683.8 | 843.5 | |
Skewness | 0.93 | 0.91 | −0.06 | −0.07 | 0.92 | 0.83 | 0.00 | 0.02 | −0.20 | −0.10 | |
Kurtosis | −0.85 | −0.65 | −1.22 | −1.14 | 0.00 | 0.28 | −1.50 | −1.30 | −1.34 | −1.40 | |
VOCT (µg/m3) | Min | 6.5 | 3.2 | 145.3 | 316.5 | 358.4 | 878.3 | 361.7 | 920.3 | 251.9 | 752.4 |
Q1 | 9.7 | 12.1 | 216.3 | 510.2 | 435.9 | 933.2 | 381.8 | 959.9 | 293.8 | 935.6 | |
Median | 14.5 | 42.0 | 280.9 | 623.2 | 442.4 | 962.3 | 394.0 | 1018.8 | 331.0 | 1101.1 | |
Q3 | 96.9 | 201.0 | 348.7 | 723.3 | 455.3 | 1043.0 | 456.9 | 1074.5 | 400.4 | 1293.3 | |
Max | 148.5 | 332.6 | 426.2 | 878.3 | 465.0 | 936.4 | 465.0 | 1097.9 | 442.4 | 1401.4 | |
IQR | 87.2 | 188.9 | 132.4 | 213.1 | 19.4 | 109.8 | 75.1 | 114.6 | 106.6 | 357.6 | |
Skewness | 0.89 | 0.84 | 0.09 | 0.267 | −2.17 | 0.17 | 0.43 | −0.40 | 0.19 | −0.08 | |
Kurtosis | −0.86 | −0.80 | −0.93 | −0.64 | 5–17 | −1.15 | −1.63 | −1.12 | −1.24 | −1.27 | |
PM10 (µg/m3) | Min | 6.0 | 5.0 | 7.0 | 8.0 | 7.0 | 7.0 | 8.0 | 7.0 | 6.0 | 7.0 |
Q1 | 7.0 | 6.0 | 9.0 | 9.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 9.0 | |
Median | 7.5 | 7.0 | 9.0 | 10.0 | 9.0 | 9.0 | 9.5 | 9.0 | 9.0 | 10.0 | |
Q3 | 10.0 | 9.3 | 10.0 | 11.0 | 9.0 | 10.0 | 10.0 | 10.3 | 9.0 | 11.0 | |
Max | 11.0 | 12.0 | 13.0 | 13.0 | 10.0 | 11.0 | 11.0 | 11.0 | 13.0 | 13.0 | |
IQR | 3.0 | 3.3 | 1.0 | 2.0 | 1.0 | 2.0 | 2.0 | 2.3 | 1.0 | 2.0 | |
Skewness | 0.38 | 0.46 | 0.83 | 0.14 | −0.56 | 0,32 | −0.04 | 0.10 | 0.70 | 0.11 | |
Kurtosis | −1.30 | −0.71 | 2.32 | −0.48 | 0.11 | −0.90 | −1.24 | −1.17 | 2.09 | −0.57 | |
PM2.5 (µg/m3) | Min | 6.0 | 5.0 | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | 7.0 | 6.0 | 7.0 |
Q1 | 7.0 | 6.0 | 8.0 | 8.0 | 8.0 | 7.0 | 7.0 | 7.0 | 8.0 | 8.0 | |
Median | 7.0 | 7.0 | 8.0 | 9.0 | 8.0 | 7.0 | 8.0 | 8.0 | 8.0 | 8.0 | |
Q3 | 9.0 | 8.3 | 9.0 | 9.0 | 9.0 | 8.0 | 9.0 | 8.0 | 9.0 | 9.0 | |
Max | 10.0 | 10.0 | 11.0 | 11.0 | 10.0 | 10.0 | 10.0 | 9.0 | 10.0 | 11.0 | |
IQR | 2.0 | 2.3 | 1.0 | 1.0 | 1.0 | 1.0 | 2.0 | 1.0 | 1.0 | 1.0 | |
Skewness | 0.61 | 0.32 | 0.72 | 0.29 | 0.10 | 1.164 | 0.27 | 0.43 | −0.31 | 0.60 | |
Kurtosis | −0.94 | −1.02 | 0.50 | 0.31 | −0.274 | 1.603 | −0.90 | −0.28 | −0.05 | −0.37 |
1st Period | 2nd Period | 3rd Period | 4th Period | 5th Period | |
---|---|---|---|---|---|
T (°C) | p < 0.001 | p = 0.001 | p < 0.001 | p = 0.003 | p < 0.001 |
HR (%) | p = 0.01 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
CO2 (ppm) | p < 0.001 | p = 0.683 | p = 0.001 | p < 0.001 | p < 0.001 |
VOCT (µg/m3) | p = 0,071 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
PM10 (µg/m3) | p = 0.586 | p = 0.033 | p = 0.699 | p = 1.000 | p < 0.001 |
PM2.5 (µg/m3) | p = 0.134 | p = 0.683 | p = 0.006 | p = 0.759 | p = 0.179 |
1st Period | 2nd Period | 3rd Period | 4th Period | 5th Period | |
---|---|---|---|---|---|
T (°C) | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.005 | p < 0.001 |
HR (%) | p = 0.229 | p < 0.001 | p < 0.001 | p = 0.005 | p < 0.001 |
CO2 (ppm) | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.005 | p < 0.001 |
VOCT (µg/m3) | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.005 | p < 0.001 |
PM10 (µg/m3) | p = 0.286 | p = 0.007 | p = 0.623 | p = 0.722 | p < 0.001 |
PM2.5 (µg/m3) | p = 0.016 | p = 0.306 | p = 0.001 | p = 0.194 | p = 0.008 |
References
- World Health Organization (WHO). Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 13 March 2023).
- Ortiz-Ospina, E.; Giattino, C.; Roser, M. Time Use. Published online at OurWorldInData.org. Available online: https://ourworldindata.org/time-use (accessed on 13 March 2023).
