Bioconversion of Agroindustrial Asparagus Waste into Bacterial Cellulose by Komagataeibacter rhaeticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Characterization of Komagataeibacter rhaeticus
2.2. Collection and Conditioning of Agroindustrial Asparagus Waste
2.3. Characterization of Agroindustrial Waste
2.4. Obtaining Fermentable Sugars from APW
2.5. Fermentative Production of BC
2.6. Harvesting and Purification of BC
2.7. Analytical Measurements
2.8. BC Characterization
2.8.1. Infrared Spectrum
2.8.2. XRD
2.8.3. AFM
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popa, L.; Ghica, M.V.; Tudoroiu, E.E.; Ionescu, D.G.; Dinu-Pîrvu, C.E. Bacterial Cellulose—A Remarkable Polymer as a Source for Biomaterials Tailoring. Materials 2022, 15, 1054. [Google Scholar] [CrossRef] [PubMed]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent advances and applications of bacterial cellulose in biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Kari, Z.A.; Noor, N.H.; Ray, R.R. Bacterial cellulose: Production, characterization and application as antimicrobial agent. Int. J. Mol. Sci. 2021, 22, 12984. [Google Scholar] [CrossRef]
- Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar] [CrossRef]
- Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef] [PubMed]
- Hungund, B.; Prabhu, S.; Shetty, C.; Acharya, S.; Prabhu, V.; Gupta, S.G. Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J. Microb. Biochem. Technol. 2013, 5, 31–33. [Google Scholar] [CrossRef]
- Costa, A.F.; Almeida, F.C.; Vinhas, G.M.; Sarubbo, L.A. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol. 2017, 8, 2027. [Google Scholar] [CrossRef]
- Urbina, L.; Corcuera, M.Á.; Gabilondo, N.; Eceiza, A.; Retegi, A. A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose 2021, 28, 8229–8253. [Google Scholar] [CrossRef]
- Castro, C.; Zuluaga, R.; Putaux, J.L.; Caro, G.; Mondragon, I.; Gañán, P. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr. Polym. 2011, 84, 96–102. [Google Scholar] [CrossRef]
- Güzel, M.; Akpınar, Ö. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. Int. J. Biol. Macromol. 2020, 162, 1597–1604. [Google Scholar] [CrossRef]
- Ciecholewska-juśko, D.; Broda, M.; Żywicka, A.; Styburski, D.; Sobolewski, P.; Gorący, K.; Migdał, P.; Junka, A.; Fijałkowski, K. Potato juice, a starch industry waste, as a cost-effective medium for the biosynthesis of bacterial cellulose. Int. J. Mol. Sci. 2021, 22, 10807. [Google Scholar] [CrossRef] [PubMed]
- Güzel, M.; Akpınar, Ö. Production and Characterization of bacterial cellulose from citrus peels. Waste Biomass Valoriz. 2019, 10, 2165–2175. [Google Scholar] [CrossRef]
- Kadier, A.; Ilyas, R.A.; Huzaifah, M.R.; Harihastuti, N.; Sapuan, S.M.; Harussani, M.M.; Azlin, M.N.; Yuliasni, R.; Ibrahim, R.; Atikah, M.S.; et al. Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production: Mechanism, advances, and future perspectives. Polymers 2021, 13, 3365. [Google Scholar] [CrossRef]
