Moving Towards a Holistic Approach to Circular Cities: Obstacles and Perspectives for Implementation of Nature-Based Solutions in Europe
Abstract
:1. Introduction
1.1. Motivation
1.2. Research Context and Framework
1.3. Paper Structure and Objectives
2. Theoretical Background
2.1. Holistic Approach to Circular Cities
2.2. NBS as an Integrative and Holistic Concept
NBS Applied to Cities
3. Methodological Framework
3.1. Research Conceptualization and Methodology
3.2. Questionnaire Design and Implementation
- Question 1 (Q1): Choose the country in which you are currently professionally engaged;
- Question 2 (Q2): Select the Working Group (multiple choice possible);
- Question 3 (Q3): Select the primary field of your expertise/professional background (multiple choice possible—up to 3 fields);
- Question 4 (Q4): Select your primary professional activity (multiple choice possible).
- Question 5 (Q5): Please rate the application level of Nature-Based Solutions (NBS) in the context of city planning and development within the country of your current professional engagement;
- Question 6 (Q6): Are there relevant policies in your country that regulate the application of Nature-Based Solutions (NBS)? If yes, which field is regulated?
- Question 7 (Q7): Are there relevant strategies in your country that stimulate the application of Nature-Based Solutions (NBS)? If yes, which field is stimulated?
- Question 8 (Q8): Which aspects of urban sustainability do you find the most dominant in the current state of the Nature-Based Solutions (NBS) research? Rank from 1 to 3 (1—the most dominant aspect);
- Question 9 (Q9): On which urban scale (spatial level) are Nature-Based Solutions (NBS) dominantly implemented in the country of your current professional engagement?
- Question 10 (Q10): Please rate (1–5) the extent to which listed aspects/terms are obstacles to NBS implementation in your country. (1—low obstacle; 5—high obstacle).
3.3. Questionnaire Data Collection and Analysis
4. Findings and Discussion
4.1. Background of Respondents
4.2. Decoding Threats and Opportunities of Current NBS Implementation in Europe
4.2.1. Level of Implementation
4.2.2. Regulation Aspect
4.2.3. Sustainability Aspects
4.2.4. Spatial Scale Aspects
4.3. Prioritization of Obstacles of NBS Implementation
5. Moving Forward Instead of Conclusions
- (1)
- Regarding the level of implementation, (1.1) there is a need for cross-domain and multi-perspective knowledge exchange that could link experts from the fields of social sciences and humanities with those from hard science and technology; also, (1.2) there is the need to enhance relation between the countries of the European Union and other parts of the world with the intention to generate co-existence of diverse in building, design, and innovation from different cultures;
- (2)
- Regarding the regulation aspects, it is recognized that a multiscale approach from a land use perspective towards a built heritage perspective is needed in order to (2.1) adopt a strategic holistic perspective to land use, as well as to (2.2) affirm cities, small towns, villages, and regions as engines for the ecological transition;
- (3)
- Regarding the sustainability aspects, the need for a paradigm shift stimulated by culture- and design-led approaches is recognized as an important strategy for the transition to a low-carbon, regenerative, and just society (EC, COM(2021)_573_EN_ACT);
- (4)
- Regarding the scalarity aspects, it is recognized that the medium-scale of Municipality/Neighbor/Settlement level with the inclusion of local communities could provide a starting point for prioritizing the learning-by-doing principle for inclusive problem-solving related to NBS.
- (1)
- Defining and affirming the middle-out approaches within both strategy and policy framework of urban development to provide the framework for the consolidation of bottom-up innovation and experimentation with top-down policy making;
- (2)
- Reconsideration of the current meaning and role of the technology within the existing policymakers and industry and orientation towards intermediate technology on a small-scale which could support the middle-out approaches on a community level;
- (3)
- Extensive implementation of living labs and collaborative innovation ecosystems which could enable holistic and IMT thinking, designing, and making.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- UN. New Urban Agenda, with Subject Index; UN: New York, NY, USA, 2017. [Google Scholar]
- UN-Habitat. World Cities Report 2022, Envisaging the Future of Cities (United Nations Human Settlements Programme); UN: New York, NY, USA, 2022. [Google Scholar]
- Choucri, N.; Goldsmith, D.; Madnick, S.; Mistree, D.; Morrison, J.B.; Siegel, M. Using System Dynamics to Model and Better Understand State Stability; MIT Sloan Research Paper No. 4661-07; MIT Department of Political Science: Cambridge, MA, USA, 2007; 42p. [Google Scholar]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- EMF. The International EMF Project, Progress Report, World Health Organization; 2013. Available online: https://cdn.who.int/media/docs/default-source/radiation-international-emf-project-reports/emf-iac-2013-progress-report.pdf?sfvrsn=8ddeb407_2&download=true (accessed on 8 August 2024).
