Experimental Study of Thermal Conductivity in Soil Stabilization for Sustainable Construction Applications
Abstract
:1. Introduction
2. Literature Review
2.1. Geotechnical Soil Stabilization
2.2. Soil Stabilization in Saudi Arabia
2.3. Soil Stabilization: Thermal and Mechanical Insights
3. Materials and Methods
3.1. Sample Preparation and Stabilization Agent Selection
3.2. Post-Stabilization and Curing Process
3.3. Application of the TLS-100 Thermal Conductivity Meter
3.4. Data Visualization with Python
4. Results and Discussion
4.1. Soil Characterization Insights
4.2. Chemical and Physical Properties in Soil Stabilization
4.3. Thermal Properties of Untreated Hejaz Soils
4.4. Impact of Stabilization on Soil Thermal Properties
4.4.1. Cement’s Effect on Hejaz Soil: A Thermal Perspective
4.4.2. Lime’s Effect on Hejaz Soil A (Thermal)
4.4.3. CKD Effect on Hejaz Soil A (Thermal)
4.4.4. Cement’s Effect on Hejaz Soil B (Thermal)
4.4.5. Lime’s Effect on Hejaz Soil B (Thermal)
4.4.6. CKD’s Effect on Hejaz Soil B (Thermal)
4.5. Comparative Analysis of Stabilizer Agents’ Thermal Effects on Hejaz Soils
4.5.1. Cement Integration: Thermal Impacts on Hejaz Soils (A and B)
4.5.2. Lime Integration: Thermal Impacts on Hejaz Soils (A and B)
4.5.3. CKD Integration: Thermal Impacts on Hejaz Soils (A and B)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Shi, Y.; Yu, C.; Cao, S.-J. Challenges of using mobile phone signalling data to estimate urban population density: Towards smart cities and sustainable urban development. Indoor Built Environ. 2020, 29, 147–150. [Google Scholar] [CrossRef]
- Auwalu, F.K.; Bello, M. Exploring the Contemporary Challenges of Urbanization and the Role of Sustainable Urban Development: A Study of Lagos City, Nigeria. J. Contemp. Urban Aff. 2023, 7, 175–188. [Google Scholar] [CrossRef]
- Ghavami, S.; Naseri, H.; Jahanbakhsh, H.; Nejad, F.M. The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Constr. Build. Mater. 2021, 285, 122918. [Google Scholar] [CrossRef]
- Adeyanju, E.A.; Okeke, C.A. Clay soil stabilization using cement kiln dust. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 012080. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; El Gamal, M.M. Solidification of cement kiln dust using sulfur binder. J. Hazard. Mater. 2011, 192, 576–584. [Google Scholar] [CrossRef]
- Lachemi, M.; Hossain, K.M.A.; Shehata, M.; Thaha, W. Controlled low strength materials incorporating cement kiln dust from various sources. Cem. Concr. Compos. 2008, 30, 381–392. [Google Scholar] [CrossRef]
- Abdel-Wahed, T.; Dulaimi, A.; Shanbara, H.K.; Al Nageim, H. The Impact of Cement Kiln Dust and Cement on Cold Mix Asphalt Characteristics at Different Climate. Sustainability 2022, 14, 4173. [Google Scholar] [CrossRef]
- Abdelzaher, M.; Mohamed, E.A.; Shehata, N.; Salah, H.; Abbas, R. Environmental safe disposal of cement kiln dust for the production of geopolymers. Egypt. J. Chem. 2021, 64, 7529–7537. [Google Scholar] [CrossRef]
- Ghavami, S.; Jahanbakhsh, H.; Azizkandi, A.S.; Nejad, F.M. Influence of sodium chloride on cement kiln dust-treated clayey soil: Strength properties, cost analysis, and environmental impact. Environ. Dev. Sustain. 2021, 23, 683–702. [Google Scholar] [CrossRef]
- Balaji, N.C.; Mani, M. Error Analysis on Thermal Conductivity Measurements of Cement-stabilized Soil Blocks. In Earthen Dwellings and Structures; Reddy, B.V.V., Mani, M., Walker, P., Eds.; Springer Transactions in Civil and Environmental Engineering, Singapore; Springer: Singapore, 2019; pp. 333–343. [Google Scholar] [CrossRef]
- Saidi, M.; Cherif, A.S.; Zeghmati, B.; Sediki, E. Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Constr. Build. Mater. 2018, 167, 566–577. [Google Scholar] [CrossRef]
- Bozbey, I.; Kelesoglu, M.K.; Demir, B.; Komut, M.; Comez, S.; Ozturk, T.; Mert, A.; Ocal, K.; Oztoprak, S. Effects of soil pulverization level on resilient modulus and freeze and thaw resistance of a lime stabilized clay. Cold Reg. Sci. Technol. 2018, 151, 323–334. [Google Scholar] [CrossRef]
- Majeed, M.; Tangri, A.P. Stabilization of soil using industrial wastes. IOP Conf. Ser. Earth Environ. Sci. 2021, 889, 012018. [Google Scholar] [CrossRef]
- Army, T.M. Soil Stabilization for Pavements; Department of the Army, the Navy, and the Air Force: Washington, DC, USA, 1994.
