The Role of Agriculture in Shaping CO2 in Saudi Arabia: A Comprehensive Analysis of Economic and Environmental Factors
Abstract
:1. Introduction
2. Literature Review
2.1. Agriculture Development and CO2 Emissions
2.2. Economic Growth and CO2 Emissions
2.3. Energy Use and CO2 Emissions
2.4. Research Gap
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anwar, M.; Iftikhar, M.; Khush Bakhat, B.; Sohail, N.; Baqar, M.; Yasir, A.; Nizami, A. Sources of carbon dioxide and environmental issues. In Sustainable Agriculture Reviews 37: Carbon Sequestration Vol. 1 Introduction and Biochemical Methods; Springer: Cham, Switzerland, 2019; pp. 13–36. [Google Scholar]
- Soeder, D.J.; Soeder, D.J. Fossil fuels and climate change. In Fracking and the Environment: A Scientific Assessment of the Environmental Risks from Hydraulic Fracturing and Fossil Fuels; Springer: Cham, Switzerland, 2021; pp. 155–185. [Google Scholar]
- Kanna, V.; Roseline, S.; Balamurugan, K.; Jeeva, S.; Augastin Santhiyagu, I. The effects of greenhouse gas emissions on global warming. Encycl. Renew. Energy Sustain. Environ. 2024, 1, 143–154. [Google Scholar]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Mohan, C.; Robinson, J.; Vodwal, L.; Kumari, N. Sustainable Development Goals for addressing environmental challenges. In Green Chemistry Approaches to Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2024; pp. 357–374. [Google Scholar]
- Wang, Y.; Qian, Y. Driving factors to agriculture total factor productivity and its contribution to just energy transition. Environ. Impact Assess. Rev. 2024, 105, 107369. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, I.; Field, D.L.; Techato, K.; Alameh, K. Powering agriculture: Present status, future potential, and challenges of renewable energy applications. Renew. Energy 2022, 188, 731–749. [Google Scholar] [CrossRef]
- World Bank. GDP (Current US$)—Saudi Arabia. 2022. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=SA (accessed on 5 February 2025).
- Al Naimi, S.M. Economic diversification trends in the Gulf: The case of Saudi Arabia. Circ. Econ. Sustain. 2022, 2, 221–230. [Google Scholar] [CrossRef]
- World Bank. Agricultural Land (% of Land Area)—Saudi Arabia. 2022. Available online: https://data.worldbank.org/indicator/AG.LND.AGRI.ZS?locations=SA (accessed on 5 February 2025).
- Saudi Agriculture. Market Overview—Saudi Agriculture 2025. 2025. Available online: https://saudi-agriculture.com/overview/ (accessed on 5 February 2025).
- Belaïd, F.; Al-Sarihi, A. Saudi Arabia energy transition in a post-paris agreement era: An analysis with a multi-level perspective approach. Res. Int. Bus. Financ. 2024, 67, 102086. [Google Scholar] [CrossRef]
- Wogan, D.; Carey, E.; Cooke, D. Policy Pathways to Meet Saudi Arabia’s Contribution to the Paris Agreement; King Abdullah Petroleum Studies and Research Center (KAPSARC): Riyadh, Saudi Arabia, 2019. [Google Scholar]
- Kamboj, P.; Hejazi, M.; Alhadhrami, K.; Qiu, Y.; Kyle, P.; Iyer, G. Saudi Arabia Net Zero GHG Emissions by 2060: Transformation of the Electricity Sector; King Abdullah Petroleum Studies and Research Center: Riyadh, Saudi Arabia, 2023. [Google Scholar]
- Arabia, S. Updated First Nationally Determined Contribution. 2022. Available online: https://unfccc.int/sites/default/files/resource/202203111154---KSA%20NDC%202021.pdf (accessed on 5 February 2025).