- McPhearson, T.; Parnell, S.; Simon, D.; Gaffney, O.; Elmqvist, T.; Bai, X.; Roberts, D.; Revi, A. Scientists must have a say in the future of cities. Nature 2016, 538, 165–166. [Google Scholar] [CrossRef]
- UN. Disaster Risk Reduction in the United Nations; UN: New York, NY, USA, 2013; Available online: https://www.unisdr.org/files/32918_drrintheun2013.pdf (accessed on 10 August 2024).
- McPhillips, L.E.; Chang, H.; Chester, M.V.; Depietri, Y.; Friedman, E.; Grimm, N.B.; Kominoski, J.S.; McPhearson, T.; Méndez-Lázaro, P.; Rosi, E.J. Defining extreme events: A cross-disciplinary review. Earth’s Future 2018, 6, 441–455. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed]
- Romero-Lankao, P.; McPhearson, T.; Davidson, D.J. The food-energy-water nexus and urban complexity. Nat. Clim. Chang. 2017, 7, 233–235. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-based solutions to address global societal challenges. IUCN Gland Switz. 2016, 97, 2016–2036. [Google Scholar]
- Atanasova, N.; Castellar, J.A.; Pineda-Martos, R.; Nika, C.E.; Katsou, E.; Istenič, D.; Pucher, B.; Andreucci, M.B.; Langergraber, G. Nature-based solutions and circularity in cities. Circ. Econ. Sustain. 2021, 1, 319–332. [Google Scholar] [CrossRef]
- Langergraber, G.; Castellar, J.A.; Andersen, T.R.; Andreucci, M.-B.; Baganz, G.F.; Buttiglieri, G.; Canet-Martí, A.; Carvalho, P.N.; Finger, D.C.; Griessler Bulc, T. Towards a cross-sectoral view of nature-based solutions for enabling circular cities. Water 2021, 13, 2352. [Google Scholar] [CrossRef]
- Directorate-General for Research and Innovation Directorate I—Climate Action and Resource Efficiency Unit I.3—Sustainable Management of Natural Resources. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities. Available online: https://www.greenpolicyplatform.org/sites/default/files/downloads/resource/Guarnacci_Nature-Based%20Solutions.pdf (accessed on 8 August 2024).
- Pearlmutter, D.; Theochari, D.; Nehls, T.; Pinho, P.; Piro, P.; Korolova, A.; Papaefthimiou, S.; Mateo, M.C.G.; Calheiros, C.; Zluwa, I. Enhancing the circular economy with nature-based solutions in the built urban environment: Green building materials, systems and sites. Blue-Green Syst. 2020, 2, 46–72. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; Hullebusch, E.D.v.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef]
- Kisser, J.; Wirth, M.; De Gusseme, B.; Van Eekert, M.; Zeeman, G.; Schoenborn, A.; Vinnerås, B.; Finger, D.C.; Kolbl Repinc, S.; Bulc, T.G. A review of nature-based solutions for resource recovery in cities. Blue-Green Syst. 2020, 2, 138–172. [Google Scholar] [CrossRef]
- Skar, S.L.G.; Pineda-Martos, R.; Timpe, A.; Pölling, B.; Bohn, K.; Külvik, M.; Delgado, C.; Pedras, C.; Paço, T.; Ćujić, M. Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. Blue-Green Syst. 2020, 2, 1–27. [Google Scholar] [CrossRef]
- Katsou, E.; Nika, C.-E.; Buehler, D.; Marić, B.; Megyesi, B.; Mino, E.; Babí Almenar, J.; Bas, B.; Bećirović, D.; Bokal, S. Transformation tools enabling the implementation of nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 188–213. [Google Scholar] [CrossRef]
- Smuts, J.C. Holism and Evolution; Macmillan: New York, NY, USA, 1926. [Google Scholar]
- Braulio-Gonzalo, M.; Bovea, M.D.; Ruá, M.J. Sustainability on the urban scale: Proposal of a structure of indicators for the Spanish context. Environ. Impact Assess. Rev. 2015, 53, 16–30. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H. Urban resilience and urban sustainability: What we know and what do not know? Cities 2018, 72, 141–148. [Google Scholar] [CrossRef]
- Ameen, R.F.M.; Mourshed, M. Urban environmental challenges in developing countries—A stakeholder perspective. Habitat Int. 2017, 64, 1–10. [Google Scholar] [CrossRef]
- Maes, J.; Zulian, G.; Günther, S.; Thijssen, M.; Raynal, J. Enhancing Resilience of Urban Ecosystems through Green Infrastructure (EnRoute); Publications Office of the European Union: Luxembourg, 2019; pp. 1–115. [Google Scholar]
- Howard-Grenville, J.; Buckle, S.J.; Hoskins, B.J.; George, G. Climate change and management. Acad. Manag. J. 2014, 57, 615–623. [Google Scholar] [CrossRef]
- Solaimani, S.; Sedighi, M. Toward a holistic view on lean sustainable construction: A literature review. J. Clean. Prod. 2020, 248, 119213. [Google Scholar] [CrossRef]
- Manley, J.B.; Anastas, P.T.; Cue Jr, B.W. Frontiers in Green Chemistry: Meeting the grand challenges for sustainability in R&D and manufacturing. J. Clean. Prod. 2008, 16, 743–750. [Google Scholar]
- Martos, A.; Pacheco-Torres, R.; Ordóñez, J.; Jadraque-Gago, E. Towards successful environmental performance of sustainable cities: Intervening sectors. A review. Renew. Sustain. Energy Rev. 2016, 57, 479–495. [Google Scholar] [CrossRef]
- EU. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Roadmap to a Resource Efficient Europe COM(2011) 571; EU: Brussels, Belgium, 2011. [Google Scholar]
- EU. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives; 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008L0098-20180705 (accessed on 8 August 2024).
