Does Artificial Intelligence Promote Firms’ Green Technological Innovation?
Abstract
:1. Introduction
2. Literature Review
2.1. The Impact of Artificial Intelligence
2.2. The Links and Types of Green Technological Innovation
3. Theoretical Analysis and Research Hypotheses
3.1. The Impact of Artificial Intelligence on Enterprises’ Green Technological Innovation
3.2. Analysis of the Influence Mechanism of Artificial Intelligence on Green Technology Innovation
3.3. The Stages and Types Through Which Artificial Intelligence Promotes the Occurrence of Green Technological Innovation
4. Empirical Research
4.1. Model Design
4.2. Description of Related Variables
4.2.1. Explanatory Variables
4.2.2. Explained Variables
4.2.3. Control Variables
4.3. Sample Curation and Data Origin
5. Empirical Results and Analysis
5.1. Benchmark Regression Results and Analysis
5.2. Robustness Tests
5.2.1. Endogeneity Issues
5.2.2. Replacement of AI Application Metrics
5.2.3. Exclude Sample Enterprises That Have Never Applied for Patents
5.2.4. System GMM Estimation
5.2.5. Considering the Lag in Artificial Intelligence Applications Affecting Green Technology Innovation
5.3. Mechanism Testing
5.3.1. With Human Capital Quality as the Mediator
5.3.2. With Enterprise Efficiency as the Mediator
5.3.3. Rechecking the Mediating Effects
6. Heterogeneity Tests
6.1. Industry Heterogeneity
6.2. Heterogeneity in the Level of Environmental Regulation
6.3. Heterogeneity in Enterprise Ownership
7. Conclusions and Policy Recommendations
7.1. Conclusions
7.2. Policy Recommendations
8. Discussion and Future Research
8.1. Discussion
8.2. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The Environment and Directed Technical Change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.C.; Shao, C.H.; Lee, C.C. Green technology innovation and financial development: Do environmental regulation and innovation output matter? Energy Econ. 2021, 98, 105237. [Google Scholar] [CrossRef]
- Rennings, K. Redefining innovation eco-innovation research and the contribution from ecological economics. Ecol. Econ. 2000, 32, 319–332. [Google Scholar] [CrossRef]
- Manso, G. Motivating innovation. J. Financ. 2011, 66, 1823–1860. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and jobs: Evidence from US labor markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Eder, A.; Koller, W.; Mahlberg, B. The contribution of industrial robots to labor productivity growth and economic convergence: A production frontier approach. J. Product. Anal. 2024, 61, 157–181. [Google Scholar] [CrossRef]
- Aksoy, C.G.; Özcan, B.; Philipp, J. Robots and the Gender Pay Gap in Europe. Eur. Econ. Rev. 2021, 134, 103693. [Google Scholar] [CrossRef]
- Noy, S.; Zhang, W. Experimental evidence on the productivity effects of generative artificial intelligence. Science 2023, 381, 187–192. [Google Scholar] [CrossRef]
- Yao, J.Q.; Zhang, K.P.; Guo, L.P.; Feng, X. How Does Artificial Intelligence Improve Corporate Production Efficiency? From the Perspective of Labor Skill Structure Adjustment. J. Manag. World 2024, 2, 101–116+133+117–122. [Google Scholar] [CrossRef]
- Dong, Z.; Xin, Z.; Liu, D.; Yu, F. The impact of artificial intelligence application on company environmental investment in Chinese manufacturing companies. Int. Rev. Financ. Anal. 2024, 95, 103403. [Google Scholar] [CrossRef]
- Verganti, R.; Vendraminelli, L.; Iansiti, M. Innovation and Design in the Age of Artificial Intelligence. J. Prod. Innov. Manag. 2020, 37, 212–227. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Chen, S.J.; Tang, H.Y. Robot adoption and firm export: Evidence from China. Technol. Forecast. Soc. Change 2025, 210, 123878. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.J. Robot Role, Production Fragmentation and Production Mode Transformation. China Ind. Econ. 2023, 4, 5–23. [Google Scholar] [CrossRef]