- Seppänen, O.A.; Fisk, W.J.; Mendell, M.J. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Dorizas, P.V.; Assimakopoulos, M.; Santamouris, M. A holistic approach for the assessment of the indoor environmental quality, student productivity, and energy consumption in primary schools. Environ. Monit. Assess. 2015, 187, 259. [Google Scholar] [CrossRef]
- Stabile, L.; Dell, M.; Russi, A.; Massimo, A.; Buonanno, G. The effect of natural ventilation strategy on indoor air quality in schools. Sci. Total Environ. 2017, 595, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Myhrvold, A.N.; Olsen, E.; Lauridsen, O. Indoor environment in schools—Pupils health and performance in regard to CO2 concentrations. In Proceedings of the 7th International Conference on Indoor Air Quality and Climate, Nagoya, Japan, 21–26 July 1996; Volume 4, pp. 369–371. [Google Scholar]
- Coley, D.A.; Greeves, R.; Saxby, B.K. The effect of low ventilation rates on the cognitive function of a primary school class. Int. J. Vent. 2007, 6, 107–112. [Google Scholar] [CrossRef]
- Bakó-Biró, Z.; Clements-Croome, D.J.; Kochhar, N.; Awbi, H.B.; Williams, M.J. Ventilation rates in schools and pupils’ performance. Build. Environ. 2012, 48, 215–223. [Google Scholar] [CrossRef]
- Twardella, D.; Matzen, W.; Lahrz, T.; Burghardt, R.; Spegel, H.; Hendrowarsito, L.; Frenzel, A.C.; Fromme, H. Effect of classroom air quality on students’ concentration: Results of a cluster-randomized cross-over experimental study. Indoor Air 2012, 22, 378–387. [Google Scholar] [CrossRef]
- Du, B.; Tandoc, M.C.; Mack, M.L.; Siegel, J.A. Indoor CO2 concentrations and cognitive function: A critical review. Indoor Air 2020, 30, 1067–1082. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Kler, J.S.; Hernke, M.T.; Braun, R.K.; Meyer, K.C.; Funk, K.C. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691–701. [Google Scholar] [CrossRef]
- Katafygiotou, M.C.; Serghides, D.K. Indoor comfort and energy performance of buildings in relation to occupants’ satisfaction: Investigation in secondary schools of Cyprus. Adv. Build. Energy Res. 2014, 8, 216–240. [Google Scholar] [CrossRef]
- Andamon, M.M.; Rajagopalan, P.; Woo, J. Evaluation of ventilation in Australian school classrooms using long-term indoor CO2 concentration measurements. Build. Environ. 2023, 237, 110313. [Google Scholar] [CrossRef]
- Huang, Q.; Syndicus, M.; Frisch, J.; Treeck, C. Spatial features of CO2 for occupancy detection in a naturally ventilated school building. Indoor Environ. 2024, 1, 100018. [Google Scholar] [CrossRef]
- Walt, R.E.; Grobbelaar, S.S.; Booysen, M.J. Indoor temperature and CO2 in South African primary school classrooms: Inspecting brick, container, and prefab structures. J. Clean. Prod. 2024, 470, 143120. [Google Scholar] [CrossRef]
- Wood, S.; Handy, A.; Roberts, K.; Burridge, H. Corrigendum to “Assessing classroom ventilation rates using CO2 data from a nationwide study of UK schools and identifying school-wide correlation factors. ” Dev. Built Environ. 2024, 19, 100520. [Google Scholar] [CrossRef]
- Zivelonghi, A.; Kumar, P. Benefits and thermal limits of CO2-driven signaled windows opening in schools: An in-depth data-driven analysis. Energy Build. 2024, 303, 113621. [Google Scholar] [CrossRef]