- Simon, D.; Arfvidsson, H.; Anand, G.; Bazaz, A.; Fenna, G.; Foster, K.; Jain, G.; Hansson, S.; Evans, L.M.; Moodley, N. Developing and testing the Urban Sustainable Development Goal’s targets and indicators–a five-city study. Environ. Urban. 2016, 28, 49–63. [Google Scholar] [CrossRef]
- Niță, M.R.; Ioja, C.I. Environmental conflicts in the context of the challenging urban nature. Carpathian J. Earth Environ. Sci. 2020, 15, 471–479. [Google Scholar] [CrossRef]
- Lafortezza, R.; Sanesi, G. Nature-based solutions: Settling the issue of sustainable urbanization. Environ. Res. 2019, 172, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, K.; Frantzeskaki, N.; Loorbach, D. Steering transformations under climate change: Capacities for transformative climate governance and the case of Rotterdam, the Netherlands. Reg. Environ. Chang. 2019, 19, 791–805. [Google Scholar] [CrossRef]
- Hartig, T.; Evans, G.W.; Jamner, L.D.; Davis, D.S.; Gärling, T. Tracking restoration in natural and urban field settings. J. Environ. Psychol. 2003, 23, 109–123. [Google Scholar] [CrossRef]
- Berto, R. Assessing the restorative value of the environment: A study on the elderly in comparison with young adults and adolescents. Int. J. Psychol. 2007, 42, 331–341. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
- Alcock, I.; White, M.P.; Wheeler, B.W.; Fleming, L.E.; Depledge, M.H. Longitudinal effects on mental health of moving to greener and less green urban areas. Environ. Sci. Technol. 2014, 48, 1247–1255. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260, reprinted in Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- New European Bauhaus. Available online: https://new-european-bauhaus.europa.eu/index_en (accessed on 10 August 2024).
- Browing, W.; Ryan, C.; Clancy, J. Patterns of Biophilic Design; Terrapin Bright Green, LLC. Johanson, Megan: New York, NY, USA, 2019. [Google Scholar]
- Almenar, J.B.; Petucco, C.; Sonnemann, G.; Geneletti, D.; Elliot, T.; Rugani, B. Modelling the net environmental and economic impacts of urban nature-based solutions by combining ecosystem services, system dynamics and life cycle thinking: An application to urban forests. Ecosyst. Serv. 2023, 60, 101506. [Google Scholar] [CrossRef]
- Bona, S.; Silva-Afonso, A.; Gomes, R.; Matos, R.; Rodrigues, F. Nature-based solutions in urban areas: A European analysis. Appl. Sci. 2022, 13, 168. [Google Scholar] [CrossRef]
- Jeanjean, A.P.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2. 5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Davison, A.; Harwood, A. How tree professionals perceive trees and conflicts about trees in Australia’s urban forest. Landsc. Urban Plan. 2013, 119, 124–130. [Google Scholar] [CrossRef]
- Kronenberg, J. Why not to green a city? Institutional barriers to preserving urban ecosystem services. Ecosyst. Serv. 2015, 12, 218–227. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Tilie, N. The dynamics of urban ecosystem governance in Rotterdam, The Netherlands. Ambio 2014, 43, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Spruijt, P.; Knol, A.B.; Vasileiadou, E.; Devilee, J.; Lebret, E.; Petersen, A.C. Roles of scientists as policy advisers on complex issues: A literature review. Environ. Sci. Policy 2014, 40, 16–25. [Google Scholar] [CrossRef]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kain, J.-H.; Artmann, M.; Pauleit, S. The uptake of the ecosystem services concept in planning discourses of European and American cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef]
- Baur, J.W.; Tynon, J.F.; Gómez, E. Attitudes about urban nature parks: A case study of users and nonusers in Portland, Oregon. Landsc. Urban Plan. 2013, 117, 100–111. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green spaces of European cities revisited for 1990–2006. Landsc. Urban Plan. 2013, 110, 113–122. [Google Scholar] [CrossRef]
- Davies, C.; Hansen, R.; Rall, E.; Pauleit, S.; Lafortezza, R.; De Bellis, Y.; Santos, A.; Tosics, I. Green infrastructure planning and implementation. The status of European green space planning and implementation based on an analysis of selected European cityregions. Green Surge Proj. Deliv. 2015, 5, 1–134. [Google Scholar]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- City of Copenhagen. The City of Copenhagen Food Strategy. Available online: https://maaltider.kk.dk/sites/default/files/2022-06/The%20City%20of%20Copenhagen%20Food%20Strategy%202019.pdf (accessed on 8 August 2024).