- Akinbuluma, A. Stabilization of Lateritic Soil Sample from Ijoko with Cement Kiln Dust and Lime. Indones. J. Civ. Eng. Educ. 2023, 9, 1–13. [Google Scholar] [CrossRef]
- Ismaiel, H.A.H. Cement Kiln Dust Chemical Stabilization of Expansive Soil Exposed at El-Kawther Quarter, Sohag Region, Egypt. Int. J. Geosci. 2013, 4, 1416–1424. [Google Scholar] [CrossRef]
- Bandara, N.; Hettiarachchi, H.; Jensen, E.; Binoy, T.H. Upcycling Potential of Industrial Waste in Soil Stabilization: Use of Kiln Dust and Fly Ash to Improve Weak Pavement Subgrades Encountered in Michigan, USA. Sustainability 2020, 12, 7226. [Google Scholar] [CrossRef]
- Ogila, W.A.M. Effectiveness of fresh cement kiln dust as a soil stabilizer and stabilization mechanism of high swelling clays. Environ. Earth Sci. 2021, 80, 283. [Google Scholar] [CrossRef]
- Ghavami, S.; Jahanbakhsh, H.; Moghadas Nejad, F. Laboratory evaluation on the effectiveness of polypropylene fibers on the strength behavior of CKD-stabilized Soil. Geotech. Geol. 2021, 17, 465–470. [Google Scholar]
- James, J.; Singh, B.; Ramachandran, H.K.; Sreenivasan, R.; Shafi, Y. Sustainable Management of Sugarcane Press Mud Waste as a Ternary Additive in Cement-Lime Stabilization of an Expansive Soil. Present. Environ. Sustain. Dev. 2022, 2, 81–94. [Google Scholar] [CrossRef]
- Onyeka, F.C. Structural Analysis of Stabilization and Consolidation Settlement of Selected Laterite Soil using Cement, Lime, and Bitumen. Int. J. Trend Sci. Res. Dev. 2019, 4, 13. [Google Scholar]
- Al-Gharbawi, A.S.A.; Najemalden, A.M.; Fattah, M.Y. Expansive Soil Stabilization with Lime, Cement, and Silica Fume. Appl. Sci. 2022, 13, 436. [Google Scholar] [CrossRef]
- Betelhem, M.; Melaku, S. Review on Soil Stabilization Using Bagasse Ash with Lime and Molasses with Cement. Addis Ababa Sci. Technol. Univ. Addis Ababa 2017. [Google Scholar] [CrossRef]
- Hajimohammadi, M.; Hamidi, A. Impact of Portland cement and lime on the stabilization and shear strength characteristics of contaminated clay. Soil Sediment Contam. Int. J. 2023, 32, 337–362. [Google Scholar] [CrossRef]
- Zambri, N.M.; Ghazaly, Z.M. Peat Soil Stabilization using Lime and Cement. E3S Web Conf. 2018, 34, 01034. [Google Scholar] [CrossRef]
- Al-Khafaji, R.; Dulaimi, A.; Jafer, H.; Mashaan, N.S.; Qaidi, S.; Obaid, Z.S.; Jwaida, Z. Stabilization of Soft Soil by a Sustainable Binder Comprises Ground Granulated Blast Slag (GGBS) and Cement Kiln Dust (CKD). Recycling 2023, 8, 10. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.A.; Abo-Hashema, M.A. Enhancing stability of clayey subgrade materials with cement kiln dust stabilization. Int. J. Pavement Eng. Asph. 2018, 19, 26. [Google Scholar]
- Taha, R.; Al-Rawas, A.; Al-Harthy, A.; Al-Siyabi, H. Use of Cement By-Pass Dust in Soil Stabilization; Qatar University: Doha-Qatar, Qatar, 2001. [Google Scholar]
