How Does Internal Migration Affect Beijing–Tianjin–Hebei Cities?
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
= [P(male)ii + Σni=1M(male)ji]/[P(female)ii + Σni=1M(female)ji] −
[P(male)ii + Σnj=1M(male)ij]/[P(female)ii + Σnj=1M(female)ij], i ≠ j
4. Results
4.1. CIM Results
4.2. Analysis of Population Dynamics
- Core Area—Beijing
- 2.
- Initial Development Area—Langfang and Shijiazhuang
- 3.
- Industrial Transition Area—Tianjin, Tangshan, Qinhuangdao, Cangzhou, and Handan
- 4.
- Passive Outflow Area—Zhangjiakou and Chengde
- 5.
- Agricultural Transition Area—Baoding, Hengshui, and Xingtai
5. Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BTH | Beijing–Tianjin–Hebei |
CIM | compositional impact of migration |
CIMI | compositional impact of in-migrants |
CIMO | compositional impact of out-migrants |
FV | factual value |
CFV | counterfactual value |
DIAG | non-migrant value |
Appendix A
Sex Ratio | Youth Population Proportion (Aged 15–24) | Average Education Years | |||||
---|---|---|---|---|---|---|---|
2010–2015 | City | CFV | DIAG | CFV | DIAG | CFV | DIAG |
Zhangjiakou | 106.04 | 106.07 | 0.082 | 0.08 | 8.27 | 8.27 | |
Chengde | 100.58 | 100.66 | 0.089 | 0.089 | 8.46 | 8.44 | |
Qinhuangdao | 101.14 | 101.14 | 0.081 | 0.08 | 9.42 | 9.41 | |
Tangshan | 100.05 | 100.33 | 0.099 | 0.098 | 9.11 | 9.1 | |
Beijing | 101.91 | 100.99 | 0.081 | 0.08 | 11.61 | 11.6 | |
Tianjin | 103.76 | 103.54 | 0.105 | 0.104 | 10.49 | 10.48 | |
Langfang | 104.85 | 105.14 | 0.105 | 0.104 | 8.82 | 8.81 | |
Baoding | 100.33 | 101.04 | 0.096 | 0.094 | 8.55 | 8.54 | |
Cangzhou | 104.8 | 104.82 | 0.109 | 0.107 | 8.59 | 8.58 | |
Shijiazhuang | 99.23 | 99.05 | 0.112 | 0.11 | 9.58 | 9.56 | |
Hengshui | 98.22 | 98.29 | 0.107 | 0.106 | 8.73 | 8.72 | |
Xingtai | 103.47 | 103.76 | 0.111 | 0.111 | 8.43 | 8.41 | |
Handan | 98.55 | 99.14 | 0.117 | 0.115 | 8.69 | 8.68 | |
2015–2020 | Zhangjiakou | 94.45 | 93.38 | 0.093 | 0.078 | 9.35 | 9.26 |
Chengde | 97.94 | 97.52 | 0.103 | 0.089 | 9.21 | 9.15 | |
Qinhuangdao | 100.33 | 100.7 | 0.091 | 0.077 | 9.95 | 9.87 | |
Tangshan | 103.18 | 102.7 | 0.093 | 0.083 | 9.87 | 9.83 | |
Beijing | 105.88 | 104.35 | 0.068 | 0.066 | 12.68 | 12.64 | |
Tianjin | 104.39 | 103.33 | 0.095 | 0.088 | 11.1 | 11.03 | |
Langfang | 105.32 | 106.03 | 0.106 | 0.093 | 9.8 | 9.74 | |
Baoding | 99.54 | 99.1 | 0.103 | 0.089 | 9.28 | 9.21 | |
Cangzhou | 106.99 | 106.59 | 0.104 | 0.089 | 9.2 | 9.16 | |
Shijiazhuang | 100.94 | 100.16 | 0.098 | 0.089 | 10.36 | 10.3 | |
Hengshui | 97.83 | 96.44 | 0.11 | 0.093 | 9.33 | 9.27 | |
Xingtai | 100.72 | 99.07 | 0.123 | 0.107 | 9.1 | 9.05 | |
Handan | 102.11 | 100.35 | 0.132 | 0.115 | 9.33 | 9.27 |
References
- Greenwood, M.J. Research on internal migration in the United States: A survey. J. Econ. Lit. 1975, 13, 397–433. [Google Scholar]
- Fischer, P.A.; Reiner, M.; Straubhaar, T. Should I stay or should I go? In International Migration, Immobility and Development; Hammar, T., Brochmann, G., Tamas, K., Faist, T., Eds.; Berg Publishers: Oxford, UK, 1997; pp. 49–90. [Google Scholar]
- Bell, M.; Charles-Edwards, E.; Ueffing, P.; Stillwell, J.; Kupiszewski, M.; Kupiszewska, D. Internal migration and development: Comparing migration intensities around the world. Popul. Dev. Rev. 2015, 41, 33–58. [Google Scholar] [CrossRef]
- Gu, B. Internal Migration Dominates Population Dynamics in China. Asian Popul. Stud. 2014, 10, 1–3. [Google Scholar] [CrossRef]
- Chang, G.G. Shrinking China: A demographic crisis. World Aff. 2015, 178, 35–41. [Google Scholar]