- Ramirez-Hernandez, A.; Galagarza, O.A.; Álvarez-Rodriguez, M.V.; Pachari-Vera, E.; Valdez-Ortiz, M.d.C.; Deering, A.J.; Oliver, H.F. Food safety in Peru: A review of fresh produce production and challenges in the public health system. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3323–3342. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gu, Y.; Zhou, X.; Zhang, Y. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: Increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment. Bioresour. Technol. 2014, 164, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Tirado, J.P.; Vejarano, R.; Tapia-Blácido, D.R.; Angelats-Silva, L.M.; Siche, R. The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams. Packag. Technol. Sci. 2019, 32, 227–237. [Google Scholar] [CrossRef]
- Angela, C.; Young, J.; Kordayanti, S.; Devanthi, P.V.P. Isolation and Screening of Microbial Isolates from Kombucha Culture for Bacterial Cellulose Production in Sugarcane Molasses Medium. KnE Life Sci. 2020, 2020, 111–127. [Google Scholar] [CrossRef]
- Cueva-almendras, L.C.; Alva, J.; Fuentes-Olivera, A.; Llontop-Bernabé, K.; Quiñones, C.; Rodriguez-Soto, J.; Cruz-Monzón, J.; Quezada, M. Production of Polyhydroxyalkanoate by Bacillus thuringiensis Isolated from Agricultural Soils of Cascas-Peru. Braz. Arch. Biol. Techn. 2022, 65, 1–10. [Google Scholar] [CrossRef]
- Wang, B.; Rutherfurd-Markwick, K.; Zhang, X.X.; Mutukumira, A.N. Isolation and characterization of dominant acetic acid bacteria and yeast isolated from Kombucha samples at point of sale in New Zealand. Curr. Res. Food Sci. 2022, 5, 835–844. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Akter, S.; Zabed, H.M. Bioethanol production from water-soluble and structural carbohydrates of normal and high sugary corn stovers harvested at three growth stages. Energy Convers. Manag. 2020, 221, 113104. [Google Scholar] [CrossRef]
- Giraldo, L.; Martínez Correa, H.; Betancourt-Gutíerrez, J.; Castrillón-Castáño, C. Aprovechamiento del residuo agroindustrial del mango común (Mangifera indica L.) en la obtención de azúcares fermentables. Ing. Cienc. 2007, 3, 41–62. [Google Scholar]
- Aswini, K.; Gopal, N.O.; Uthandi, S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 2020, 20, 46. [Google Scholar] [CrossRef]
- Feng, X.; Ullah, N.; Wang, X.; Sun, X.; Li, C.; Bai, Y.; Chen, L.; Li, Z. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917. J. Food Sci. 2015, 80, E2217–E2227. [Google Scholar] [CrossRef]
- Marsden, W.L.; Gray, P.P.; Nippard, G.J.; Quinlan, M.R. Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J. Chem. Technol. Biotechnol. 2007, 32, 1016–1022. [Google Scholar] [CrossRef]
- Volova, T.G.; Prudnikova, S.V.; Sukovatyi, A.G.; Shishatskaya, E.I. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Appl. Microbiol. Biot. 2018, 102, 7417–7428. [Google Scholar] [CrossRef] [PubMed]
- Trilokesh, C.; Uppuluri, K.B. Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci. Rep. 2019, 9, 16709. [Google Scholar] [CrossRef]
- Abol-Fotouh, D.; Hassan, M.A.; Shokry, H.; Roig, A.; Azab, M.S.; Kashyout, A.E. Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci. Rep. 2020, 10, 3491. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, X.; Huo, M.; Zhai, X.; Li, F.; Zhong, C. Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomater. Nanotechnol. 2017, 7, 1847980417707172. [Google Scholar] [CrossRef]
- Chinga, G.; Johnsen, P.O.; Dougherty, R.; Berli, E.L.; Walter, J. Quantification of the 3D microstructure of SC surfaces. J. Microsc. 2007, 227, 254–265. [Google Scholar] [CrossRef]