- Shen, X.; Sun, Q.; Mosey, G.; Ma, J.; Wang, L.; Ge, M. Benchmark of plant-based VOCs control effect for indoor air quality: Green wall case in Smith Campus at Harvard University. Sci. Total Environ. 2024, 906, 166269. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Rufo, J.; Severo, M.; Ramos, E.; Barros, H.; Fernandes, E. Source apportionment of CO2, PM10 and VOCs levels and health risk assessment in naturally ventilated primary schools in Porto, Portugal. Build. Environ. 2016, 96, 198–205. [Google Scholar] [CrossRef]
- Pereira, L.D.; Neto, L.; Bernardo, H.; da Silva, M.G. An integrated approach on energy consumption and indoor environmental quality performance in six Portuguese secondary schools. Energy Res. Soc. Sci. 2017, 32, 23–43. [Google Scholar] [CrossRef]
- Rufo, J.C.; Annesi-Maesano, I.; Carreiro-Martins, P.; Moreira, A.; Sousa, A.C.; Pastorinho, M.R.; Neuparth, N.; Taborda-Barata, L. Issue 2—“Update on adverse respiratory effects of indoor air pollution” Part 1): Indoor air pollution and respiratory diseases: A general update and a Portuguese perspective. Pulmonology 2024, 30, 378–389. [Google Scholar] [CrossRef]
- Korsavi, S.; Montazami, A.; Mumovic, D. Indoor air quality (IAQ) in naturally-ventilated primary schools in the UK: Occupant-related factors. Build. Environ. 2020, 180, 106992. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Stock, T.H.; Sarnat, J.A.; Chavez, M.C.; Sarnat, S.E.; Montoya, T.; Holguin, F.; Li, W.W. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environ. Pollut. 2017, 231, 681–693. [Google Scholar] [CrossRef] [PubMed]
- EPA. Volatile Organic Compounds’ Impact on Indoor Air Quality. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed on 29 February 2024).
- Norbäck, D.; Hashim, J.H.; Hashim, Z.; Ali, F. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache, and fatigue. Sci. Total Environ. 2017, 592, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.W.; Park, H.W.; Kim, W.J.; Kim, M.G.; Lee, S.J. Exposure to volatile organic compounds and airway inflammation. Environ. Health 2018, 17, 65. [Google Scholar] [CrossRef]
- Tagiyeva, N.; Sheikh, A. Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults. Expert Rev. Clin. Immunol. 2014, 10, 1611–1639. [Google Scholar] [CrossRef]
- Samoli, E.; Peng, R.; Ramsay, T.; Pipikou, M.; Touloumi, G.; Dominici, F.; Burnett, R.; Cohen, A.; Krewski, D.; Samet, J.; et al. Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environ. Health Perspect. 2008, 116, 1480–1486. [Google Scholar] [CrossRef]
- Halonen, J.I.; Lanki, T.; Yli-Tuomi, T.; Tiittanen, P.; Kulmala, M.; Pekkanen, J. Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology 2009, 20, 143–153. [Google Scholar] [CrossRef]
- Guaita, R.; Pichiule, M.; Maté, T.; Linares, C.; Díaz, J. Short-term impact of particulate matter (PM2.5) on respiratory mortality in Madrid. Int. J. Environ. Health Res. 2011, 21, 260–274. [Google Scholar] [CrossRef]
- Perez, L.; Tobías, A.; Querol, X.; Pey, J.; Alastuey, A.; Díaz, J.; Sunyer, J. Saharan dust, particulate matter and cause-specific mortality: A case–crossover study in Barcelona (Spain). Environ. Int. 2012, 48, 150–155. [Google Scholar] [CrossRef]
- Jo, H.H.; Nam, J.; Choi, J.Y.; Kim, T.; Kim, S. Particulate matter in school buildings: Influence of influx control of outdoor PM particles and building renovation in summer. Environ. Pollut. 2023, 329, 121582. [Google Scholar] [CrossRef]
- Son, S.; Elkamhawy, A.; Jang, C.M. PM reduction performance according to filter grade and diffuser position in a school classroom. J. Build. Eng. 2024, 94, 109892. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, 69–74. [Google Scholar] [CrossRef]
