Residual Assessment of Emerging Pesticides in Aquatic Sinks of Lahore, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Sampling Sites and Sample Preparations
2.2. Sample Analysis
2.3. Ecological Risk Assessment
2.4. Pollution Index (PI)
2.5. Human Health Risk Assessment
2.6. Data Analysis
3. Results
3.1. Physico-Chemical Parameters of Soil and Water
3.2. Residual Assessment of Pesticides in Soil and Water
3.3. Ecological Risk Assessment (Toxic Unit, Risk Quotient, Pollution Index)
3.4. Human Health Risk Assessment
4. Discussion
4.1. Physico-Chemical Parameters
4.2. Concentration of Residues of Pesticides
4.3. Ecological and Human Health Risk Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stolte, J.; Tesfai, M.; Oygarden, L.; Kvaerno, S.; Keizer, J.; Verheijen, F.; Panagos, P.; Ballabio, C.; Hessel, R. Soil Threats in Europe: Status, Methods, Drivers and Effects on Ecosystem Services: Deliverable 2.1 RECARE Project. 2016. Available online: https://esdac.jrc.ec.europa.eu/content/soil-threats-europe-status-methods-drivers-and-effects-ecosystem-services (accessed on 1 March 2024).
- Tariq, M.I.; Afzal, S.; Hussain, I. Pesticides in shallow groundwater of bahawalnagar, Muzafargarh, DG Khan and Rajan Pur districts of Punjab, Pakistan. Environ. Int. 2004, 30, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Sultana, J.; Syed, J.H.; Mahmood, A.; Ali, U.; Rehman, M.Y.A.; Malik, R.N.; Li, J.; Zhang, G. Investigation of organochlorine pesticides from the Indus Basin, Pakistan: Sources, air-soil exchange fluxes and risk assessment. Sci. Total. Environ. 2014, 497–498, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Kumar, A. Organochlorine pesticides in the surface waters from Sharda River Region, Uttar Pradesh-India. SIJ Trans. Adv. Space Res. Earth Explor. 2013, 1, 8–10. [Google Scholar] [CrossRef]
- Azmi, M.A.; Naqvi, S.N.; Azmi, M.A.; Aslam, M. Effect of pesticide residues on health and different enzyme levels in the blood of farm workers from Gadap (rural area) Karachi-Pakistan. Chemosphere 2006, 64, 1739–1744. [Google Scholar] [CrossRef]
- Syed, J.H.; Malik, R.N. Occurrence and source identification of organochlorine pesticides in the surrounding surface soils of the Ittehad Chemical Industries Kalashah Kaku, Pakistan. Environ. Earth Sci. 2011, 62, 1311–1321. [Google Scholar] [CrossRef]
- Nieto, N.C.; Khan, K.; Uhllah, G.; Teglas, M.B. The emergence and maintenance of vector-borne diseases in the khyber pakhtunkhwa province, and the federally administered tribal areas of pakistan. Front. Physiol. 2012, 3, 250. [Google Scholar] [CrossRef]
- Jahan, F. Dengue Fever (DF) in Pakistan. Asia Pac. Fam. Med. 2011, 10, 1. [Google Scholar] [CrossRef]
- Finckh, S.; Beckers, L.M.; Busch, W.; Carmona, E.; Dulio, V.; Kramer, L.; Krauss, M.; Posthuma, L.; Schulze, T.; Slootweg, J.; et al. A risk based assessment approach for chemical mixtures from wastewater treatment plant effluents. Environ. Int. 2022, 164, 107234. [Google Scholar] [CrossRef]
- Peng, Y.; Fang, W.; Krauss, M.; Brack, W.; Wang, Z.; Li, F.; Zhang, X. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk. Environ. Pollut. 2018, 241, 484–493. [Google Scholar] [CrossRef]