- Vincevica-Gaile, Z.; Teppand, T.; Kriipsalu, M.; Krievans, M.; Jani, Y.; Klavins, M.; Setyobudi, R.H.; Grinfelde, I.; Rudovica, V.; Tamm, T.; et al. Towards Sustainable Soil Stabilization in Peatlands: Secondary Raw Materials as an Alternative. Sustainability 2021, 13, 6726. [Google Scholar] [CrossRef]
- Eisa, H.M.; Vaezi, I.; Ardakani, A.M. Evaluation of solidification/stabilization in arsenic-contaminated soils using lime dust and cement kiln dust. Bull. Eng. Geol. Environ. 2020, 79, 1683–1692. [Google Scholar] [CrossRef]
- Gul, N.; Mir, B.A. Influence of glass fiber and cement kiln dust on physicochemical and geomechanical properties of fine-grained soil. Innov. Infrastruct. Solutions 2022, 7, 344. [Google Scholar] [CrossRef]
- Zami, M.S.; Ewebajo, A.O.; Al-Amoudi, O.S.B.; Al-Osta, M.A.; Mustafa, Y.M.H. Compressive Strength and Wetting–Drying Cycles of Al-Hofuf “Hamrah” Soil Stabilized with Cement and Lime. Arab. J. Sci. Eng. 2022, 47, 13249–13264. [Google Scholar] [CrossRef]
- Mustafa, Y.M.H.; Al-Amoudi, O.S.B.; Zami, M.S.; Al-Osta, M.A. Strength and durability assessment of stabilized Najd soil for usage as earth construction materials. Bull. Eng. Geol. Environ. 2023, 82, 55. [Google Scholar] [CrossRef]
- Zami, M.S.; Ewebajo, A.O.; Al-Amoudi, O.S.B.; Al-Osta, M.A.; Mustafa, Y.M.H. Geotechnical properties and strength of Al-Hassa White Soil suitable for stabilized earth construction. Arab. J. Geosci. 2022, 15, 698. [Google Scholar] [CrossRef]
- Mustafa, Y.M.H.; Al-Amoudi, O.S.B.; Ahmad, S.; Maslehuddin, M.; Al-Malack, M.H. Utilization of Portland cement with limestone powder and cement kiln dust for stabilization/solidification of oil-contaminated marl soil. Environ. Sci. Pollut. Res. 2021, 28, 3196–3216. [Google Scholar] [CrossRef] [PubMed]
- Alawi, M.H. Utilization of Using Cement Kiln Dust (Ckd) As a Surfacial Clay Soil Stabilizer Underneath Roads. J. Al-Azhar Univ. Eng. Sect. 2016, 11, 1101–1111. [Google Scholar] [CrossRef]
- Ali, G.A.; Youssef, A.F.A. Stabilization of Silt: A Case Study for Low-Volume Roads in Saudi Arabia; Transportation Research Record: Thousand Oaks, CA, USA, 1983. [Google Scholar]
- Mutaz, E.; Shamrani, M.A.; Puppala, A.J.; Dafalla, M.A. Evaluation of Chemical Stabilization of a Highly Expansive Clayey Soil. Transp. Res. Rec. J. Transp. Res. Board 2011, 2204, 148–157. [Google Scholar] [CrossRef]
- Dafalla, M.; Mutaz, E.; Al-Shamrani, M. Compressive Strength Variations of Lime-Treated Expansive Soils. In Proceedings of the IFCEE 2015 Location of Conference, Countrydate oz, San Antonio, TX, USA, 17–21 March 2015. [Google Scholar]
- Al-Amoudi, O.S.B. Characterization and Chemical Stabilization of Al-Qurayyah Sabkha Soil. J. Mater. Civ. Eng. 2002, 14, 478–484. [Google Scholar] [CrossRef]
- Ogila, W.A.M.; Eldamarawy, M.E. Use of Cement Kiln Dust for Improving the Geotechnical Properties of Collapsible Soils. Indian Geotech. J. 2022, 52, 70–85. [Google Scholar] [CrossRef]