- Guo, R.; Zhang, J.; Zhou, M. The demography of the great migration in China. J. Dev. Econ. 2024, 167, 103235. [Google Scholar] [CrossRef]
- MacLachlan, I.; Gong, Y. China’s New Age Floating Population: Talent Workers and Drifting Elders. Cities 2022, 131, 103960. [Google Scholar] [CrossRef]
- Chen, R. Impact of Migration on the Economic Growth of China’s Provinces: An Empirical Study Based on Provincial Panel Data. J. Cent. South Univ. (Soc. Sci.) 2019, 25, 100–107. [Google Scholar]
- Wang, J.; Li, Q. Study on the Effects of Regional Industrial Agglomeration and Division on Population Flow. Shandong Trade Union Trib. 2021, 27, 10–21. [Google Scholar]
- Liu, J.; Rong, C. The Impact of Industrial Agglomeration and Industrial Collaboration on Population Migration. Popul. J. 2023, 45, 63–77. [Google Scholar] [CrossRef]
- Liu, A. Rural Hollowing’s Constraints on Rural Construction and Solutions. Dongyue Trib. 2021, 42, 92–100. [Google Scholar] [CrossRef]
- Duan, C.; Sheng, D. Study on Inter-provincial Migration in Three Provinces of Northeast China since 1953—Based on Survival Ratio Method. Popul. J. 2022, 44, 14–28. [Google Scholar] [CrossRef]
- Gu, H.; Shen, T. Spatial Evolution Characteristics and Driving Forces of Chinese Highly Educated Talents. Acta Geogr. Sin. 2021, 76, 326–340. [Google Scholar]
- Lin, L.; Zhu, Y.; Ke, W. Locational Intention of Return Migration of Migrants and Its Policy Implications in the Context of Coordinated Regional Development. Geogr. Res. 2021, 40, 1515–1528. [Google Scholar]
- Wang, Z.; Hou, Y.; Yin, J.; Huang, X. The Push-Pull Mechanism of Return Migration Intentions in China: An Empirical Study Based on Cross-classified Multilevel Model. Geogr. Res. 2023, 42, 2663–2676. [Google Scholar]
- Chen, C. Coupling between Population and Construction Land Changes in the Beijing–Tianjin–Hebei (BTH) Region: Residential and Employment Perspectives. Systems 2024, 12, 308. [Google Scholar] [CrossRef]
- Xiao, C.; Chang, M.; Guo, P.; Yuan, M.; Xu, C.; Song, X.; Xiong, X.; Li, Y.; Li, Z. Characteristics Analysis of Industrial Atmospheric Emission Sources in Beijing–Tianjin–Hebei and Surrounding Areas Using Data Mining and Statistics on Different Time Scales. Atmos. Pollut. Res. 2020, 11, 11–26. [Google Scholar] [CrossRef]
- Tian, J.; Qi, P.; Zhao, X. Research on the Influence Mechanism of Coordinated Development of Beijing–Tianjin–HebeiLocal Economy and High Haze Pollution Industries Such as Thermal Power. Energy Rep. 2022, 8 (Suppl. S12), 216–226. [Google Scholar] [CrossRef]
- Tang, Y.; Meng, X. From Concentration to Decentralization: The Spatial Development of Beijing and the Beijing–Tianjin–Hebei Capital Region. In Chinese Urban Planning and Construction: Strategies for Sustainability; Bian, L., Tang, Y., Shen, Z., Eds.; Springer: Cham, Switzerland, 2021; pp. 65–80. [Google Scholar] [CrossRef]
- Wang, Y. Analysis on the Evolution of Spatial Relationship between Population and Economy in the Beijing-Tianjin-Hebei and Shandong Region of China. Sustain. Cities Soc. 2022, 83, 103948. [Google Scholar] [CrossRef]
- Wang, Y.; Lyu, J.; Liang, X.; Luo, C.; Ma, X.; Li, J.; Li, Q.; Zheng, L.; Guan, Q. Using Zipf’s Law to Optimize Urban Spatial Layouts in an Urban Agglomeration Area. Ann. Am. Assoc. Geogr. 2024, 114, 1342–1364. [Google Scholar] [CrossRef]
- Beijing Municipal Bureau of Statistics. 2017 Beijing Statistical Communiqué on National Economic and Social Development. Beijing Gov. Off. Website 2017. Available online: https://www.beijing.gov.cn/gongkai/shuju/tjgb/201706/t20170608_1838189.html (accessed on 1 March 2025).