- Johnson, P.C.; Laurell, C.; Ots, M.; Sandström, C. Digital innovation and the effects of artificial intelligence on firms’ research and development–Automation or augmentation, exploration or exploitation? Technol. Forecast. Soc. Change 2022, 179, 121636. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Morelli, G.; Schneider, N. The nexus between information technology and environmental pollution:application of a new machine learning algorithm to OECD countries. Util. Policy 2021, 72, 101256. [Google Scholar] [CrossRef]
- Huang, G.; He, L.Y.; Lin, X. Robot Adoption and Energy Performance:Evidence from Chinese Industrial Firms. Energy Econ. 2022, 107, 105837. [Google Scholar] [CrossRef]
- Macías, E.F.; Klenert, D.; Antón, J. Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe. Struct. Change Econ. Dyn. 2021, 58, 76–89. [Google Scholar] [CrossRef]
- Xin, Y.R.; Shen, C.; Feng, R.; Ma, Y.X. CEO Green Experience, Robot Application and Green Technology Innovation. Econ. Manag. 2024, 46, 129–145. [Google Scholar]
- Zhang, Q.N.; Zhang, F.F.; Mai, Q. Robot adoption and green productivity: Curse or Boon. Sustain. Prod. Consum. 2022, 34, 1–11. [Google Scholar] [CrossRef]
- Lanoie, P.; Patry, M.; Lajeunesse, R. Environmental regulation and productivity: Testing the porter hypothesis. J. Product. Anal. 2008, 30, 121–128. [Google Scholar] [CrossRef]
- Obobisa, E.S.; Ahakwa, I. Stimulating the adoption of green technology innovation, clean energy resources, green finance, and environmental taxes: The way to achieve net zero CO2 emissions in Europe? Technol. Forecast. Soc. Change 2024, 205, 123489. [Google Scholar] [CrossRef]
- Morgenstern, R.D.; Pizer, W.A.; Shih, J.S. Jobs Versus the Environment: An Industry-Level Perspective. J. Environ. Econ. Manag. 2002, 43, 412–436. [Google Scholar] [CrossRef]
- Gray, W.B. Manufacturing Plant Location: Does State Pollution Regulation Matter? NBER Working Papers; Clark University: Worcester, MA, USA, 1997; p. 5880. [Google Scholar]
- Christmann, P. Effects of “best practices” of environmental management on cost advantage: The role of complementary assets. Acad. Manag. J. 2000, 43, 663–680. [Google Scholar] [CrossRef]
- Clarke, R.; Stavins, R.; Greeno, J.; Bavaria, J.L.; Cairncross, F.; Esty, D.C.; Smart, B.; Piet, J.; Wells, R.P.; Gray, R.; et al. The challenge of going green: Green strategies are necessary, but which ones, and how will we pay for them? Harv. Bus. Rev. 1994, 72, 37. [Google Scholar]
- Wang, Q.; Zhang, F.; Li, R.; Sun, J. Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness. J. Clean. Prod. 2024, 447, 35. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Luan, F. Air Pollution, water pollution, and robots: Is technology the panacea. J. Environ. Manag. 2023, 330, 117170. [Google Scholar] [CrossRef]
- He, X.; Teng, R.; Feng, D.; Gai, J. Industrial robots and pollution: Evidence from Chinese enterprises. Econ. Anal. Policy 2024, 82, 629–650. [Google Scholar] [CrossRef]
- Damioli, G.; Roy, V.V.; Vertesy, D.; Vivarelli, M. Is artificial intelligence leading to a new technological paradigm? Struct. Change Econ. Dyn. 2025, 72, 347–359. [Google Scholar] [CrossRef]
- Gan, J.W.; Liu, L.H.; Qiao, G.; Zhang, Q. The role of robot adoption in green innovation: Evidence from China. Econ. Modelling. 2023, 119, 106128. [Google Scholar] [CrossRef]
- Fu, X.Q.; Bao, Q.; Xie, H.J.; Fu, X.L. Diffusion of industrial robotics and inclusive growth: Labour market evidence from cross country data. J. Bus. Res. 2021, 122, 670–684. [Google Scholar] [CrossRef]
- Lee, C.C.; Qin, S.; Li, Y.Y. Does industrial robot application promote green technology innovation in the manufacturing industry? Technol. Forecast. Soc. Change 2022, 183, 121893. [Google Scholar] [CrossRef]
- Wang, E.Z.; Lee, C.C.; Li, Y.Y. Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries. Energy Econ. 2022, 105, 105748. [Google Scholar] [CrossRef]