- Munz, N.A.; Burdon, F.J.; de Zwart, D.; Junghans, M.; Melo, L.; Reyes, M.; Schonenberger, U.; Singer, H.P.; Spycher, B.; Hollender, J.; et al. Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Res. 2017, 110, 366–377. [Google Scholar] [CrossRef]
- Moschet, C.; Wittmer, I.; Simovic, J.; Junghans, M.; Piazzoli, A.; Singer, H.; Stamm, C.; Leu, C.; Hollender, J. How a complete pesticide screening changes the assessment of surface water quality. Environ. Sci. Technol. 2014, 48, 5423–5432. [Google Scholar] [CrossRef] [PubMed]
- Finckh, S.; Carmona, E.; Borchardt, D.; Buttner, O.; Krauss, M.; Schulze, T.; Yang, S.; Brack, W. Mapping chemical footprints of organic micropollutants in European streams. Environ. Int. 2024, 183, 108371. [Google Scholar] [CrossRef] [PubMed]
- Birch, G.F.; Drage, D.S.; Thompson, K.; Eaglesham, G.; Mueller, J.F. Emerging contaminants (pharmaceuticals, personal care products, a food additive and pesticides) in waters of Sydney estuary, Australia. Mar. Pollut. Bull. 2015, 97, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Liess, M.; Liebmann, L.; Vormeier, P.; Weisner, O.; Altenburger, R.; Borchardt, D.; Brack, W.; Chatzinotas, A.; Escher, B.; Foit, K.; et al. Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Res. 2021, 201, 117262. [Google Scholar] [CrossRef]
- Lopez, B.; Ollivier, P.; Togola, A.; Baran, N.; Ghestem, J.P. Screening of French groundwater for regulated and emerging contaminants. Sci. Total. Environ. 2015, 518–519, 562–573. [Google Scholar] [CrossRef] [PubMed]
- ter Laak, T.L.; Puijker, L.M.; van Leerdam, J.A.; Raat, K.J.; Kolkman, A.; de Voogt, P.; van Wezel, A.P. Broad target chemical screening approach used as tool for rapid assessment of groundwater quality. Sci. Total. Environ. 2012, 427–428, 308–313. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: With China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125. [Google Scholar]
- Miller, G.T. Sustaining the Earth, Thompson Learning. J. Inc. Pac. Grove Calif. 2004, 9, 211–216. [Google Scholar]
- El-Shahawi, M.S.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 2010, 80, 1587–1597. [Google Scholar] [CrossRef]
- Ali-Musstjab-Akber-Shah Eqani, S.; Malik, R.N.; Alamdar, A.; Faheem, H. Status of organochlorine contaminants in the different environmental compartments of Pakistan: A review on occurrence and levels. Bull. Environ. Contam. Toxicol. 2012, 88, 303–310. [Google Scholar] [CrossRef]
- Siddique, A.; Shahid, N.; Liess, M. Revealing the cascade of pesticide effects from gene to community. Sci. Total. Environ. 2024, 917, 170472. [Google Scholar] [CrossRef]
- Shahid, N.; Becker, J.M.; Krauss, M.; Brack, W.; Liess, M. Adaptation of Gammarus pulex to agricultural insecticide contamination in streams. Sci. Total Environ. 2018, 621, 479–485. [Google Scholar] [CrossRef]
- Lemm, J.U.; Venohr, M.; Globevnik, L.; Stefanidis, K.; Panagopoulos, Y.; van Gils, J.; Posthuma, L.; Kristensen, P.; Feld, C.K.; Mahnkopf, J.; et al. Multiple stressors determine river ecological status at the European scale: Towards an integrated understanding of river status deterioration. Glob. Chang. Biol. 2021, 27, 1962–1975. [Google Scholar] [CrossRef]