- Islam, M.T.; Ali, A. Sustainable green energy transition in Saudi Arabia: Characterizing policy framework, interrelations and future research directions. Next Energy 2024, 5, 100161. [Google Scholar] [CrossRef]
- Praveen, R.; Keloth, V.; Abo-Khalil, A.G.; Alghamdi, A.S.; Eltamaly, A.M.; Tlili, I. An insight to the energy policy of GCC countries to meet renewable energy targets of 2030. Energy Policy 2020, 147, 111864. [Google Scholar] [CrossRef]
- Khayat, R.O.; Felemban, D.N.; Altowairqi, T.K.; Aljahdali, M.O. Measurement of Saudi society environmental awareness in relation to 2030 Saudi vision and the Saudi green initiative. Arab J. Sci. Publ. (AJSP) ISSN 2023, 2663, 5798. [Google Scholar]
- Chaaben, N.; Elleuch, Z.; Hamdi, B.; Kahouli, B. Green economy performance and sustainable development achievement: Empirical evidence from Saudi Arabia. Environ. Dev. Sustain. 2024, 26, 549–564. [Google Scholar] [CrossRef]
- Ghanem, A.M.; Alamri, Y.A. The impact of the green Middle East initiative on sustainable development in the Kingdom of Saudi Arabia. J. Saudi Soc. Agric. Sci. 2023, 22, 35–46. [Google Scholar] [CrossRef]
- Raihan, A.; Begum, R.A.; Nizam, M.; Said, M.; Pereira, J.J. Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Environ. Ecol. Stat. 2022, 29, 477–507. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Nexus between economic growth, energy use, agricultural productivity, and carbon dioxide emissions: New evidence from Nepal. Energy Nexus 2022, 7, 100113. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. The nexus between economic growth, renewable energy use, agricultural land expansion, and carbon emissions: New insights from Peru. Energy Nexus 2022, 6, 100067. [Google Scholar] [CrossRef]
- Raihan, A. An econometric evaluation of the effects of economic growth, energy use, and agricultural value added on carbon dioxide emissions in Vietnam. Asia-Pac. J. Reg. Sci. 2023, 7, 665–696. [Google Scholar] [CrossRef]
- Sui, Y. Analyzing the impact of industrial growth and agricultural development on environmental degradation in South and East Asia. Environ. Sci. Pollut. Res. 2023, 30, 121090–121106. [Google Scholar] [CrossRef]
- Gershon, O.; Asafo, J.K.; Nyarko-Asomani, A.; Koranteng, E.F. Investigating the nexus of energy consumption, economic growth and carbon emissions in selected african countries. Energy Strategy Rev. 2024, 51, 101269. [Google Scholar] [CrossRef]
- Afroz, R.; Alofaysan, H.; Sarabdeen, M.; Muhibbullah, M.; Muhammad, Y.B. Analyzing the Influence of Energy Consumption and Economic Complexity on Carbon Emissions: Evidence from Malaysia. Energies 2024, 17, 2900. [Google Scholar] [CrossRef]
- Mahmood, H.; Alkhateeb, T.T.Y.; Al-Qahtani, M.M.Z.; Allam, Z.; Ahmad, N.; Furqan, M. Agriculture development and CO2 emissions nexus in Saudi Arabia. PLoS ONE 2019, 14, e0225865. [Google Scholar] [CrossRef]
- Ozturk, I.; Aslan, A.; Altinoz, B. Investigating the nexus between CO2 emissions, economic growth, energy consumption and pilgrimage tourism in Saudi Arabia. Econ. Res. -Ekon. Istraživanja 2022, 35, 3083–3098. [Google Scholar] [CrossRef]
- Emam, A. Present and future: Does agriculture affect economic growth and the environment in the Kingdom of Saudi Arabia? Agric. Econ./Zeměd. Ekon. 2022, 68, 380–392. [Google Scholar] [CrossRef]