- Ali, W.; Wen, J.; Hussain, H.; Khan, N.A.; Younas, M.W.; Jamil, I. Does green intellectual capital matter for green innovation adoption? Evidence from the manufacturing SMEs of Pakistan. J. Intellect. Cap. 2021, 22, 868–888. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Modeling automation. AEA Pap. Proc. 2018, 108, 48–53. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of China’s manufacturing sectors. Technol. Forecast. Soc. Change 2020, 158, 120142. [Google Scholar] [CrossRef]
- Fan, H.C.; Hu, Y.C.; Tang, L.X. Labor costs and the adoption of robots in China. J. Econ. Behav. Organ. 2021, 186, 608–631. [Google Scholar] [CrossRef]
- Graetz, G.; Michaels, G. Robots at Work. Rev. Econ. Stat. 2018, 100, 753–768. [Google Scholar] [CrossRef]
- Li, S.Y.; Xu, C.H. Research on the Impact of Industrial Robots on China’s Regional Industrial Structure. J. Auton. Intell. 2022, 5, 498. [Google Scholar] [CrossRef]
- El-Kassar, A.; Singh, S.K. Green innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices. Technol. Forecast. Soc. Change 2019, 144, 483–498. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Automation and New Tasks: How Technology Displaces and Reinstates Labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
- Xie, X.; Yan, J. How does artificial intelligence affect productivity and agglomeration? Evidence from China’s listed enterprise data. Int. Rev. Econ. Financ. 2024, 94, 103408. [Google Scholar] [CrossRef]
- Luan, F.; Yang, X.; Chen, Y.; Regis, P.J. Industrial robots and air environment: A moderated mediation model of population density and energy consumption. Sustain. Prod. Consum. 2022, 30, 870–888. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, L.Q.; Zhang, R.; Deng, S.; Zhang, Y.; Wu, J.; Li, Y.; Lin, L.; Wang, Y.; Wang, L. Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China. Renew. Sustain. Energy Rev. 2013, 18, 259–270. [Google Scholar] [CrossRef]
- Noailly, J.; Smeets, R. Directing technical change from fossil-fuel to renewable energy innovation: An empirical application using firm-level patent data. J. Environ. Econ. Manag. 2013, 72, 15–37. [Google Scholar] [CrossRef]
- Paul, S.; Bhattacharya, R.N. CO2 emission from energy use in India:a decomposition analysis. Energy Policy 2004, 32, 585–593. [Google Scholar] [CrossRef]
- Sharfaei, S.; Bittner, J. Technological employment: Evidence from worldwide robot adoption. Technol. Forecast. Soc. Change 2024, 209, 123742. [Google Scholar] [CrossRef]
- Chen, Q.; Li, X.; Li, Y. Market competition and green technology adoption in Chinese manufacturing. J. Environ. Econ. Manag. 2021, 12021, 102578. [Google Scholar]
- Antonioli, D.; Marzucchi, A.; Rentocchini, F.; Vannuccini, S. Robot adoption and product innovation. Res. Policy 2024, 53, 105002. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Dong, W. How the Rise of Robots Has Affected China’s Labor Market: Evidence from China’s Listed Manufacturing Firms. Econ. Res. J. 2020, 55, 159–175, (In Chinese with English abstract). [Google Scholar]
- Dou, Q.; Gao, X. How does the digital transformation of corporates affect green technology innovation? An empirical study from the perspective of asymmetric effects and structural breakpoints. J. Clean. Prod. 2023, 20, 428. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Kou, D.X.; Zhou, Y.B. Energy use technology or management technology: The choice of links and types of green technology innovation. Tech. Econ. 2022, 41, 47–59, (In Chinese with English abstract). [Google Scholar]
- Chen, X.H.; Du, W.; Zhou, Q. How does industrial robot application promote enterprises’ green innovation? J. Zhejiang Sci-Tech Univ. 2023, 50, 404–416. [Google Scholar] [CrossRef]
- Shen, D.; Bu, W.C. The usage of robots and enterprises’ pollution emissions in China. J. Quant. Technol. Econ. 2022, 39, 157–176. [Google Scholar] [CrossRef]
- Jiang, T. Mediating and moderating effects in empirical studies of causal inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar] [CrossRef]
- James, L.; Amil, P. Estimating Production Functions Using Inputs to Control for Unobservables. Rev. Econ. Stud. 2010, 2, 317–341. [Google Scholar] [CrossRef]