- Ohlwein, S.; Kappeler, R.; Joss, M.K.; Künzli, N.; Hoffmann, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Pulimeno, M.; Piscitelli, P.; Colazzo, S.; Colao, A.; Miani, A. Indoor air quality at school and students’ performance: Recommendations of the UNESCO Chair on Health Education and Sustainable Development & the Italian Society of Environmental Medicine (SIMA). Health Promot. Perspect. 2020, 10, 169–174. [Google Scholar] [CrossRef]
- Wolverton, B.C.; McDonald, R.C.; Watkins, E.A. Foliage plants for removing indoor air pollutants from energy-efficient homes. Econ. Bot. 1984, 38, 224–228. [Google Scholar] [CrossRef]
- Berger, J.; Essah, E.; Blanusa, T.; Beaman, C.P. The appearance of indoor plants and their effect on people’s perceptions of indoor air quality and subjective well-being. Build. Environ. 2022, 219, 109151. [Google Scholar] [CrossRef]
- Laurent, J.G.C.; MacNaughton, P.; Jones, E.; Young, A.S.; Bliss, M.; Flanigan, S.; Vallarino, J.; Chen, L.J.; Cao, X.; Allen, J.G. Associations between Acute Exposures to PM2.5 and Carbon Dioxide Indoors and Cognitive Function in Office Workers: A Multicountry Longitudinal Prospective Observational Study. Environ. Res. Lett. 2021, 16, 094047. [Google Scholar] [CrossRef]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; ISBN 978-1-4051-8975-0. [Google Scholar]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Osmond, C.B. Crassulacean acid metabolism: A curiosity in context. Ann. Rev. Plant Physiol. 1978, 29, 379–414. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef]
- Borland, A.M.; Griffiths, H.; Hartwell, J.; Smith, J.A.C. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J. Exp. Bot. 2011, 62, 2879–2896. [Google Scholar] [CrossRef] [PubMed]
- Ghate, S. Phytoremediation of formaldehyde in indoor environment with common house plants and Pseudomonas chlororaphis. J. Earth Environ. Sci. Res. 2021, 3, 1–7. [Google Scholar] [CrossRef]
- Permana, B.H.; Thiravetyan, P.; Treesubsuntorn, C. Effect of airflow pattern and distance on removal of particulate matters and volatile organic compounds by houseplants. Environ. Sci. Pollut. Res. 2022, 29, 15465–15474. [Google Scholar]
- Sriprapat, W.; Suksabye, P.; Areephak, S.; Klantup, P.; Waraha, A.; Sawattan, A.; Thiravetyan, P. Uptake of toluene and ethylbenzene by plants: Removal of volatile indoor air contaminants. Ecotoxicol. Environ. Saf. 2014, 102, 147–151. [Google Scholar] [CrossRef]
- Wolverton, W.L.; Douglas, K.; Bounds, K. Interior Landscape Plants for Indoor Air Pollution Abatement (Report); NASA: Washington, DC, USA, 1989; NASA-TM-101766. [Google Scholar]
- Budaniya, M.; Rai, A.C. Effectiveness of plants for passive removal of particulate matter is low in the indoor environment. Build. Environ. 2022, 222, 109384. [Google Scholar] [CrossRef]
- Cao, Y.; Li, F.; Wang, Y.; Yu, Y.; Wang, Z.; Liu, X.; Ding, K. Assisted deposition of PM2.5 from indoor air by ornamental potted plants. Sustainability 2019, 11, 2546. [Google Scholar] [CrossRef]
- Gupta, S.M.; Agarwal, A.; Dev, B.; Kumar, K.; Prakash, O.; Arya, M.C.; Nasim, M. Assessment of photosynthetic potential of indoor plants under cold stress. Photosynthetica 2016, 54, 138–142. [Google Scholar] [CrossRef]
- Abedi, S.; Yarahmadi, R.; Farshad, A.A.; Najjar, N.; Ebrahimi, H.; Soleimani-Alyar, S. Evaluation of the critical parameters on the removal efficiency of a botanical biofilter system. Build. Environ. 2022, 212, 108811. [Google Scholar] [CrossRef]
- Li, J.; Zhong, J.; Liu, Q.; Yang, H.; Wang, Z.; Li, Y.; Zhang, W.; Agranovski, I. Indoor formaldehyde removal by three species of Chlorophytum comosum under dynamic fumigation system: Part 2—Plant recovery. Environ. Sci. Pollut. Res. 2021, 28, 8453–8465. [Google Scholar] [CrossRef]