- Tianjin Municipal Bureau of Statistics. 2017 Tianjin Statistical Communiqué on National Economic and Social Development. Tianjin Gov. Off. Website 2017. Available online: https://www.tj.gov.cn/sq/tjgb/202005/t20200520_2468076.html (accessed on 1 March 2025).
- Zhang, T.; Sun, T.; Xue, L. Coordinated development of Beijing-Tianjin-Hebei: A perspective of new economic geography. J. Hebei Norm. Univ. (Philos. Soc. Sci. Ed.) 2024, 4, 107–117. [Google Scholar] [CrossRef]
- Krugman, P. Increasing returns and economic geography. J. Polit. Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Li, X. The structural characteristics and countermeasures of floating population in Beijing. Beijing Soc. Sci. 2017, 11, 4–16. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, Z. Research on the optimal population distribution of cities under the dual-core structure of the Beijing-Tianjin-Hebei urban agglomeration. Beijing Soc. Sci. 2023, 2, 45–55. [Google Scholar] [CrossRef]
- Yan, X.; Wang, J. Research on the evolution of industrial structure in Tianjin. China Popul. Resour. Environ. 2016, S1, 448–451. [Google Scholar]
- Li, X.; Qiao, Y.; Shi, L. Has China’s war on pollution slowed the growth of its manufacturing and by how much? Evidence from the Clean Air Action. China Econ. Rev. 2019, 53, 271–289. [Google Scholar] [CrossRef]
- Myrdal, G. Economic Theory and Under-Developed Regions; Duckworth: London, UK, 1957. [Google Scholar]
- Li, G.; Song, C. Study on the strategy of optimizing the regional spatial structure of Beijing, Tianjin, and Hebei. Hebei Acad. J. 2019, 39, 137–145. [Google Scholar]
- Wang, Y.; Zhuo, Y.; Liu, T. Population dynamics in China’s urbanizing megaregion: A township-level analysis of the Beijing–Tianjin–Hebei region. Land 2022, 11, 1394. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Mu, H.; Miao, J.; Li, W.; Li, M. Assessment of urban resilience and subsystem coupling coordination in the Beijing-Tianjin-Hebei urban agglomeration. Sustain. Cities Soc. 2024, 100, 105058. [Google Scholar] [CrossRef]
- Xiao, J.; Li, B.; Xing, G. The optimization path of the spatial layout of Beijing-Tianjin-Hebei agglomeration. J. Hebei Univ. Econ. Bus. 2022, 5, 64–73. [Google Scholar] [CrossRef]
- Luthra, R.; Platt, L. Elite or Middling? International Students and Migrant Diversification. Ethnicities 2016, 16, 316–344. [Google Scholar] [CrossRef]
- Agadjanian, V.; Hayford, S.R. Men’s Migration, Women’s Autonomy, and Union Dissolution in Rural Mozambique. J. Fam. 2018, 39, 1236–1257. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Wei, Y.; Li, H. Spatial Inequality of Job Accessibility in Shanghai: A Geographical Skills Mismatch Perspective. Habitat. Int. 2021, 115, 102401. [Google Scholar] [CrossRef]