- Javorcik, B.S.; Wei, S.J. Pollution Havens and Foreign Direct Investment: Dirty Secret or Popular Myth? Contrib. Econ. Anal. Policy 2003, 3, 1244. [Google Scholar] [CrossRef]
Variable Name | Variable Expression | Obs | Mean | Std. | Min | Max | |
---|---|---|---|---|---|---|---|
25,256 | 0.335 | 0.743 | 0 | 3.611 | |||
25,256 | 0.078 | 0.257 | 0 | 2.761 | |||
25,256 | 0.102 | 0.312 | 0 | 2.164 | |||
25,256 | 0.086 | 0.279 | 0 | 2.632 | |||
25,256 | 0.057 | 0.199 | 0 | 1.159 | |||
25,256 | 2.619 | 0.952 | −2.843 | 7.582 | |||
25,256 | 2.099 | 0.865 | 0 | 3.259 | |||
25,256 | 0.039 | 0.056 | −0.211 | 0.191 | |||
25,256 | 0.612 | 0.429 | 0.035 | 2.562 | |||
25,256 | 0.098 | 0.121 | 0.017 | 1 | |||
25,256 | 2.126 | 0.541 | 0.650 | 3.013 | |||
Financial health of the enterprise | 25,256 | 0.433 | 0.209 | 0.049 | 0.887 | ||
25,256 | 9.953 | 10.680 | 0 | 12.612 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | ||
lnexposure | 0.058 *** | 0.041 *** | 0.045 *** | 0.038 ** | 0.026 * |
(0.012) | (0.007) | (0.006) | (0.015) | (0.014) | |
lnage | 0.035 | 0.046 | 0.031 | 0.019 | 0.019 |
(0.091) | (0.072) | (0.072) | (0.067) | (0.068) | |
roa | 0.118 * | 0.086 | 0.084 | 0.083 | 0.079 |
(0.069) | (0.055) | (0.055) | (0.053) | (0.052) | |
capital | 0.145 | 0.081 | 0.028 | 0.156 | 0.157 |
(0.151) | (0.118) | (0.118) | (0.114) | (0.113) | |
hhi | −0.133 *** | −0.138 *** | −0.109 *** | −0.078 *** | −0.081 *** |
(0.036) | (0.036) | (0.029) | (0.026) | (0.027) | |
lnpgdp | 0.013 | 0.015 | 0.019 | 0.009 | 0.004 |
(0.019) | (0.019) | (0.014) | (0.014) | (0.015) | |
lnfinan | 0.087 *** | 0.062 *** | 0.051 *** | 0.044 *** | 0.043 *** |
(0.011) | (0.008) | (0.008) | (0.007) | (0.008) | |
lnrd | 0.061 ** | 0.045 * | 0.053 ** | 0.045 ** | 0.043 * |
(0.029) | (0.024) | (0.023) | (0.022) | (0.023) | |
C | −0.335 | −0.243 | −0.134 | −0.282 | −0.172 |
(0.612) | (0.431) | (0.291) | (0.611) | (1.221) | |
Firm FE | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
Observations | 25,256 | 25,256 | 25,256 | 25,256 | 25,256 |
R-squared | 0.672 | 0.655 | 0.643 | 0.635 | 0.635 |
First Stage | Second Stage | Second Stage | Second Stage | DID | |||
---|---|---|---|---|---|---|---|
Variables | lnrobit | ginnov_total | ginnov_ce | ginnov_de | ginnov_ total | ||
nylnno | jnlnno | fwlnno | yslnno | ||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
IVlnexposure | 1.315 *** | ||||||
(0.011) | |||||||
lnexposure | 0.061 *** | 0.042 *** | 0.048 *** | 0.041 ** | 0.028 * | ||
(0.010) | (0.007) | (0.006) | (0.017) | (0.015) | |||
0.068 *** | |||||||
(0.014) | |||||||
control | Y | Y | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y | Y |
Observations | 25,256 | 25,256 | 25,256 | 25,256 | 25,256 | 25,256 | 25,256 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | ||
n_lnexposure | 0.052 *** | 0.038 *** | 0.040 *** | 0.034 ** | 0.027 * |
(0.010) | (0.007) | (0.006) | (0.014) | (0.014) | |
control | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
R-squared | 0.674 | 0.653 | 0.642 | 0.637 | 0.639 |
Observations | 25,256 | 25,256 | 25,256 | 25,256 | 25,256 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | ginnov_total | ginnov_ce | ginnov_de | ginnov_total | ||
nylnno | jnlnno | fwlnno | yslnno | |||
L.ginnov_total | 0.065 | |||||
(0.036) | ||||||
lnexposure | 0.061 *** | 0.039 *** | 0.047 *** | 0.037 ** | 0.022 ** | 0.072 *** |
(0.013) | (0.007) | (0.008) | (0.015) | (0.009) | (0.016) | |
control | Y | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
Observations | 19,437 | 19,437 | 19,437 | 19,437 | 19,437 | 25,256 |
AR(1)-P | 0.000 | |||||
AR(2)-P | 0.234 | |||||
Hansen | 0.372 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | ||
lag_lnexposure | 0.043 *** | 0.037 *** | 0.039 *** | 0.023 * | 0.021 * |
(0.011) | (0.008) | (0.008) | (0.012) | (0.012) | |
lag_control | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
R-squared | 0.663 | 0.652 | 0.661 | 0.635 | 0.629 |