- Aldegheishem, A. The Impact of Air Transportation, Trade Openness, and Economic Growth on CO2 Emissions in Saudi Arabia. Front. Environ. Sci. 2024, 12, 1366054. [Google Scholar] [CrossRef]
- Bathaei, A.; Štreimikienė, D. Renewable energy and sustainable agriculture: Review of indicators. Sustainability 2023, 15, 14307. [Google Scholar] [CrossRef]
- Shaheen, A.; Sheng, J.Y.; Arshad, S.; Muhammad, H.; Salam, S. Forecasting the determinants of environmental degradation: A gray modeling approach. Energy Sources Part A—Recovery Util. Environ. Eff. 2025, 47, 1084–1104. [Google Scholar] [CrossRef]
- Brock, W.A.; Taylor, M.S. Economic growth and the environment: A review of theory and empirics. Handb. Econ. Growth 2005, 1, 1749–1821. [Google Scholar]
- Mulder, P.; Van Den Bergh, J.C. Evolutionary economic theories of sustainable development. Growth Change 2001, 32, 110–134. [Google Scholar] [CrossRef]
- Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017. Sci. Total Environ. 2019, 649, 31–49. [Google Scholar] [CrossRef]
- Onofrei, M.; Vatamanu, A.F.; Cigu, E. The relationship between economic growth and CO2 emissions in EU countries: A cointegration analysis. Front. Environ. Sci. 2022, 10, 934885. [Google Scholar] [CrossRef]
- Haider, A.; Bashir, A.; ul Husnain, M.I. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Sci. Total Environ. 2020, 741, 140421. [Google Scholar] [CrossRef]
- Orhan, A.; Adebayo, T.S.; Genç, S.Y.; Kirikkaleli, D. Investigating the Linkage between Economic Growth and Environmental Sustainability in India: Do Agriculture and Trade Openness Matter? Sustainability 2021, 13, 4753. [Google Scholar] [CrossRef]
- Yurtkuran, S. The effect of agriculture, renewable energy production, and globalization on CO2 emissions in Turkey: A bootstrap ARDL approach. Renew. Energy 2021, 171, 1236–1245. [Google Scholar] [CrossRef]
- Khan, R.; Zhuang, W.Q.; Najumddin, O.; Butt, R.S.; Ahmad, I.; Al-Faryan, M.A.S. The impact of agricultural intensification on carbon dioxide emissions and energy consumption: A comparative study of developing and developed nations. Front. Environ. Sci. 2022, 10, 1036300. [Google Scholar] [CrossRef]
- Aluwani, T. Agricultural Economic Growth, Renewable Energy Supply and CO2 Emissions Nexus. Economies 2023, 11, 85. [Google Scholar] [CrossRef]
- Karimi Alavijeh, N.; Salehnia, N.; Salehnia, N.; Koengkan, M. The effects of agricultural development on CO2 emissions: Empirical evidence from the most populous developing countries. Environ. Dev. Sustain. 2023, 25, 12011–12031. [Google Scholar] [CrossRef]
- Wang, J.Y.; Jiang, C.L.; Li, M.Q.; Zhang, S.; Zhang, X.B. Renewable energy, agriculture, and carbon dioxide emissions nexus: Implications for sustainable development in sub-Saharan African countries. Sustain. Environ. Res. 2023, 33, 31. [Google Scholar] [CrossRef]
- Nsabiyeze, A.; Ma, R.; Li, J.; Luo, H.; Zhao, Q.; Tomka, J.; Zhang, M. Tackling climate change in agriculture: A global evaluation of the effectiveness of carbon emission reduction policies. J. Clean. Prod. 2024, 142973. [Google Scholar] [CrossRef]
- Lao, G.C.; Luo, G.Q. Linkages between industry, agriculture, growth, renewable energy and the environment and the role of institutional quality, evidence from selected South and East Asian economies. Energy Explor. Exploit. 2025, 43, 354–377. [Google Scholar] [CrossRef]