- Terrones, N.; Quiñones-Cerna, C.E.; Robles, M.; Cruz-Monzon, J.A.; Butrón, F.; Rodríguez, J.C. Optimization of Total Carotenoid Production by Rhodotorula mucilaginosa from Artichoke Agroindustrial Waste Using Response Surface Methodology. Environ. Res. Eng. Manag. 2023, 79, 111–121. [Google Scholar] [CrossRef]
- Semjonovs, P.; Ruklisha, M.; Paegle, L.; Saka, M.; Treimane, R.; Skute, M.; Rozenberga, L.; Vikele, L.; Sabovics, M.; Cleenwerck, I. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl. Microbiol. Biot. 2017, 101, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Morena, A.G.; Valenzuela, S.V.; Pastor, F.I.; Díaz, P.; Martínez, J. Microbial Cellulose from a Komagataeibacter intermedius Strain isolated from commercial wine vinegar. J. Polym. Environ. 2019, 27, 956–967. [Google Scholar] [CrossRef]
- Liu, Y. Recent progress in Fourier transforms infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials 2013, 6, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Cunha, F.M.; Vasconcellos, V.M.; Florencio, C.; Badino, A.C.; Farinas, C.S. On-Site Production of Enzymatic Cocktails Using a Non-conventional Fermentation Method with Agro-Industrial Residues as Renewable Feedstocks. Waste Biomass Valorization 2017, 8, 517–526. [Google Scholar] [CrossRef]
- Rodríguez-Zúñiga, U.F.; Neto, V.B.; Couri, S.; Crestana, S.; Farinas, C.S. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Appl. Biochem. Biotechnol. 2014, 172, 2348–2362. [Google Scholar] [CrossRef] [PubMed]
- Bekiaris, G.; Triolo, J.M.; Peltre, C.; Pedersen, L.; Jensen, L.S.; Bruun, S. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy. Bioresour. Technol. 2015, 197, 475–481. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Fasoli, M.; Dell’Anna, R.; Dal-Santo, S.; Balestrini, R.; Sanson, A.; Pezzotti, M.; Monti, F.; Zenoni, S. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin during Ripening. Plant Cell Physiol. 2016, 57, 1332–1349. [Google Scholar] [CrossRef]
- Salam, M.; Pondith, P.C.; Islam, A.; Khan, M.R.; Uddin, M.R.; Islam, M. Conversion of Cellulosic waste into fermentable sugar: Process optimization. J. Chem. Eng. 2014, 28, 27–31. [Google Scholar] [CrossRef]
- Eblagon, K.M.; Malaika, A.; Pereira, M.F.; Figueiredo, J.L. Cutting the Green Waste. Structure-Performance Relationship in Functionalized Carbon Xerogels for Hydrolysis of Cellobiose. ChemCatChem 2018, 10, 4948–4960. [Google Scholar] [CrossRef]
- Lima, C.S.; Conceição, M.M.; Silva, F.L.; Lima, E.E.; Conrado, L.S.; Leão, D.A. Characterization of acid hydrolysis of sisal. Appl. Energy 2013, 102, 254–259. [Google Scholar] [CrossRef]
- Chen, G.; Wu, G.; Chen, L.; Wang, W.; Hong, F.F.; Jönsson, L.J. Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass. Microb. Biotechnol. 2019, 12, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Akintunde, M.O.; Adebayo-Tayo, B.C.; Ishola, M.M.; Zamani, A.; Horváth, I.S. Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. strains. Bioengineered 2022, 13, 10010–10025. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, K.; Ganesh, N.; Reddy, S.R.; Katsuno, N.; Nishizu, T.; Senthilkumar, S. Bacterial cellulose production by Komagataeibacter hansenii utilizing agro-industrial residues and its application in coffee milk stabilization. Biomass Conv. Bioref. 2023, 13, 7971–7981. [Google Scholar] [CrossRef]