- Fang, M.; Huang, Z. Migration, Housing Constraints, and Inequality: A Quantitative Analysis of China. Labour Econ. 2022, 78, 102200. [Google Scholar] [CrossRef]
- Vuong, Q.H.; Nguyen, M.H. Further on Informational Quanta, Interactions, and Entropy under the Granular View of Value Formation; AISDL: Seoul, Republic of Korea, 2024. [Google Scholar]
- Bell, M.; Charles-Edwards, E.; Kupiszewska, D.; Kupiszewski, M.; Stillwell, J.; Zhu, Y. Internal migration data aroundthe world: Assessing contemporary practice. Popul. Space Place. 2015, 21, 1–17. [Google Scholar] [CrossRef]
- Ma, Z.; Yin, S.; Zhang, Y.; Li, Z.; Wu, Q. Spatial distribution, flowing rules, and forming mechanism of inter-cities floating population in China. Geogr. Res. 2019, 38, 926–936. [Google Scholar]
- Wang, G. Research on characteristics of China’s inter-provincial migration: Based on the data of China’s seventh population census. Chin. Popul. Sci. 2022, 3, 126. [Google Scholar]
- Yeung, J.; Alexander, M.; Riffe, T. Bayesian Implementation of Rogers—Castro Model Migration Schedules: An Alternative Technique for Parameter Estimation. Demogr. Res. 2023, 49, 1201–1228. [Google Scholar] [CrossRef]
- Dyrting, S.; Taylor, A. Smoothing Destination-Specific Migration Flows. Ann. Reg. Sci. 2021, 67, 359–383. [Google Scholar] [CrossRef]
- Chen, Y. Occupational attainment of migrants and local workers: Findings from a survey in Shanghai’s manufacturing sector. Urban Stud. 2011, 48, 3–21. [Google Scholar] [CrossRef]
- Li, J.; Peng, Y.; Wang, P. Environmental pollution and migrant settlement decision: Evidence from China. Chin. J. Popul. Resour. Environ. 2022, 20, 357–368. [Google Scholar] [CrossRef]
- Lin, S.; Feng, X.; Wang, Y. Migrants’ spatial choice in onward migration: Features and mechanisms. Geogr. Sci. 2023, 43, 1537–1547. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Q.; Zhou, X.; Chen, Y.; Yi, S.; Wang, H.; Lu, Z. A collective human mobility analysis method based on data usage detail records. Int. J. Geogr. Inf. Sci. 2017, 31, 2359–2381. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, Y. Visualising intercity mobility patterns during China’s Spring Festival travel rush under the COVID-19 pandemic. Reg. Stud. Reg. Sci. 2024, 11, 471–473. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, R.; Wei, Y.; Pang, R.; Wang, S. Quantitative estimation and spatial heterogeneity of the regression coefficient of the population flow gravity model in China. Geogr. Sci. 2018, 38, 1439–1448. [Google Scholar] [CrossRef]
- Office for National Statistics. Improving International Migration Statistics Using Administrative. Available online: https://www.ons.gov.uk/releases/improvinginternationalmigrationstatisticsusingadministrativedata (accessed on 30 April 2025).