- Edris, W.; Matalkah, F.; Rbabah, B.; Abu Sbaih, A.; Hailat, R. Characteristics of Hollow Compressed Earth Block Stabilized Using Cement, Lime, and Sodium Silicate. Civ. Environ. Eng. 2021, 17, 200–208. [Google Scholar] [CrossRef]
- Edris, W.F.; Al-Fhaid, H.; Al-Tamimi, M. Evolution of Durability and Mechanical Behaviour of Mud Mortar Stabilized with Oil Shale Ash, Lime, and Cement. Civ. Eng. J. 2023, 9, 2175–2192. [Google Scholar] [CrossRef]
- Namboonruang, W.; Rawangkul, R.; Yodsudjai, W.; Suphadon, N. Thermal Conductivity and Strength Properties of Soil-Based Lime Adobe Stabilized with Pottery Burnt Hull Ash. Adv. Mater. Res. 2012, 535–537, 1950–1954. [Google Scholar] [CrossRef]
- Paiva, R.d.L.M.; Sousa, P.B.; Carreira, C.d.B.L.; Martins, A.P.S.; Filho, R.D.T. Physical, Thermal and Microstructural Characterization of Earth Mortars Stabilized with Incorporating Air Additive. In Proceedings of the 4th International Conference on Bio-Based Building Materials, Barcelona, Spain, 16–18 June 2022; pp. 211–218. [Google Scholar]
- Saeed, S.; Abdulkareem, A.H.; Abd, D.M. The Effect of CKD and RAP on the Mechanical Properties of Subgrade Soils. Anbar J. Eng. Sci. 2022, 13, 98–107. [Google Scholar] [CrossRef]
- Sun, Q.; Lyu, C.; Zhang, W. The relationship between thermal conductivity and electrical resistivity of silty clay soil in the temperature range −20 C to 10 C. Heat Mass Transf. 2020, 56, 2007–2013. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Du, L. A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil. J. Appl. Geophys. 2017, 145, 12–16. [Google Scholar] [CrossRef]
- Sun, Q.; Lü, C. Semiempirical correlation between thermal conductivity and electrical resistivity for silt and silty clay soils. Geophysics 2019, 84, MR99–MR105. [Google Scholar] [CrossRef]
- Schwarz, H.; Bertermann, D. Mediate relation between electrical and thermal conductivity of soil. Géoméch. Geophys. Geo-Energy Geo-Resources 2020, 6, 50. [Google Scholar] [CrossRef]
- Bertermann, D.; Schwarz, H. Laboratory device to analyse the impact of soil properties on electrical and thermal conductivity. Int. Agrophysics 2017, 31, 157–166. [Google Scholar] [CrossRef]
- Jahanger, Z.K. Evaluation of the thermal conductivity of middle part of Iraqi soil. Mater. Today Proc. 2021, 42, 2431–2435. [Google Scholar] [CrossRef]
- Cheng, L.; Afur, N.; Shahin, M.A. Bio-Cementation for Improving Soil Thermal Conductivity. Sustainability 2021, 13, 10238. [Google Scholar] [CrossRef]
- ASTM D698-12; ASTM Test Method for Laboratory Compaction Characteristics of Soils Using Standard Effort (12.400 Ft-Lbf/Ft 3 (600 KN-m/m3)). ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM D5334-08; Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. ASTM International: West Conshohocken, PA, USA, 2008.