- Boukhelkhal, A. Energy use, economic growth and CO2 emissions in Africa: Does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence. Environ. Dev. Sustain. 2022, 24, 13083–13110. [Google Scholar] [CrossRef]
- Mitić, P.; Fedajev, A.; Radulescu, M.; Rehman, A. The relationship between CO2 emissions, economic growth, available energy, and employment in SEE countries. Environ. Sci. Pollut. Res. 2023, 30, 16140–16155. [Google Scholar] [CrossRef]
- Raihan, A. The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus 2023, 9, 100180. [Google Scholar] [CrossRef]
- Ghazouani, T.; Maktouf, S. Impact of natural resources, trade openness, and economic growth on CO2 emissions in oil-exporting countries: A panel autoregressive distributed lag analysis. In Proceedings of the Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2024; pp. 211–231. [Google Scholar]
- Etensa, T.; Alemu, T.; Yayo, M. Rethinking the measurements and predictors of environmental degradation in Ethiopia: Predicting long-term impacts using a kernel-based machine learning approach. Environ. Sustain. Indic. 2025, 25, 100554. [Google Scholar] [CrossRef]
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, agriculture, renewable energy, and CO2 emission. J. Clean. Prod. 2018, 172, 4231–4238. [Google Scholar] [CrossRef]
- Ali, S.; Ying, L.; Shah, T.; Tariq, A.; Ali Chandio, A.; Ali, I. Analysis of the nexus of CO2 emissions, economic growth, land under cereal crops and agriculture value-added in Pakistan using an ARDL approach. Energies 2019, 12, 4590. [Google Scholar] [CrossRef]
- Aydoğan, B.; Vardar, G. Evaluating the role of renewable energy, economic growth and agriculture on CO2 emission in E7 countries. Int. J. Sustain. Energy 2020, 39, 335–348. [Google Scholar] [CrossRef]
- Balogh, J.M. The impacts of agricultural development and trade on CO2 emissions? Evidence from the Non-European Union countries. Environ. Sci. Policy 2022, 137, 99–108. [Google Scholar] [CrossRef]
- Kara, F.; Bas, T.; TIrmandioğlu Talu, N.H.; Alola, A.A. Investigating the carbon emission aspects of agricultural land utilization in Turkey. Integr. Environ. Assess. Manag. 2021, 18, 988–996. [Google Scholar] [CrossRef]
- Sui, J.; Lv, W. Crop production and agricultural carbon emissions: Relationship diagnosis and decomposition analysis. Int. J. Environ. Res. Public Health 2021, 18, 8219. [Google Scholar] [CrossRef]
- Sagheer, M.; Ashraf, A. Analyzing the Nexus of development and environmental impact in China: Sustainable pathways. Clean Technol. Environ. Policy 2024, 26, 3791–3804. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Dynamic impacts of economic growth, renewable energy use, urbanization, industrialization, tourism, agriculture, and forests on carbon emissions in Turkey. Carbon Res. 2022, 1, 20. [Google Scholar] [CrossRef]
- Elhaj, M. Do Energy Efficiency and Technology Boost Sustainable Environment: Evidence from GCC Countries. J. Ecohumanism 2024, 3, 2545–2565. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Role of economic growth, renewable energy, and technological innovation to achieve environmental sustainability in Kazakhstan. Curr. Res. Environ. Sustain. 2022, 4, 100165. [Google Scholar] [CrossRef]
- Karaaslan, A.; Çamkaya, S. The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey. Renew. Energy 2022, 190, 457–466. [Google Scholar] [CrossRef]