- Zhao, W.; Yang, Y. The floating population statistics: Conflict between interest and evolution of management model. Soc. Policy Res. 2017, 4, 70–81. [Google Scholar] [CrossRef]
- Alho, J.M. Migration, Fertility, and Aging in Stable Populations. Demography 2008, 45, 641–650. [Google Scholar] [CrossRef]
- Kupiszewski, M. How Trustworthy Are Forecasts of International Migration Between Poland and the European Union? J. Ethn. Migr. Stud. 2002, 28, 627–645. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, Y. Acculturation strategies, age at migration, and self-rated health: An empirical study on internal migrants in China. Soc. Sci. Res. 2021, 93, 102487. [Google Scholar] [CrossRef]
- Rodríguez-Vignoli, J.; Rowe, F. How is internal migration reshaping metropolitan populations in Latin America? Anew method and new evidence. Popul. Stud. 2018, 72, 253–273. [Google Scholar] [CrossRef]
- Newbold, K.B. Counting migrants and migrations: Comparing lifetime and fixed-interval return and onward migration. Econ. Geogr. 2009, 85, 23–40. [Google Scholar] [CrossRef]
- Rees, P.; Bell, M.; Kupiszewski, M.; Kupiszewska, D.; Ueffing, P.; Bernard, A.; Charles-Edwards, E.; Stillwell, J. The impact of internal migration on population redistribution: An international comparison. Popul. Space Place. 2016, 22, e2036. [Google Scholar] [CrossRef]
- Gu, H.; Liu, Z.; Shen, T.; Meng, X. Modelling interprovincial migration in China from 1995 to 2015 based on an eigenvector spatial filtering negative binomial model. Popul. Space Place. 2019, 25, e2253. [Google Scholar] [CrossRef]
- Qi, H.; Zhao, M.; Liu, S.; Gao, P.; Liu, Z. Evolution pattern and its driving forces of China’s interprovincial migration of highly-educated talents from 2000 to 2015. Geogr. Res. 2022, 41, 456–479. [Google Scholar]
- Chen, X.; Wu, Y. Spatial pattern of out-migrant and its impact mechanism in the three northeastern provinces of China. Popul. J. 2024, 46, 108–125. [Google Scholar] [CrossRef]
- Rees, P.; Bell, M.; Duke-Williams, O.; Blake, M. Problems and solutions in the measurement of migration intensities: Australia and Britain compared. Popul. Stud. 2000, 54, 207–222. [Google Scholar] [CrossRef]
- Zhou, H. Statistical definitions of migration in China: Analysis on the census perspective. Chin. J. Popul. Sci. 2022, 3, 17–30+126. [Google Scholar]
- Gulczyński, M. Migration and skewed subnational sex ratios among young adults. Popul. Dev. Rev. 2023, 49, 681–706. [Google Scholar] [CrossRef]
- Pearl, R. The aging of populations. J. Am. Stat. Assoc. 1940, 35, 277–297. [Google Scholar] [CrossRef]
- Yuan, X. Analysis of the impact of floating population between urban and rural areas on the age structure of the population in large cities: A case study of Beijing, Tianjin, and Shanghai. Popul. J. 2005, 2, 3–8. [Google Scholar] [CrossRef]
- Yuan, L.; Huang, W. Growth, balance, and spatial distribution characteristics of human capital level in China. In Proceedings of the 2012 China Education Economics Annual Conference 2012, Shanghai, China, 20–22 May 2012; Volume 3, pp. 154–196. [Google Scholar]
- Hu, A.; Wang, H. Chinese-style modernization of education and the road to becoming a powerful education nation. J. Xinjiang Norm. Univ. (Philos. Soc. Sci. Ed.) 2023, 44, 56–72+2. [Google Scholar] [CrossRef]
- Yang, Z.; Dunford, M. City shrinkage in China: Scalar processes of urban and hukou population losses. Reg. Stud. 2017, 52, 1111–1121. [Google Scholar] [CrossRef]
- Lu, J.; Lin, J. Feathers, impact and responding principles of China’s new conditions of population: Based on analysis of data of the seventh national census. Soc. Chin. Char. Stud. 2021, 2021, 57–67. [Google Scholar]
- Blaszke, M.; Oleńczuk-Paszel, A.; Sompolska-Rzechuła, A.; Śpiewak-Szyjka, M. Demographic Change and the Housing Stock of Large and Medium-Sized Cities in the Context of Sustainable Development. Sustainability 2024, 16, 10907. [Google Scholar] [CrossRef]
- Campbell, M.; Sanderson, I.; Walton, F. Local Responses to Long-Term Unemployment; Joseph Rowntree Foundation: New York, NY, USA, 1998. [Google Scholar]
- Nixon, D.P. Economic Restructuring, Unemployment and Male Identity in Post-Industrial Society (Order No. 11009602). ProQuest Dissertations & Theses Global. (2132456119). Available online: https://www.proquest.com/dissertations-theses/economic-restructuring-unemployment-male-identity/docview/2132456119/se-2 (accessed on 28 February 2025).