Observations | 22,183 | 22,183 | 22,183 | 22,183 | 22,183 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | hlabor | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | |||
lnexposure | 0.137 *** | 0.053 *** | 0.035 *** | 0.039 *** | 0.025 | 0.021 * |
(0.015) | (0.011) | (0.009) | (0.010) | (0.018) | (0.012) | |
hlabor | 0.107 *** | 0.101 *** | 0.112 *** | 0.098 | 0.092 | |
(0.015) | (0.009) | (0.011) | (0.122) | (0.122) | ||
control | Y | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
R-squared | 0.832 | 0.791 | 0.811 | 0.826 | 0.731 | 0.726 |
Observations | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | tfp | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | |||
lnexposure | 0.152 *** | 0.054 *** | 0.036 *** | 0.041 *** | 0.028 ** | 0.019 * |
(0.013) | (0.012) | (0.009) | (0.012) | (0.012) | (0.011) | |
tfp | 0.125 *** | 0.113 *** | 0.112 *** | 0.095 ** | 0.098 * | |
(0.016) | (0.011) | (0.011) | (0.012) | (0.036) | ||
control | Y | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
R-squared | 0.895 | 0.826 | 0.821 | 0.837 | 0.782 | 0.779 |
Observations | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 |
Dependent Variable | Dependent Variable | Effect Category | Effect Size | Standard Error | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Upper Limit | Lower Limit | |||||
lnexposure | hlabor | Indirect Effect | 0.0016 | 0.0003 | 0.0010 | 0.0023 |
Direct Effect | 0.0080 | 0.0018 | 0.0044 | 0.0116 | ||
lnexposure | tfp | Indirect Effect | 0.0010 | 0.0002 | 0.0014 | 0.0006 |
Direct Effect | 0.0060 | 0.0012 | 0.0084 | 0.0036 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | ||
lnexposure | 0.043 *** | 0.032 * | 0.025 | 0.039 *** | 0.031 ** |
(0.012) | (0.019) | (0.021) | (0.012) | (0.015) | |
control | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
R-squared | 0.696 | 0.687 | 0.693 | 0.745 | 0.745 |
Observations | 8691 | 8691 | 8691 | 8691 | 8691 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | ||
lnexposure | 0.038 *** | 0.029 *** | 0.034 *** | 0.019 * | 0.011 |
(0.011) | (0.009) | (0.011) | (0.011) | (0.012) | |
control | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
R-squared | 0.679 | 0.645 | 0.649 | 0.621 | 0.621 |
Observations | 16,565 | 16,565 | 16,565 | 16,565 | 16,565 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | ||
lnexposure | 0.044 *** | 0.027 ** | 0.029 ** | 0.035 ** | 0.031 ** |
(0.012) | (0.011) | (0.013) | (0.015) | (0.015) | |
control | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
R-squared | 0.693 | 0.665 | 0.663 | 0.637 | 0.637 |
Observations | 20,165 | 20,165 | 20,165 | 20,165 | 20,165 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | ginnov_total | ginnov_ce | ginnov_de | ||
nylnno | jnlnno | fwlnno | yslnno | ||
lnexposure | 0.013 * | 0.008 | 0.011 * | 0.009 | 0.010 |
(0.007) | (0.022) | (0.006) | (0.017) | (0.016) | |
control | Y | Y | Y | Y | Y |
Firm FE | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
R-squared | 0.632 | 0.579 | 0.579 | 0.535 | 0.535 |
Observations | 4072 | 4072 | 4072 | 4072 | 4072 |
non-SOEs | SOEs | |
---|---|---|
Variables | ginnov_total | ginnov_total |
lnexposure | 0.012 | 0.036 *** |
(0.015) | (0.012) | |
control | Y | Y |
Firm FE | Y | Y |
Year FE | Y | Y |
R-squared | 0.679 | 0.512 |
Observations | 8839 | 16,417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Chen, Y. Does Artificial Intelligence Promote Firms’ Green Technological Innovation? Sustainability 2025, 17, 4900. https://doi.org/10.3390/su17114900
Li H, Chen Y. Does Artificial Intelligence Promote Firms’ Green Technological Innovation? Sustainability. 2025; 17(11):4900. https://doi.org/10.3390/su17114900
Chicago/Turabian StyleLi, Hanna, and Yu Chen. 2025. "Does Artificial Intelligence Promote Firms’ Green Technological Innovation?" Sustainability 17, no. 11: 4900. https://doi.org/10.3390/su17114900
APA StyleLi, H., & Chen, Y. (2025). Does Artificial Intelligence Promote Firms’ Green Technological Innovation? Sustainability, 17(11), 4900. https://doi.org/10.3390/su17114900