- Raihan, A.; Muhtasim, D.A.; Farhana, S.; Pavel, M.I.; Faruk, O.; Rahman, M.; Mahmood, A. Nexus between carbon emissions, economic growth, renewable energy use, urbanization, industrialization, technological innovation, and forest area towards achieving environmental sustainability in Bangladesh. Energy Clim. Change 2022, 3, 100080. [Google Scholar] [CrossRef]
- Karimzadeh, M.; Delgarm, A.; Sasouli, M.R.; Eidouzehi, E.T. Effect of Economic Complexity on CO2 Emission: A Selection of Shanghai Cooperation Organization Member Countries. Pol. J. Environ. Stud. 2023, 32, 5641–5650. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan. World Dev. Sustain. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil. J. Environ. Stud. Sci. 2022, 12, 794–814. [Google Scholar] [CrossRef]
- Raihan, A.; Ibrahim, S.; Muhtasim, D.A. Dynamic impacts of economic growth, energy use, tourism, and agricultural productivity on carbon dioxide emissions in Egypt. World Dev. Sustain. 2023, 2, 100059. [Google Scholar] [CrossRef]
- Sikder, M.; Wang, C.; Yao, X.; Huai, X.; Wu, L.; KwameYeboah, F.; Wood, J.; Zhao, Y.; Dou, X. The integrated impact of GDP growth, industrialization, energy use, and urbanization on CO2 emissions in developing countries: Evidence from the panel ARDL approach. Sci. Total Environ. 2022, 837, 155795. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators; World Bank: Washington, DC, USA, 2025. [Google Scholar]
- Benoit, K. Linear regression models with logarithmic transformations. Lond. Sch. Econ. Lond. 2011, 22, 23–36. [Google Scholar]
- Pantula, S.G. Testing for unit roots in time series data. Econom. Theory 1989, 5, 256–271. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Phillips, P. Testing for a Unit Root in Time Series Regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y. An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. Department of Applied Economics, University of Cambridge: Cambridge, UK, 1995; Volume 9514. [Google Scholar]
- Nkoro, E.; Uko, A.K. Autoregressive Distributed Lag (ARDL) cointegration technique: Application and interpretation. J. Stat. Econom. Methods 2016, 5, 63–91. [Google Scholar]
- Panopoulou, E.; Pittis, N. A comparison of autoregressive distributed lag and dynamic OLS cointegration estimators in the case of a serially correlated cointegration error. Econom. J. 2004, 7, 585–617. [Google Scholar] [CrossRef]
- Liddle, B. The importance of energy quality in energy intensive manufacturing: Evidence from panel cointegration and panel FMOLS. Energy Econ. 2012, 34, 1819–1825. [Google Scholar] [CrossRef]
- Akaike, H. Factor analysis and AIC. Psychometrika 1987, 52, 317–332. [Google Scholar] [CrossRef]
- Kripfganz, S.; Schneider, D.C. ardl: Estimating autoregressive distributed lag and equilibrium correction models. Stata J. 2023, 23, 983–1019. [Google Scholar] [CrossRef]
- Pachiyappan, D.; Ansari, Y.; Alam, M.S.; Thoudam, P.; Alagirisamy, K.; Manigandan, P. Short and long-run causal effects of CO2 emissions, energy use, GDP and population growth: Evidence from India using the ARDL and VECM approaches. Energies 2021, 14, 8333. [Google Scholar] [CrossRef]
- Hao, Y. The relationship between renewable energy consumption, carbon emissions, output, and export in industrial and agricultural sectors: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 63081–63098. [Google Scholar] [CrossRef]