- Machate, O.; Dellen, J.; Schulze, T.; Wentzky, V.C.; Krauss, M.; Brack, W. Evidence for antifouling biocides as one of the limiting factors for the recovery of macrophyte communities in lakes of Schleswig-Holstein. Environ. Sci. Eur. 2021, 33, 57. [Google Scholar] [CrossRef]
- Schafer, R.B.; Bundschuh, M.; Rouch, D.A.; Szocs, E.; von der Ohe, P.C.; Pettigrove, V.; Schulz, R.; Nugegoda, D.; Kefford, B.J. Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Sci. Total. Environ. 2012, 415, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.J.; Wiberg-Larsen, P.; Baattrup-Pedersen, A.; Monberg, R.J.; Kronvang, B. Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams. Sci. Total. Environ. 2012, 416, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Beketov, M.A.; Kefford, B.J.; Schafer, R.B.; Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. USA 2013, 110, 11039–11043. [Google Scholar] [CrossRef]
- Benton, T.G.; Bryant, D.M.; Cole, L.; Crick, H.Q.P. Linking agricultural practice to insect and bird populations: A historical study over three decades. J. Appl. Ecol. 2002, 39, 673–687. [Google Scholar] [CrossRef]
- Fox, R. The decline of moths in Great Britain: A review of possible causes. Insect. Conserv. Diver. 2013, 6, 5–19. [Google Scholar] [CrossRef]
- Ballesteros, M.L.; Rivetti, N.G.; Morillo, D.O.; Bertrand, L.; Ame, M.V.; Bistoni, M.A. Multi-biomarker responses in fish (Jenynsia multidentata) to assess the impact of pollution in rivers with mixtures of environmental contaminants. Sci. Total Environ. 2017, 595, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.B.; Huang, H.; Chen, C.; Fu, Z.Q.; Xu, H.Q.; Tan, S.D.; She, W.; Liao, X.L.; Tang, J.W. Traditional symbiotic farming technology in China promotes the sustainability of a flooded rice production system. Sustain. Sci. 2017, 12, 155–161. [Google Scholar] [CrossRef]
- Sauco, S.; Eguren, G.; Heinzen, H.; Defeo, O. Effects of herbicides and freshwater discharge on water chemistry, toxicity and benthos in a Uruguayan sandy beach. Mar. Environ. Res. 2010, 70, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.I.; Afzal, S.; Hussain, I.; Sultana, N. Pesticides exposure in Pakistan: A review. Environ. Int. 2007, 33, 1107–1122. [Google Scholar] [CrossRef] [PubMed]
- Eqani, S.A.; Malik, R.N.; Mohammad, A. The level and distribution of selected organochlorine pesticides in sediments from River Chenab, Pakistan. Environ. Geochem. Health. 2011, 33, 33–47. [Google Scholar] [CrossRef]
- Rashid, S.; Rashid, W.; Tulcan, R.X.S.; Huang, H. Use, exposure, and environmental impacts of pesticides in Pakistan: A critical review. Environ. Sci. Pollut. Res. Int. 2022, 29, 43675–43689. [Google Scholar] [CrossRef]
- Ali, N.; Kalsoom; Khan, S.; Li, G.; Ali, M.; Nazneen, S.; Ali, L.; Li, Y.Y.; Samlullah; Ihsanullah. Exposure to multiple pesticides in drinking water and potential health risks: A case study of selected districts from Khyber Pakhtunkhwa Province, Pakistan. Environ. Earth Sci. 2023, 82, 460. [Google Scholar] [CrossRef]
- Rad, S.M.; Ray, A.K.; Barghi, S. Water pollution and agriculture pesticide. Clean. Technol. 2022, 4, 1088–1102. [Google Scholar] [CrossRef]
- Pakistan Bureau of Statistics. Brief Regarding Census-2017. Available online: https://www.pbs.gov.pk/content/brief-census-2017 (accessed on 1 March 2024).