- Nie, W.; Zheng, X.; Feng, W.; Liu, Y.; Li, Y.; Liang, X. Characterization of bacterial cellulose produced by Acetobacter pasteurianus MGC-N8819 utilizing lotus rhizome. LWT 2022, 165, 113763. [Google Scholar] [CrossRef]
- Cazón, P.; Puertas, G.; Vázquez, M. Production and Characterization of Active Bacterial Cellulose Films Obtained from the Fermentation of Wine Bagasse and Discarded Potatoes by Komagateibacter xylinus. Polymers 2022, 14, 5194. [Google Scholar] [CrossRef]
- Barshan, S.; Rezazadeh-Bari, M.; Almasi, H.; Amiri, S. Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. Int. J. Biol. Macromol. 2019, 136, 1188–1195. [Google Scholar] [CrossRef]
- Mardawati, E.; Rahmah, D.M.; Rachmadona, N.; Saharina, E.; Pertiwi, T.Y.; Zahrad, S.A.; Ramdhani, W.; Srikandace, Y.; Ratnaningrum, D.; Endah, E.S.; et al. Pineapple core from the canning industrial waste for bacterial cellulose production by Komagataeibacter xylinus. Heliyon 2023, 9, e22010. [Google Scholar] [CrossRef]
- Yanti, N.A.; Ahmad, S.W.; Muhiddin, N.H. Evaluation of inoculum size and fermentation period for bacterial cellulose production from sago liquid waste. J. Phys. Conf. Ser. 2018, 1116, 052076. [Google Scholar] [CrossRef]
- Revin, V.; Liyaskina, E.; Nazarkina, M.; Bogatyreva, A.; Shchankin, M. Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz. J. Microbiol. 2018, 49, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Irham, W.H.; Tamrin; Marpaung, L.; Marpongahtun. Characterization of bacterial cellulose from coconut water supplemented curcuma longa linn and Ziziphus mauritiana extract. AIP Conf. Proc. 2020, 2267, 020056. [Google Scholar]
- Avcioglu, N.H.; Birben, M.; Seyis-Bilkay, I. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochem. 2021, 108, 60–68. [Google Scholar] [CrossRef]
- Reiniati, I.; Hrymak, A.N.; Margaritis, A. Kinetics of cell growth and crystalline nanocellulose production by Komagataeibacter xylinus. Biochem. Eng. J. 2017, 127, 21–31. [Google Scholar] [CrossRef]
- Oh, S.Y.; Dong, I.Y.; Shin, Y.; Hwan, C.K.; Hak, Y.K.; Yong, S.C.; Won, H.P.; Ji, H.Y. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.S.M.; Misnon, M.I.; Fadil, F. The effect of sodium hydroxide concentration on yield and properties of Bacterial Cellulose membranes. IOP Conf. Ser. Mater. Sci. Eng. 2020, 732, 012064. [Google Scholar] [CrossRef]
- Suryanto, H.; Muhajir, M.; Zakia, N.; Yanuhar, U.; Aminnudin, A.; Aji-Pradana, Y.R. Effect of drying methods on the structure of bacterial cellulose from pineapple peel extract. Key Eng. Mater. 2020, 851, 79–85. [Google Scholar] [CrossRef]
- Ye, J.; Zheng, S.; Zhang, Z.; Yang, F.; Ma, K.; Feng, Y.; Zheng, J.; Mao, D.; Yang, X. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour. Technol. 2019, 274, 518–524. [Google Scholar] [CrossRef]
- El-Gendi, H.; Salama, A.; El-Fakharany, E.M.; Saleh, A.K. Optimization of bacterial cellulose production from prickly pear peels and its ex situ impregnation with fruit byproducts for antimicrobial and strawberry packaging applications. Carbohydr. Polym. 2023, 302, 120383. [Google Scholar] [CrossRef]
- Lopes, T.D.; Riegel-Vidotti, I.C.; Grein, A.; Tischer, C.A.; Faria-Tischer, P.C. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. Int. J. Biol. Macromol. 2014, 67, 401–408. [Google Scholar] [CrossRef]