- AlNemer, H.A.; Hkiri, B.; Tissaoui, K. Dynamic impact of renewable and non-renewable energy consumption on CO2 emission and economic growth in Saudi Arabia: Fresh evidence from wavelet coherence analysis. Renew. Energy 2023, 209, 340–356. [Google Scholar] [CrossRef]
- Anwar, A.; Sinha, A.; Sharif, A.; Siddique, M.; Irshad, S.; Anwar, W.; Malik, S. The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: Evidence from selected Asian countries. Environ. Dev. Sustain. 2022, 24, 6556–6576. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Bein, M.A.; Gyamfi, B.A.; Bekun, F.V. Does agricultural development induce environmental pollution in E7? A myth or reality. Environ. Sci. Pollut. Res. 2021, 28, 41869–41880. [Google Scholar] [CrossRef] [PubMed]
- Shehri, T.A.; Braun, J.F.; Howarth, N.; Lanza, A.; Luomi, M. Saudi Arabia’s climate change policy and the circular carbon economy approach. Clim. Policy 2023, 23, 151–167. [Google Scholar] [CrossRef]
- Kahia, M.; Jarraya, B.; Kahouli, B.; Omri, A. The role of environmental innovation and green energy deployment in environmental protection: Evidence from Saudi Arabia. J. Knowl. Econ. 2024, 15, 337–363. [Google Scholar] [CrossRef]
- Rehman, A.; Alam, M.M.; Alvarado, R.; Işık, C.; Ahmad, F.; Cismas, L.M.; Pupazan, M.C.M. Carbonization and agricultural productivity in Bhutan: Investigating the impact of crops production, fertilizer usage, and employment on CO2 emissions. J. Clean. Prod. 2022, 375, 134178. [Google Scholar] [CrossRef]
- Maulidar, P.; Fitriyani, F.; Sasmita, N.R.; Hardi, I.; Idroes, G.M. Exploring Indonesia’s CO2 emissions: The impact of agriculture, economic growth, capital and labor. Grimsa J. Bus. Econ. Stud. 2024, 1, 43–55. [Google Scholar] [CrossRef]
- Al-Sinan, M.A.; Bubshait, A.A.; Alamri, F. Saudi Arabia’s journey toward net-zero emissions: Progress and challenges. Energies 2023, 16, 978. [Google Scholar] [CrossRef]
- Kamboj, P.; Hejazi, M.; Qiu, Y.; Kyle, P.; Iyer, G. The path to 2060: Saudi Arabia’s long-term pathway for GHG emission reduction. Energy Strategy Rev. 2024, 55, 101537. [Google Scholar] [CrossRef]
- Uche, E.; Yağiş, O.; Al-Faryan, M.A.S. Exploring Saudi Arabia’s 2060 net zero-emission paths via fractional frequency Fourier procedures. The imperatives of resource efficiency, energy efficiency, and digitalization. Int. J. Green Energy 2025, 22, 168–182. [Google Scholar] [CrossRef]
- Al-Saidi, M. Energy transition in Saudi Arabia: Giant leap or necessary adjustment for a large carbon economy? Energy Rep. 2022, 8, 312–318. [Google Scholar] [CrossRef]
- Al-Ismail, F.S.; Alam, M.S.; Shafiullah, M.; Hossain, M.I.; Rahman, S.M. Impacts of renewable energy generation on greenhouse gas emissions in Saudi Arabia: A comprehensive review. Sustainability 2023, 15, 5069. [Google Scholar] [CrossRef]
- Guermazi, I.; Smaoui, A.; Chabchoub, M. Analysis of factors mitigating greenhouse gas emissions (GHG) in Saudi Arabia. Soc. Bus. Rev. 2025; ahead-of-print. [Google Scholar]
- Ali, A.; Sumaira, S.; Siddique, H.M.A.; Ashiq, S. Impact of Economic Growth, Energy Consumption and Urbanization on Carbon Dioxide Emissions in the Kingdom of Saudi Arabia. 2023. Available online: https://mpra.ub.uni-muenchen.de/118832/ (accessed on 5 February 2025).