- Radojevic, M.; Bashkin, V.N. Practical Environmental Analysis; Royal Society of Chemistry: Edinburgh, UK, 1999. [Google Scholar]
- Tariq, S.R.; Shah, M.H.; Shaheen, N.; Khalique, A.; Manzoor, S.; Jaffar, M. Multivariate analysis of selected metals in tannery effluents and related soil. J. Hazard Mater. 2005, 122, 17–22. [Google Scholar] [CrossRef]
- Patnaik, P. Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Bartošová, A.; Michalíková, A.; Sirotiak, M.; Soldán, M. Comparison of two spectrophotometric techniques for nutrients analyses in water samples. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 2012, 20, 8–19. [Google Scholar] [CrossRef]
- Tariq, S.; Shafiq, M.; Chotana, G. Distribution of Heavy Metals in the Soils Associated with the Commonly Used Pesticides in Cotton Fields. Scientifica 2016, 2016, 7575239. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Guo, L.L.; Xu, W.H.; Li, X.D.; Lee, C.S.L.; Ding, A.J.; Wang, T. Organochlorine pesticides in the atmosphere of Guangzhou and Hong Kong: Regional sources and long-range atmospheric transport. Atmos. Environ. 2007, 41, 3889–3903. [Google Scholar] [CrossRef]
- Sprague, J.B. Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res. 1970, 4, 3–32. [Google Scholar] [CrossRef]
- Malaj, E.; von der Ohe, P.C.; Grote, M.; Kuhne, R.; Mondy, C.P.; Usseglio-Polatera, P.; Brack, W.; Schafer, R.B. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl. Acad. Sci. USA 2014, 111, 9549–9554. [Google Scholar] [CrossRef] [PubMed]
- Kandie, F.J.; Krauss, M.; Beckers, L.M.; Massei, R.; Fillinger, U.; Becker, J.; Liess, M.; Torto, B.; Brack, W. Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci. Total. Environ. 2020, 714, 136748. [Google Scholar] [CrossRef] [PubMed]
- Beckers, L.M.; Busch, W.; Krauss, M.; Schulze, T.; Brack, W. Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system. Water Res. 2018, 135, 122–133. [Google Scholar] [CrossRef] [PubMed]
- NORMAN. Network of Reference Laboratories, Research Centres and Related Organisations for Monitoring of Emerging Environmental Substances. Available online: https://www.norman-network.net/ (accessed on 1 March 2024).
- Nimick, D.A.; Moore, J.N. Prediction of Water-Soluble Metal Concentrations in Fluvially Deposited Tailings Sediments, Upper Clark Fork Valley, Montana, USA. Appl. Geochem. 1991, 6, 635–646. [Google Scholar] [CrossRef]
- ASTDR. Agency for Toxic Substances and Disease Registry. Case Studies in Environmental Medicine. 1997. Available online: http://www.atsdr.cdc.gov/HEC/CSEM/csem.html (accessed on 1 March 2024).
- Naz, A.; Mishra, B.K.; Gupta, S.K. Human Health Risk Assessment of Chromium in Drinking Water: A Case Study of Sukinda Chromite Mine, Odisha, India. Expo. Health 2016, 8, 253–264. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, D.Y.; Jia, H.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull. Environ. Contam. Toxicol. 2009, 82, 405–409. [Google Scholar] [CrossRef]
- Shah, M.T.; Ara, J.; Muhammad, S.; Khan, S.; Tariq, S. Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohmand agency, northern Pakistan. J. Geochem. Explor. 2012, 118, 60–67. [Google Scholar] [CrossRef]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef]
- Lu, Y.; Khan, H.; Zakir, S.; Ihsanullah; Khan, S.; Khan, A.A.; Wei, L.; Wang, T. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. J. Environ. Sci. 2013, 25, 2003–2013. [Google Scholar] [CrossRef]
- Karim, Z. Risk assessment of dissolved trace metals in drinking water of Karachi, Pakistan. Bull. Environ. Contam Toxicol. 2011, 86, 676–678. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. 2024. Available online: http://www.r-project.org/ (accessed on 1 March 2024).