- Zhu, Y.; Lin, L.; Ke, W. Trends in internal migration and mobility: International experiences and their implications for China. Popul. Res. 2016, 40, 50–60. [Google Scholar]
- Zheng, Z. Migration and development of rural women: Review and prospects. J. Shandong Women’s Univ. 2018, 5, 17–24. [Google Scholar]
- White, M.; Sun, L.; Jiang, L. Changes in migration determinants along the urban hierarchy in China. Asian Popul. Stud. 2023, 20, 81–103. [Google Scholar] [CrossRef]
- Qiang, H.; Hu, L. Population and capital flows in metropolitan Beijing, China: Empirical evidence from the past 30 years. Cities 2022, 120, 103464. [Google Scholar] [CrossRef]
- Chen, C.; Xu, F.; Cao, Y. Dynamics Influencing Factors and Sustainable Development Strategies in Population Shrinking Cities of Jiangsu Province, China. Sustainability 2024, 16, 10209. [Google Scholar] [CrossRef]
Variables | 2010–2015 | 2015–2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
City | CIM | FV | CIM% | CIMI | CIMO | CIM | FV | CIM% | CIMI | CIMO | |
Sex Ratio | Zhangjiakou | −0.242 | 105.794 | −0.0023 | −0.276 | 0.034 | −1.062 | 93.39 | −0.0112 | 0.014 | −1.077 |
Chengde | 0.189 | 100.764 | 0.0019 | 0.104 | 0.085 | 0.806 | 98.744 | 0.0082 | 1.227 | −0.421 | |
Qinhuangdao | −1.87 | 99.267 | −0.0185 | −1.873 | 0.003 | 0.956 | 101.289 | 0.0095 | 0.589 | 0.367 | |
Tangshan | 1.694 | 101.74 | 0.0169 | 1.41 | 0.284 | −0.028 | 103.154 | −0.0003 | 0.454 | −0.481 | |
Beijing | 0.745 | 102.657 | 0.0073 | 1.667 | −0.922 | −0.201 | 105.681 | −0.0019 | 1.331 | −1.532 | |
Tianjin | 9.612 | 113.372 | 0.0926 | 9.832 | −0.22 | 1.338 | 105.733 | 0.0128 | 2.403 | −1.065 | |
Langfang | 2.868 | 107.713 | 0.0274 | 2.573 | 0.295 | 0.265 | 105.583 | 0.0025 | −0.447 | 0.713 | |
Baoding | 1.938 | 102.268 | 0.0193 | 1.228 | 0.71 | −0.509 | 99.034 | −0.0051 | −0.07 | −0.439 | |
Cangzhou | −0.289 | 104.513 | −0.0028 | −0.307 | 0.018 | 1.184 | 108.178 | 0.0111 | 1.588 | −0.404 | |
Shijiazhuang | −0.218 | 99.009 | −0.0022 | −0.042 | −0.177 | −1.51 | 99.426 | −0.015 | −0.734 | −0.776 | |
Hengshui | −0.074 | 98.15 | −0.0007 | −0.135 | 0.061 | −1.763 | 96.071 | −0.018 | −0.37 | −1.393 | |
Xingtai | 0.863 | 104.333 | 0.0083 | 0.573 | 0.29 | −0.798 | 99.917 | −0.0079 | 0.843 | −1.641 | |
Handan | 1.685 | 100.238 | 0.0171 | 1.097 | 0.588 | −1.127 | 100.983 | −0.011 | 0.633 | −1.76 | |
Youth Population Proportion | City | CIM | FV | CIM% | CIMI | CIMO | CIM | FV | CIM% | CIMI | CIMO |
Zhangjiakou | −0.004 | 0.078 | −0.0512 | −0.002 | −0.002 | −0.014 | 0.079 | −0.1491 | 0.001 | −0.015 | |
Chengde | 0.001 | 0.09 | 0.0146 | 0.001 | 0 | −0.011 | 0.091 | −0.1092 | 0.003 | −0.014 | |
Qinhuangdao | 0.001 | 0.082 | 0.0161 | 0.002 | −0.001 | −0.004 | 0.087 | −0.0397 | 0.01 | −0.014 | |
Tangshan | −0.005 | 0.093 | −0.0518 | −0.005 | −0.001 | −0.006 | 0.087 | −0.0594 | 0.005 | −0.01 | |
Beijing | 0.018 | 0.1 | 0.2236 | 0.02 | −0.002 | 0.023 | 0.091 | 0.3456 | 0.025 | −0.002 | |