- Awewomom, J.; Dzeble, F.; Takyi, Y.D.; Ashie, W.B.; Ettey, E.N.Y.O.; Afua, P.E.; Sackey, L.N.; Opoku, F.; Akoto, O. Addressing global environmental pollution using environmental control techniques: A focus on environmental policy and preventive environmental management. Discov. Environ. 2024, 2, 8. [Google Scholar] [CrossRef]
- Rehman, A.U.; Alamoudi, Y.; Khalid, H.M.; Morchid, A.; Muyeen, S.; Abdelaziz, A.Y. Smart agriculture technology: An integrated framework of renewable energy resources, IoT-based energy management, and precision robotics. Clean. Energy Syst. 2024, 9, 100132. [Google Scholar] [CrossRef]
- Zmami, M.; Ben-Salha, O.; Almarshad, S.O.; Chekki, H. The contribution of mining sector to sustainable development in Saudi Arabia. J. Sustain. Min. 2021, 20, 122–136. [Google Scholar] [CrossRef]
- Dada, J.T.; Al-Faryan, M.A.S. Linking per capita income, renewable energy, natural resources, trade, and Urbanisation to material footprint: Insights from Saudi Arabia. Energy Nexus 2024, 13, 100269. [Google Scholar] [CrossRef]
- Selim, M.M.; Alshareef, N. Trends and opportunities in renewable energy investment in Saudi Arabia: Insights for achieving vision 2030 and enhancing environmental sustainability. Alex. Eng. J. 2025, 112, 224–234. [Google Scholar] [CrossRef]
Variable | Variable Characteristics | Description of the Variable | Data Period | Data Source |
---|---|---|---|---|
CO2 emissions (CO2) | Environmental sustaiability | Carbon dioxide (CO2) emissions per capita (t CO2/capita) | Annual 1990–2022 | WDI |
GDP per capita (GDP) | Economic growth | GDP per capita (constant Local Currency Unit) | Annual 1990–2022 | WDI |
Energy Use (EU) | Energy manegment | Energy use (kg of oil equivalent per capita) | Annual 1990–2022 | WDI |
Agricultural Land (AL) | Agricultural development | Agricultural land (sq. km) | Annual 1990–2022 | WDI |
Employment Agriculture (EA) | Employment rate | Employment in agriculture (% of total employment) | Annual 1990–2022 | WDI |
Technology (TEC) | Technology advancement | Medium and high tech (% manufacturing value added) | Annual 1990–2022 | WDI |
Variable | Obs | Mean | Std. Dev. | Skewness | Kurtosis | Min | Max |
---|---|---|---|---|---|---|---|
Ln CO2 | 32 | 2.8791 | 0.0897 | 0.3947 | 1.5647 | 2.7650 | 3.0292 |
Ln GDP | 32 | 11.5230 | 0.0717 | 0.3061 | 2.6237 | 11.3845 | 11.6737 |
Ln AL | 32 | 14.3053 | 0.1160 | −1.6051 | 3.9666 | 14.0264 | 14.3682 |
Ln EU | 32 | 8.5879 | 0.1889 | −0.0732 | 1.7582 | 8.1953 | 8.8680 |
Ln EA | 32 | 1.7757 | 0.3256 | −1.3891 | 3.4216 | 0.9803 | 2.0614 |
Ln TEC | 32 | 3.4033 | 0.2692 | −0.3215 | 1.3528 | 3.0648 | 3.7434 |
Variable | Ln CO2 | Ln GDP | Ln AL | Ln EU | Ln EA | Ln TEC |
---|---|---|---|---|---|---|
Ln CO2 | 1.0000 | |||||
Ln GDP | −0.0349 | 1.0000 | ||||
Ln AL | 0.4713 | −0.7838 | 1.0000 | |||
Ln EU | −0.5541 | −0.0640 | −0.3891 | 1.0000 | ||
Ln EA | 0.9009 | −0.1739 | 0.5947 | −0.7941 | 1.0000 | |
Ln TEC | 0.5507 | −0.5276 | 0.6612 | −0.4841 | 0.7305 | 1.0000 |
Variable | ADF | PP | ||
---|---|---|---|---|
I(0) | I(1) | I(0) | I(1) | |
Ln CO2 | −1.149 | −7.261 *** | −1.114 | −7.017 *** |
Ln GDP | −2.004 | −5.521 *** | −1.937 | −5.534 *** |
Ln AL | −4.160 *** | −1.694 | −3.118 *** | −1.846 |
Ln EA | 0.990 | −4.862 *** | 1.063 | −4.915 *** |
Ln EU | −1.547 | −9.954 *** | −1.599 | −9.593 *** |
Ln TEC | −1.608 | −6.508 *** | −1.511 | −6.590 *** |
F-Bounds Test | Null Hypothesis: No Relationship | |||
---|---|---|---|---|