- IEEE 442-2017; IEEE Guide for Thermal Resistivity Measurements of Soils and Backfill Materials. IEEE: Piscataway, NJ, USA, 2017.
- Zhang, H.; Suo, H.; Wang, L.; Ma, L.; Liu, J.; Zhang, Z.; Wang, Q. Database of the effect of stabilizer on the resistivity and thermal conductivity of 20 different commercial REBCO tapes. Supercond. Sci. Technol. 2022, 35, 045016. [Google Scholar] [CrossRef]
- Jiang, H.; Ding, N.; Zou, Z.-Y.; Wang, X.-H. Investigation of thermal conductivity and dielectric properties of AlN-based ceramics with ZnO addition by impedance spectroscopy analysis. J. Asian Ceram. Soc. 2022, 10, 489–497. [Google Scholar] [CrossRef]
- Du, P.; Ding, X.; Liang, Q.; Chen, X.; Zhang, Y.; Chen, L. Numerical and experimental analysis on anisotropic thermal conductivity of carding quartz fiber web based on the reconstruction model. Text. Res. J. 2022, 92, 2100–2111. [Google Scholar] [CrossRef]
- Dongyu, X.; Shifeng, H.; Lei, Q.; Lingchao, L.; Xin, C. Monitoring of cement hydration reaction process based on ultrasonic technique of piezoelectric composite transducer. Constr. Build. Mater. 2012, 35, 220–226. [Google Scholar] [CrossRef]
- Alizadeh, R.; Beaudoin, J.J.; Raki, L. Mechanical properties of calcium silicate hydrates. Mater. Struct. 2011, 44, 13–28. [Google Scholar] [CrossRef]
- Hallett, P.; Dexter, A.; Seville, J. The application of fracture mechanics to crack propagation in dry soil. Eur. J. Soil Sci. 1995, 46, 591–599. [Google Scholar] [CrossRef]
- Komonen, J.; Penttala, V. Effects of High Temperature on the Pore Structure and Strength of Plain and Polypropylene Fiber Reinforced Cement Pastes. Fire Technol. 2003, 39, 23–34. [Google Scholar] [CrossRef]
- Ying, Z.; Cui, Y.-J.; Benahmed, N.; Duc, M. Changes in microstructure and water retention property of a lime-treated saline soil during curing. Acta Geotech. 2022, 17, 319–326. [Google Scholar] [CrossRef]
- Akula, P.; Naik, S.R.; Little, D.N. Evaluating the Durability of Lime-Stabilized Soil Mixtures using Soil Mineralogy and Computational Geochemistry. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 1469–1481. [Google Scholar] [CrossRef]
- Bouras, F.; Al-Mukhtar, M.; Tapsoba, N.; Belayachi, N.; Sabio, S.; Beck, K.; Martin, M. Geotechnical Behavior and Physico-Chemical Changes of Lime-Treated and Cement-Treated Silty Soil. Geotech. Geol. Eng. 2021, 40, 2033–2049. [Google Scholar] [CrossRef]
- Mahdi, Z.A.; Hasan, M.A.; Jasim, H.A. Assessment of Using Cement Kiln Dust Stabilized Roads Subbase Material. Int. J. Eng. Technol. 2018, 7, 162–165. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Onyia, M.E.; Van, D.B.; Baykara, H.; Ugwu, H.U. Pozzolanic Reaction in Clayey Soils for Stabilization Purposes: A Classical Overview of Sustainable Transport Geotechnics. Adv. Mater. Sci. Eng. 2021, 2021, 6632171. [Google Scholar] [CrossRef]