Tianjin | 0.026 | 0.131 | 0.2486 | 0.027 | −0.001 | 0.009 | 0.104 | 0.0939 | 0.016 | −0.007 | |
Langfang | −0.003 | 0.102 | −0.0306 | −0.002 | −0.001 | −0.012 | 0.095 | −0.1093 | 0.002 | −0.013 | |
Baoding | −0.005 | 0.091 | −0.0513 | −0.004 | −0.001 | −0.013 | 0.091 | −0.121 | 0.002 | −0.015 | |
Cangzhou | −0.008 | 0.101 | −0.0737 | −0.007 | −0.001 | −0.015 | 0.089 | −0.1437 | 0 | −0.015 | |
Shijiazhuang | −0.005 | 0.107 | −0.0438 | −0.003 | −0.002 | 0.008 | 0.106 | 0.0829 | 0.017 | −0.009 | |
Hengshui | −0.007 | 0.1 | −0.0629 | −0.006 | 0 | 0.004 | 0.114 | 0.0355 | 0.021 | −0.017 | |
Xingtai | −0.009 | 0.103 | −0.0774 | −0.008 | −0.001 | −0.022 | 0.101 | −0.1789 | −0.006 | −0.016 | |
Handan | −0.011 | 0.107 | −0.0897 | −0.009 | −0.002 | −0.017 | 0.115 | −0.1264 | 0 | −0.017 | |
Average Education Years (25+) | City | CIM | FV | CIM% | CIMI | CIMO | CIM | FV | CIM% | CIMI | CIMO |
Zhangjiakou | 0.017 | 8.29 | 0.0021 | 0.022 | −0.005 | −0.05 | 9.303 | −0.0054 | 0.042 | −0.092 | |
Chengde | −0.006 | 8.453 | −0.0007 | 0.013 | −0.018 | −0.019 | 9.195 | −0.0021 | 0.041 | −0.061 | |
Qinhuangdao | 0.009 | 9.429 | 0.001 | 0.017 | −0.008 | −0.035 | 9.913 | −0.0035 | 0.038 | −0.073 | |
Tangshan | 0.017 | 9.123 | 0.0019 | 0.02 | −0.003 | −0.017 | 9.853 | −0.0017 | 0.024 | −0.041 | |
Beijing | −0.046 | 11.56 | −0.004 | −0.038 | −0.008 | −0.057 | 12.62 | −0.0045 | −0.024 | −0.033 | |
Tianjin | −0.096 | 10.399 | −0.0091 | −0.085 | −0.011 | −0.032 | 11.063 | −0.0029 | 0.036 | −0.068 | |
Langfang | 0.045 | 8.864 | 0.0051 | 0.051 | −0.006 | 0.058 | 9.86 | 0.0059 | 0.12 | −0.062 | |
Baoding | 0.014 | 8.566 | 0.0016 | 0.026 | −0.013 | −0.047 | 9.232 | −0.005 | 0.026 | −0.073 | |
Cangzhou | 0.017 | 8.605 | 0.002 | 0.024 | −0.008 | −0.026 | 9.171 | −0.0028 | 0.013 | −0.039 | |
Shijiazhuang | 0.01 | 9.587 | 0.001 | 0.025 | −0.016 | −0.023 | 10.34 | −0.0022 | 0.044 | −0.067 | |
Hengshui | 0.012 | 8.738 | 0.0014 | 0.018 | −0.006 | −0.041 | 9.289 | −0.0044 | 0.022 | −0.063 | |
Xingtai | −0.013 | 8.419 | −0.0015 | 0.014 | −0.027 | −0.026 | 9.07 | −0.0028 | 0.016 | −0.042 | |
Handan | −0.013 | 8.682 | −0.0015 | 0.004 | −0.016 | −0.05 | 9.278 | −0.0053 | 0.006 | −0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, H.; Zheng, Y. How Does Internal Migration Affect Beijing–Tianjin–Hebei Cities? Sustainability 2025, 17, 4959. https://doi.org/10.3390/su17114959
Mi H, Zheng Y. How Does Internal Migration Affect Beijing–Tianjin–Hebei Cities? Sustainability. 2025; 17(11):4959. https://doi.org/10.3390/su17114959
Chicago/Turabian StyleMi, Hong, and Yuxin Zheng. 2025. "How Does Internal Migration Affect Beijing–Tianjin–Hebei Cities?" Sustainability 17, no. 11: 4959. https://doi.org/10.3390/su17114959
APA StyleMi, H., & Zheng, Y. (2025). How Does Internal Migration Affect Beijing–Tianjin–Hebei Cities? Sustainability, 17(11), 4959. https://doi.org/10.3390/su17114959