- Setsungnern, A.; Treesubsuntorn, C.; Thiravetyan, P. The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum. Plant Physiol. Biochem. 2017, 120, 95–102. [Google Scholar] [CrossRef]
- Su, Y.; Liang, Y. Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum). J. Hazard. Mater. 2015, 291, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Gawrońska, H.; Bakera, B. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health 2015, 8, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Torpy, F.; Zavattaro, M.; Irga, P. Green wall technology for the phytoremediation of indoor air: A system for the reduction of high CO2 concentrations. Air Qual. Atmos. Health 2017, 10, 575–585. [Google Scholar] [CrossRef]
- Bhargava, B.; Malhotra, S.; Chandel, A.; Rakwal, A.; Kashwap, R.R.; Kumar, S. Mitigation of indoor air pollutants using Areca palm potted plants in real-life settings. Environ. Sci. Pollut. Res. 2021, 28, 8898–8906. [Google Scholar] [CrossRef]
- Liua, D.; Pallaa, K.J.; Hua, R.; Moseleya, R.C.; Mendozac, C.; Chena, M.; Abrahame, P.E.; Labbéa, J.L.; Kalluria, U.C.; Tschaplinskia, T.J.; et al. Review article: Perspectives on the basic and applied aspects of crassulacean acid metabolism (CAM) research. Plant Sci. 2018, 274, 394–401. [Google Scholar] [CrossRef]
- Kim, K.J.; Kil, M.J.; Song, J.S.; Yoo, E.H.; Son, K.C.; Kays, S.J. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Am. Soc. Hortic. Sci. 2008, 133, 521–526. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, D.W. Efficiency of volatile formaldehyde removal of orchids as affected by species and crassulacean acid metabolism (CAM) nature. Hortic. Environ. Biotechnol. 2008, 49, 132–137. [Google Scholar]
- Miranda, T.; Gomes, M.I.; Rodrigues, A. Installation of a natural green structure in a university classroom—Indoor air quality and occupational well-being assessment. In Proceedings of the CEMEERS 23—1st International Conference on Challenges in Engineering, Medical, Economics and Education: Research & Solutions, Lisbon, Portugal, 21–22 June 2023; Domingues, N., Calado, C., Leitão, N., Eds.; Pilares D’Elegância LDA: Lisbon, Portugal, 2023; pp. 60–65. [Google Scholar]
- Gomes, M.I.; Barreiros, A.M.; Boaventura, M.I.; Rodrigues, A.S. Do plants improve indoor air quality? Myth or Reality? A case study in a university environment using treated wastewater for plants irrigation. In ICoWEFS 2024 Sustainability Proceedings; Lecture Notes on Multidisciplinary Industrial Engineering; Brito, P.S., da Costa Sanches Galvão, J.R., Almeida, H., Rosa Ferreira, L.C., Alves Flores de Oliveira Gala, P.E., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- ISO 16000-1; Indoor Air—Part 1: General Aspects of Sampling Strategy. International Organization for Standardization: Geneva, Switzerland, 2004.
- Order No.138-G/2021. Health and Environment and Climate Action, Republic Diary No. 126/2021, Series 1. pp. 2–6. Available online: https://diariodarepublica.pt/dr/detalhe/portaria/138-g-2021-166296490 (accessed on 13 March 2023).
- Fang, L.; Wyon, D.P.; Clausen, G.; Fanger, P.O. Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. Indoor Air. 2004, 14, 74–81. [Google Scholar] [CrossRef]
- Decree Law n° 243/86. Ministry of Labor and Pensions, Republic Diary No. 190/1986, Series 1. pp. 2099–2106. Available online: https://diariodarepublica.pt/dr/detalhe/decreto-lei/243-1986-219080 (accessed on 21 October 2024).