- Sharo, A.A.; Shaqour, F.M.; Ayyad, J.M. Maximizing Strength of CKD—Stabilized Expansive Clayey Soil Using Natural Zeolite. KSCE J. Civ. Eng. 2021, 25, 1204–1213. [Google Scholar] [CrossRef]
- Akula, P.; Little, D.N. Analytical tests to evaluate pozzolanic reaction in lime stabilized soils. MethodsX 2020, 7, 100928. [Google Scholar] [CrossRef]
- Shah, M.M.; Shahzad, H.M.; Khalid, U.; Farooq, K.; Rehman, Z.U. Experimental Study on Sustainable Utilization of CKD for Improvement of Collapsible Soil. Arab. J. Sci. Eng. 2023, 48, 5667–5682. [Google Scholar] [CrossRef]
- Du, Y.; Yang, W.; Ge, Y.; Wang, S.; Liu, P. Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. J. Clean. Prod. 2021, 287, 125018. [Google Scholar] [CrossRef]
- Zhang, F.; Li, L. Study on Thermal Conductivity of Thermal Insulation Cement in Geothermal Well. Front. Earth Sci. 2022, 10, 784245. [Google Scholar] [CrossRef]
- Abiodun, A.A.; Nalbantoglu, Z. Lime pile techniques for the improvement of clay soils. Can. Geotech. J. 2015, 52, 760–768. [Google Scholar] [CrossRef]
- Anderson, G.C.; Pathan, S.; Easton, J.; Hall, D.J.M.; Sharma, R. Short- and Long-Term Effects of Lime and Gypsum Applications on Acid Soils in a Water-Limited Environment: 2. Soil Chemical Properties. Agronomy 2020, 10, 1987. [Google Scholar] [CrossRef]
- Kang, X.; Ge, L. Enhanced series-parallel model for estimating the time-dependent thermal conductivity of fly ash soil mixtures. Granul. Matter 2015, 17, 579–592. [Google Scholar] [CrossRef]
Property | Soil B | Soil A |
---|---|---|
Fine Content (%) | 92.5 | 95.3 |
Sand Content (%) | 7.4 | 4.9 |
Unified Soil Classification | ML (clayey silt) | CL (silty clay) |
Optimum Moisture Content (%) | 23 | 18.5 |
Maximum Dry Density (KN/m3) | 15.89 | 20.69 |
Liquid Limit (%) | 41 | 41 |
Plastic Limit (%) | 26 | 18 |
Plasticity Index (%) | 17 | 23 |
pH (With Water) | 8.66 | 7.59 |
pH (With Calcium) | 8.13 | 4.57 |
Conductivity (mS/cm) | 7.911 | 16.96 |
Material | Ca (%) | Si (%) | Al (%) | Mg (%) | S (%) | Fe (%) |
---|---|---|---|---|---|---|
CKD | 79.33 | 3.53 | 1.78 | 0.4 | 2.05 | 3.86 |
Cement | 75.93 | 10.52 | 2.79 | 0.57 | 2.67 | 5.45 |
Lime | 98.09 | 0.33 | 0.41 | 0.23 | 0.16 | 0.25 |
Soil Type | Condition | Week | Thermal Conductivity (K) (W/m·K) |
---|---|---|---|
Soil A | Airtight Container | Week 4 | 0.251 |
Sun Exposure | Week 6 | 0.198 | |
Week 8 | 0.175 | ||
Week 12 | 0.154 | ||
Soil B | Airtight Container | Week 4 | 0.271 |
Sun Exposure | Week 6 | 0.231 | |
Week 8 | 0.198 | ||
Week 12 | 0.175 |
Week | % of Added
Stabilizers | Thermal Conductivity (K) | ||||||
---|---|---|---|---|---|---|---|---|