- Naveed, S.; Bhatti, I.; Ali, K. Membrane technology and its suitability for treatment of textile waste water in Pakistan. J. Res. 2006, 17, 155–164. [Google Scholar]
- Aftab, T.; Shafiq, T.; Khan, B.; Chaudhry, M.N. Physicochemical properties, contamination and suitability of canal water for irrigation, Lahore branch Pakistan. Pak. J. Anal. Environ. Chem. 2011, 12, 7. [Google Scholar]
- Ahmed, A. Ecological studies of the river Padma at Mawa Ghat, Munshiganj. I. Physico-chemical properties. Pak. J. Anal. Environ. Chem. 2004, 7, 1865–1869. [Google Scholar]
- Mackay, D.; Shiu, W.-Y.; Lee, S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bailey, S.; Reade, J.P.; Burn, A.; Zappala, S. Agricultural chemicals and the environment: Issues and potential solutions. Environ. Sci. Technol. 2017, 43, 45–93. [Google Scholar]
- CEC; CoTec. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. L 1998, 330, 32–54. [Google Scholar]
- Chang, J.; Fang, W.; Chen, L.; Zhang, P.; Zhang, G.; Zhang, H.; Liang, J.; Wang, Q.; Ma, W. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. Chemosphere 2022, 307, 136006. [Google Scholar] [CrossRef]
- dos Santos Araújo, R.; Bernardes, R.C.; Martins, G.F. A mixture containing the herbicides Mesotrione and Atrazine imposes toxicological risks on workers of Partamona helleri. Sci. Total Environ. 2021, 763, 142980. [Google Scholar] [CrossRef]
- Almasi, H.; Takdastan, A.; Jaafarzadeh, N.; Babaei, A.A.; Tahmasebi Birgani, Y.; Cheraghian, B.; Saki, A.; Jorfi, S. Spatial distribution, ecological and health risk assessment and source identification of atrazine in Shadegan international wetland, Iran. Mar. Pollut. Bull. 2020, 160, 111569. [Google Scholar] [CrossRef]
- Ji, X.H.; Yao, X.F.; Li, X.X.; Zhu, L.S.; Wang, J.H.; Wang, J. Responses of Soil Microbial Community to Herbicide Atrazine Contamination. Water Air Soil Pollut. 2023, 234, 255. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, C.L.; Rong, Q.; Li, C.Z.; Mao, J.; Liu, Y.; Chen, J.X.; Liu, X.T. Effect of two organic amendments on atrazine degradation and microorganisms in soil. Appl. Soil. Ecol. 2020, 152, 103564. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, Z.; Hou, A.; Wang, X.; Zhou, Z.; Qin, B.; Cao, B.; Zhang, Y. Impact of atrazine on soil microbial properties: A meta-analysis. Environ. Pollut. 2023, 323, 121337. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, W.; Ma, Y.; Liu, K.K. Sorption and degradation of imidacloprid in soil and water. J. Environ. Sci. Health Part B 2006, 41, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Rouchaud, J.; Gustin, F.; Wauters, A. Soil biodegradation and leaf transfer of insecticide imidacloprid applied in seed dressing in sugar beet crops. Bull. Environ. Contam. Toxicol. 1994, 53, 344–350. [Google Scholar] [CrossRef]
- Bokan, K.; Syberg, K.; Jensen, K.; Rank, J. Genotoxic potential of two herbicides and their active ingredients assessed with comet assay on a fish cell line, epithelioma papillosum cyprini (EPC). J. Toxicol. Environ. Health A 2013, 76, 1129–1137. [Google Scholar] [CrossRef]
- Cox, C. Insecticide Factsheet: Imidacloprid, Northwest Coalition for Alternatives to Pesticides/NCAP. J. Pestic. Reform 2001, 21, 15–21. [Google Scholar]
- Printes, L.B.; Callaghan, A. A comparative study on the relationship between acetylcholinesterase activity and acute toxicity in Daphnia magna exposed to anticholinesterase insecticides. Environ. Toxicol. Chem. 2004, 23, 1241–1247. [Google Scholar] [CrossRef]