- Cramer, M.N.; Laitano, O.; Gagnon, D.; Crandall, C.G. Human Temperature Regulation Under Heat Stress in Health, Disease and Injury. Physiol. Rev. 2022, 102, 1907–1989. [Google Scholar] [CrossRef]
- Zemitis, J.; Borodinecs, A.; Frolova, M. Measurements of moisture production caused by various sources. Energy Build. 2016, 127, 884–891. [Google Scholar] [CrossRef]
- Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D. Indirect health effects of relative humidity in indoor environments. Environ. Health Perspect. 1986, 65, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Sun, L.; Gao, W.; Jing, X.; Ye, W. Case Studies in Thermal Engineering Influence of indoor air temperature and relative humidity on learning performance of undergraduates. Case Stud. Therm. Eng. 2021, 28, 101458. [Google Scholar] [CrossRef]
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Torpy, F.R.; Irga, P.J.; Burchett, M.D. Profiling indoor plants for the amelioration of high CO2 concentrations. Urban For. Urban Green. 2014, 13, 227–233. [Google Scholar] [CrossRef]
- Hoskins, J.A. Health Effects due to Indoor Air Pollution. Indoor Built Environ. 2003, 12, 427–433. [Google Scholar] [CrossRef]
- Wood, R.A.; Burchett, M.D.; Alquezar, R.; Orwell, R.L.; Tarran, J.; Torpy, F. The Potted-Plant Microcosm Substantially Reduces Indoor Air VOC Pollution: I. Office Field-Study. Water Air Soil Pollut. 2006, 175, 163–180. [Google Scholar] [CrossRef]
- Wood, R.A.; Orwell, R.L.; Tarran, J.; Torpy, F.; Burchett, M. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J. Hortic. Sci. Biotechnol. 2002, 77, 120–129. [Google Scholar] [CrossRef]
- Plazas, F.L.; Tejada, C.S. Natural ventilation to improve indoor air quality (IAQ) in existing homes: The development of health-based and context-specific user guidelines. Energy Build. 2024, 314, 114248. [Google Scholar] [CrossRef]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.C.; Coburn, J.; Garrick, J.M. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol. Ther. 2020, 210, 107523. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide. In WHO Global Air Quality Guidelines; World Health Organization (WHO): Geneva, Switzerland, 2021; pp. 74–89. [Google Scholar]
- Pegas, F.; Alves, C.; Nunes, T.; Bate-Epey, E.; Evtyugina, M.; Pio, C. Could houseplants improve indoor air quality in schools? J. Toxicol. Environ. Health A 2012, 75, 1371–1380. [Google Scholar] [CrossRef]
Hour | Number of Occupants in the Classroom | Observations/Action | Period |
---|---|---|---|
1:40 pm to 2:10 pm | 24 25 | Occupants enter. Door closes. Door opens. One person enters. Door closes | 1st period |
2:11 pm to 2:45 pm | 25 25 | Door remains closed. Door opens. | 2nd period |
2:46 pm to 2:50 pm to 3:10 pm | 25 25 0 | Door remains opened. Door closes. Door opens. All occupants leave the classrooms. | 3rd period |
3:11 pm to 3:20 pm | 0 25 | Door remains opened. Occupants enter. Door closes. | 4th period |
3:21 pm to 4:30 pm | 25 0 | Door remains closed. Door opens. All occupants leave the classrooms. | 5th period |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, M.I.; Barreiros, A.M.; Pinto, I.; Rodrigues, A. Improving Indoor Air Quality in a Higher-Education Institution Through Biophilic Solutions. Sustainability 2025, 17, 5041. https://doi.org/10.3390/su17115041
Gomes MI, Barreiros AM, Pinto I, Rodrigues A. Improving Indoor Air Quality in a Higher-Education Institution Through Biophilic Solutions. Sustainability. 2025; 17(11):5041. https://doi.org/10.3390/su17115041
Chicago/Turabian StyleGomes, Maria Idália, Ana Maria Barreiros, Iola Pinto, and Alexandra Rodrigues. 2025. "Improving Indoor Air Quality in a Higher-Education Institution Through Biophilic Solutions" Sustainability 17, no. 11: 5041. https://doi.org/10.3390/su17115041
APA StyleGomes, M. I., Barreiros, A. M., Pinto, I., & Rodrigues, A. (2025). Improving Indoor Air Quality in a Higher-Education Institution Through Biophilic Solutions. Sustainability, 17(11), 5041. https://doi.org/10.3390/su17115041