Soil A Cement | Soil B Cement | Soil A Lime | Soil B Lime | Soil A CKD | Soil B CKD | |||
Plastic Wrap | Week 4 | 0% | 0.251 | 0.271 | 0.251 | 0.271 | 0.251 | 0.271 |
2.50% | 0.528 | 0.552 | 0.555 | 0.463 | 0.427 | 0.526 | ||
5% | 0.596 | 0.467 | 0.543 | 0.466 | 0.468 | 0.576 | ||
7.5% | 0.506 | 0.452 | 0.52 | 0.459 | 0.507 | 0.474 | ||
10% | 0.435 | 0.432 | 0.512 | 0.416 | 0.517 | 0.438 | ||
12.5% | 0.664 | 0.42 | 0.511 | 0.431 | 0.553 | 0.397 | ||
15% | 0.447 | 0.404 | 0.53 | 0.441 | 0.788 | 0.495 | ||
Sun Exposure | Week 6 | 0% | 0.198 | 0.231 | 0.198 | 0.231 | 0.198 | 0.231 |
2.50% | 0.443 | 0.334 | 0.525 | 0.306 | 0.257 | 0.373 | ||
5% | 0.413 | 0.31 | 0.485 | 0.241 | 0.358 | 0.33 | ||
7.5% | 0.305 | 0.228 | 0.457 | 0.311 | 0.377 | 0.272 | ||
10% | 0.29 | 0.308 | 0.431 | 0.221 | 0.382 | 0.239 | ||
12.5% | 0.361 | 0.332 | 0.416 | 0.333 | 0.364 | 0.221 | ||
15% | 0.318 | 0.309 | 0.386 | 0.288 | 0.425 | 0.258 | ||
Week 8 | 0% | 0.175 | 0.198 | 0.175 | 0.198 | 0.175 | 0.198 | |
2.50% | 0.43 | 0.327 | 0.52 | 0.312 | 0.253 | 0.348 | ||
5% | 0.415 | 0.322 | 0.488 | 0.23 | 0.368 | 0.334 | ||
7.5% | 0.274 | 0.234 | 0.434 | 0.296 | 0.353 | 0.266 | ||
10% | 0.302 | 0.299 | 0.466 | 0.193 | 0.372 | 0.247 | ||
12.5% | 0.364 | 0.304 | 0.353 | 0.307 | 0.41 | 0.219 | ||
15% | 0.262 | 0.3 | 0.397 | 0.307 | 0.363 | 0.248 | ||
Week 12 | 0% | 0.154 | 0.175 | 0.154 | 0.175 | 0.154 | 0.175 | |
2.50% | 0.49 | 0.342 | 0.52 | 0.307 | 0.243 | 0.375 | ||
5% | 0.396 | 0.309 | 0.465 | 0.219 | 0.343 | 0.343 | ||
7.5% | 0.267 | 0.227 | 0.464 | 0.225 | 0.362 | 0.258 | ||
10% | 0.291 | 0.319 | 0.446 | 0.214 | 0.376 | 0.275 | ||
12.5% | 0.361 | 0.302 | 0.413 | 0.309 | 0.419 | 0.229 | ||
15% | 0.33 | 0.308 | 0.379 | 0.271 | 0.356 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhudin, A.A.; Zami, M.S.; Budaiwi, I.M.; Abd El Fattah, A. Experimental Study of Thermal Conductivity in Soil Stabilization for Sustainable Construction Applications. Sustainability 2024, 16, 946. https://doi.org/10.3390/su16030946
Muhudin AA, Zami MS, Budaiwi IM, Abd El Fattah A. Experimental Study of Thermal Conductivity in Soil Stabilization for Sustainable Construction Applications. Sustainability. 2024; 16(3):946. https://doi.org/10.3390/su16030946
Chicago/Turabian StyleMuhudin, Abdullahi Abdulrahman, Mohammad Sharif Zami, Ismail Mohammad Budaiwi, and Ahmed Abd El Fattah. 2024. "Experimental Study of Thermal Conductivity in Soil Stabilization for Sustainable Construction Applications" Sustainability 16, no. 3: 946. https://doi.org/10.3390/su16030946
APA StyleMuhudin, A. A., Zami, M. S., Budaiwi, I. M., & Abd El Fattah, A. (2024). Experimental Study of Thermal Conductivity in Soil Stabilization for Sustainable Construction Applications. Sustainability, 16(3), 946. https://doi.org/10.3390/su16030946