- Jemec, A.; Drobne, D.; Tisler, T.; Trebse, P.; Ros, M.; Sepcic, K. The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test. Physiol. Part C Toxicol. Pharmacol. 2007, 144, 303–309. [Google Scholar] [CrossRef]
- Drobne, D.; Blazic, M.; Van Gestel, C.A.; Leser, V.; Zidar, P.; Jemec, A.; Trebse, P. Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Chemosphere 2008, 71, 1326–1334. [Google Scholar] [CrossRef]
- Thatheyus, A.; Selvam, A.G. Synthetic pyrethroids: Toxicity and biodegradation. Appl. Ecol. Environ. Sci. 2013, 1, 33–36. [Google Scholar] [CrossRef]
- Matsuo, N. Discovery and development of pyrethroid insecticides. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 378–400. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K. Children’s exposures to pyrethroid insecticides at home: A review of data collected in published exposure measurement studies conducted in the United States. Int. J Environ. Res. Public Health 2012, 9, 2964–2985. [Google Scholar] [CrossRef] [PubMed]
- Kodidasu, A.; Satya, H.V.; Lavudi, K.; Thirunavukarasou, A.; Patnaik, S.; Penchalaneni, J. Effect of Probiotics on Allethrin Toxicity: An In Vivo Study Using Zebrafish Model. Biointerface Res. Appl. Chem. 2022, 13, 431. [Google Scholar]
- Rollerova, E.; Gasparova, Z.; Wsolova, L.; Urbancikova, M. Interaction of acetochlor with estrogen receptor in the rat uterus. Acetochlor--possible endocrine modulator? Gen. Physiol. Biophys. 2000, 19, 73–84. [Google Scholar] [PubMed]
- Yokley, R.A.; Mayer, L.C.; Huang, S.B.; Vargo, J.D. Analytical method for the determination of metolachlor, acetochlor, alachlor, dimethenamid, and their corresponding ethanesulfonic and oxanillic acid degradates in water using SPE and LC/ESI-MS/MS. Anal. Chem. 2002, 74, 3754–3759. [Google Scholar] [CrossRef]
- Dagnac, T.; Jeannot, R.; Mouvet, C.; Baran, N. Determination of oxanilic and sulfonic acid metabolites of acetochlor in soils by liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A. 2002, 957, 69–77. [Google Scholar] [CrossRef]
- Cai, X.; Sheng, G.; Liu, W. Degradation and detoxification of acetochlor in soils treated by organic and thiosulfate amendments. Chemosphere 2007, 66, 286–292. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zaprasis, A.; Liu, S.J.; Drake, H.L.; Horn, M.A. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders. ISME J. 2011, 5, 473–485. [Google Scholar] [CrossRef]
- Afzal, M.; Arslan, M.; Müller, J.A.; Shabir, G.; Islam, E.; Tahseen, R.; Anwar-ul-Haq, M.; Hashmat, A.J.; Iqbal, S.; Khan, Q.M. Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nat. Sustain. 2019, 2, 863–871. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, H.H.; Qadir, A.; Ahmad, S.R.; Riaz, M.A.; Riaz, A.; Shahid, N.; Arslan, M. Residual Assessment of Emerging Pesticides in Aquatic Sinks of Lahore, Pakistan. Sustainability 2024, 16, 9257. https://doi.org/10.3390/su16219257
Iqbal HH, Qadir A, Ahmad SR, Riaz MA, Riaz A, Shahid N, Arslan M. Residual Assessment of Emerging Pesticides in Aquatic Sinks of Lahore, Pakistan. Sustainability. 2024; 16(21):9257. https://doi.org/10.3390/su16219257
Chicago/Turabian StyleIqbal, Hafiza Hira, Abdul Qadir, Sajid Rashid Ahmad, Muhammad Ahsan Riaz, Ayesha Riaz, Naeem Shahid, and Muhammad Arslan. 2024. "Residual Assessment of Emerging Pesticides in Aquatic Sinks of Lahore, Pakistan" Sustainability 16, no. 21: 9257. https://doi.org/10.3390/su16219257
APA StyleIqbal, H. H., Qadir, A., Ahmad, S. R., Riaz, M. A., Riaz, A., Shahid, N., & Arslan, M. (2024). Residual Assessment of Emerging Pesticides in Aquatic Sinks of Lahore, Pakistan. Sustainability, 16(21), 9257. https://doi.org/10.3390/su16219257