- Gutiérrez-Hernández, J.M.; Escobar-García, D.M.; Escalante, A.; Flores, H.; González, F.J.; Gatenholm, P.; Toriz, G. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater. Sci. Eng. C 2017, 75, 445–453. [Google Scholar] [CrossRef] [PubMed]
Coded Levels of Variables | |||||
---|---|---|---|---|---|
Independent variables | −1.4 | −1 | 0 | 1 | +1.4 |
Inoculum dose (%) | 1.0 | 3.8 | 10.5 | 17.2 | 20.0 |
Incubation time (days) | 3.0 | 6.0 | 14.0 | 17.0 | 25.0 |
Run | Inoculum Dose (%) | Incubation Time (Days) | % RS Consumed | Cell Biomass (OD600) | BC Yield (g/L) | BC/RS Consumed (g/g) |
---|---|---|---|---|---|---|
1 | 3.8 | 6 | 59.54 ± 0.46 * | 1.14 ± 0.99 ** | 1.60 ± 0.28 * | 0.12 ± 1.8 × 10−6 |
2 | 17.2 | 6 | 60.30 ± 10.10 * | 1.08 ± 0.78 ** | 1.82 ± 0.11 ** | 0.14 ± 1.2 × 10−3 |
3 | 3.8 | 22 | 72.57 ± 17.23 **** | 1.14 ± 0.67 ** | 1.75 ± 0.20 ** | 0.10 ± 2.2 × 10−3 |
4 | 17.2 | 22 | 65.51 ± 8.39 * | 1.02 ± 0.18 * | 2.27 ± 0.53 ** | 0.13 ± 4.0 × 10−3 |
5 | 1 | 14 | 74.03 ± 21.54 **** | 1.11 ± 0.21 ** | 1.43 ± 0.18 * | 0.09 ± 1.7 × 10−3 |
6 | 20 | 14 | 71.77 ± 5.31 *** | 1.28 ± 0.90 *** | 2.12 ± 0.53 **** | 0.13 ± 1.8 × 10−4 |
7 | 10.5 | 3 | 53.25 ± 8.16 * | 0.73 ± 0.41 * | 1.08 ± 0.04 * | 0.09 ± 3.8 × 10−4 |
8 | 10.5 | 25 | 79.01 ± 2.99 **** | 1.24 ± 0.66 *** | 2.57 ± 0.53 **** | 0.21 ± 2.4 × 10−2 |
9 | 10.5 | 14 | 68.63 ± 0.57 *** | 1.07 ± 0.79 * | 1.93 ± 0.11 *** | 0.13 ± 2.8 × 10−3 |
10 | 10.5 | 14 | 66.69 ± 16.08 ** | 1.03 ± 0.68 * | 1.90 ± 0.64 *** | 0.14 ± 2.9 × 10−3 |
11 | 10.5 | 14 | 71.46 ± 8.84 *** | 1.45 ± 0.81 **** | 1.73 ± 0.11 * | 0.11 ± 4.3 × 10−4 |
12 | 10.5 | 14 | 66.89 ± 20.12 ** | 1.62 ± 0.76 **** | 1.77 ± 0.04 ** | 0.13 ± 4.5 × 10−3 |
13 | 10.5 | 14 | 66.66 ± 17.98 ** | 1.67 ± 0.89 **** | 1.98 ± 0.25 *** | 0.14 ± 4.1 × 10−3 |
Response | BC (g/L) | RS Consumed (%) | ||||
---|---|---|---|---|---|---|
Source | Sum of Squares | F-Value | p-Value | Sum of Squares | F-Value | p-Value |
Model | 1.33 | 5.33 | 0.0245 | 449.53 | 5.71 | 0.0205 |
A Inoculum dose | 0.3733 | 7.5 | 0.029 | 11.27 | 11.27 | 0.7153 |
B Incubation Time | 0.9257 | 18.59 | 0.0035 | 373.6 | 373.6 | 23.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiñones-Cerna, C.; Rodríguez-Soto, J.C.; Barraza-Jáuregui, G.; Huanes-Carranza, J.; Cruz-Monzón, J.A.; Ugarte-López, W.; Hurtado-Butrón, F.; Samanamud-Moreno, F.; Haro-Carranza, D.; Valdivieso-Moreno, S.; et al. Bioconversion of Agroindustrial Asparagus Waste into Bacterial Cellulose by Komagataeibacter rhaeticus. Sustainability 2024, 16, 736. https://doi.org/10.3390/su16020736
Quiñones-Cerna C, Rodríguez-Soto JC, Barraza-Jáuregui G, Huanes-Carranza J, Cruz-Monzón JA, Ugarte-López W, Hurtado-Butrón F, Samanamud-Moreno F, Haro-Carranza D, Valdivieso-Moreno S, et al. Bioconversion of Agroindustrial Asparagus Waste into Bacterial Cellulose by Komagataeibacter rhaeticus. Sustainability. 2024; 16(2):736. https://doi.org/10.3390/su16020736
Chicago/Turabian StyleQuiñones-Cerna, Claudio, Juan Carlos Rodríguez-Soto, Gabriela Barraza-Jáuregui, Johnny Huanes-Carranza, José Alfredo Cruz-Monzón, Wilmer Ugarte-López, Fernando Hurtado-Butrón, Fanny Samanamud-Moreno, David Haro-Carranza, Stefany Valdivieso-Moreno, and et al. 2024. "Bioconversion of Agroindustrial Asparagus Waste into Bacterial Cellulose by Komagataeibacter rhaeticus" Sustainability 16, no. 2: 736. https://doi.org/10.3390/su16020736