Test statistic | Value | Significance | I0 | I1 |
Value of F-statistic | 29.677 | At 10% | 2.26 | 3.35 |
K | 5 | At 5% | 2.62 | 3.79 |
At 2.5% | 2.96 | 4.18 | ||
At 1% | 3.41 | 4.68 |
Variables | Coefficient | Prob |
---|---|---|
Short-run results | ||
Δ Ln GDP | 0.3616163 | 0.005 |
Δ Ln AL | 0.1134504 | 0.672 |
Δ Ln EU | −0.5222751 | 0.003 |
Δ Ln EA | −0.2358567 | 0.000 |
Δ Ln TEC | 0.125396 | 0.000 |
ECM(-) | −1.476528 | 0.000 |
Long-run results | ||
Ln GDP | 0.2837159 | 0.000 |
Ln AL | 0.1591148 | 0.006 |
Ln EU | 0.8533706 | 0.000 |
Ln EA | 0.214465 | 0.000 |
Ln TEC | −0.1070373 | 0.000 |
0.9645 | ||
0.9234 |
Variables | Coefficient | Standard Error | t-Statistic |
---|---|---|---|
Ln GDP | 0.4813709 | 0.0568368 | 0.000 |
Ln AL | 0.255836 | 0.0392615 | 0.000 |
Ln EA | 0.1924257 | 0.0095218 | 0.000 |
Ln EU | 0.7484868 | 0.0230216 | 0.000 |
Ln TEC | −0.0602217 | 0.011601 | 0.000 |
R2 | 0.9633331 | ||
Adjusted R2 | 0.9556942 | ||
Standard error | 0.0186722 | ||
Long run variance | 0.0087466 |
Diagnostic Tests | Coefficient | p-Value | Decision |
---|---|---|---|
Jarque–Bera test | 3.033 | 0.2195 | Normally distributed |
Breusch–Godfrey LM test | 2.863 | 0.0906 | No serial correlation |
Breusch–Pagan–Godfrey test | 29.00 | 0.4125 | No heteroscedasticity |
Ramsey RESET test | 0.33 | 0.8050 | No omitted variables |
Cumulative sum test | 0.8214 | - | Stable |
Short-Run Causality | Long Run | ||||||
---|---|---|---|---|---|---|---|
Variables | ∆ Ln CO2 | ∆ Ln GDP | ∆ Ln AL | ∆ Ln EA | ∆ Ln TEC | ∆ Ln EU | ∆CME-1 |
∆ Ln CO2 | - | −0.44866 ** (0.052) | −0.36657 (0.261) | −0.22378 ** (0.060) | 0.00967 (0.869) | −0.63435 *** (0.014) | −0.98567 * (0.074) |
∆ Ln GDP | 0.73502 * (0.070) | - | −0.44492 (0.257) | −0.40203 *** (0.005) | 0.06149 (0.385) | −0.61328 ** (0.048) | −0.88130 (0.185) |
∆ Ln AL | −0.10499 (0.494) | −0.01050 (0.920) | - | 0.04547 (0.401) | −0.02543 (0.342) | 0.17065 (0.146) | 0.28013 (0.265) |
∆ Ln EA | 0.30634 (0.738) | 0.79865 (0.202) | 1.44859 (0.101) | - | 0.10426 (0.513) | 0.00745 (0.991) | −0.80581 (0.590) |
∆ Ln TEC | 0.70140 (0.688) | −0.42636 (0.721) | −0.76265 (0.652) | −0.12572 (0.838) | - | −1.04660 (0.433) | −2.13273 (0.456) |
∆ Ln EU | −0.05146 (0.865) | −0.51453 *** (0.013) | −1.15456 *** (0.000) | 0.13870 (0.193) | −0.09479 * (0.072) | - | 0.92286 ** (0.062) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binsuwadan, J.; Alotaibi, L.; Almugren, H. The Role of Agriculture in Shaping CO2 in Saudi Arabia: A Comprehensive Analysis of Economic and Environmental Factors. Sustainability 2025, 17, 4346. https://doi.org/10.3390/su17104346
Binsuwadan J, Alotaibi L, Almugren H. The Role of Agriculture in Shaping CO2 in Saudi Arabia: A Comprehensive Analysis of Economic and Environmental Factors. Sustainability. 2025; 17(10):4346. https://doi.org/10.3390/su17104346
Chicago/Turabian StyleBinsuwadan, Jawaher, Lamya Alotaibi, and Hawazen Almugren. 2025. "The Role of Agriculture in Shaping CO2 in Saudi Arabia: A Comprehensive Analysis of Economic and Environmental Factors" Sustainability 17, no. 10: 4346. https://doi.org/10.3390/su17104346
APA StyleBinsuwadan, J., Alotaibi, L., & Almugren, H. (2025). The Role of Agriculture in Shaping CO2 in Saudi Arabia: A Comprehensive Analysis of Economic and Environmental Factors. Sustainability, 17(10), 4346. https://doi.org/10.3390/su17104346