- European Commission. Environmental Implementation Review 2022. Country Report—Spain. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=SWD:2022:0256:FIN:EN:PDF (accessed on 8 August 2024).
- Urban Agriculture in Paris. Available online: https://www.parisculteurs.paris/en/ (accessed on 8 August 2024).
- Tzortzi, J.N.; Guaita, L.; Kouzoupi, A. Sustainable strategies for urban and landscape regeneration related to Agri-cultural heritage in the urban-periphery of South Milan. Sustainability 2022, 14, 6581. [Google Scholar] [CrossRef]
- City of Vienna. Smart Climate City Strategy Vienna. Available online: https://smartcity.wien.gv.at/wp-content/uploads/sites/3/2022/05/scwr_klima_2022_web-EN.pdf (accessed on 8 August 2024).
- Stockholm City. Environment Programme 2020–2023. Available online: https://start.stockholm/globalassets/start/om-stockholms-stad/politik-och-demokrati/styrdokument/environment-programme-2020-2023_ta.pdf (accessed on 8 August 2024).
- Maes, J.; Jacobs, S. Nature-based solutions for Europe’s sustainable development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; De Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Camerin, F.; Longato, D. Designing healthier cities to improve life quality: Unveiling challenges and outcomes in two Spanish cases. J. Urban Des. 2024, 1–30. [Google Scholar] [CrossRef]
- Ponzini, D. Transnational Architecture and Urbanism: Rethinking How Cities Plan, Transform, and Learn; Routledge: London, UK, 2020. [Google Scholar]
- Nogués, S.; González-González, E.; Cordera, R. New urban planning challenges under emerging autonomous mobility: Evaluating backcasting scenarios and policies through an expert survey. Land Use Policy 2020, 95, 104652. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Pucher, B.; Calheiros, C.S.; Hoffmann, K.A.; Aicher, A.; Pinho, P.; Stracqualursi, A.; Korolova, A.; Pobric, A.; Galvão, A. Closing water cycles in the built environment through nature-based solutions: The contribution of vertical greening systems and green roofs. Water 2021, 13, 2165. [Google Scholar] [CrossRef]
- Oral, H.V.; Radinja, M.; Rizzo, A.; Kearney, K.; Andersen, T.R.; Krzeminski, P.; Buttiglieri, G.; Ayral-Cinar, D.; Comas, J.; Gajewska, M. Management of urban waters with nature-based solutions in circular cities—Exemplified through seven urban circularity challenges. Water 2021, 13, 3334. [Google Scholar] [CrossRef]
- Canet-Martí, A.; Pineda-Martos, R.; Junge, R.; Bohn, K.; Paço, T.A.; Delgado, C.; Alenčikienė, G.; Skar, S.L.G.; Baganz, G.F. Nature-based solutions for agriculture in circular cities: Challenges, gaps, and opportunities. Water 2021, 13, 2565. [Google Scholar] [CrossRef]
- Mino, E.; Pueyo-Ros, J.; Škerjanec, M.; Castellar, J.A.; Viljoen, A.; Istenič, D.; Atanasova, N.; Bohn, K.; Comas, J. Tools for edible cities: A review of tools for planning and assessing edible nature-based solutions. Water 2021, 13, 2366. [Google Scholar] [CrossRef]
- Hachoumi, I.; Pucher, B.; Vito-Francesco, D.; Prenner, F.; Ertl, T.; Langergraber, G.; Fürhacker, M.; Allabashi, R. Impact of green roofs and vertical greenery systems on surface runoff quality. Water 2021, 13, 2609. [Google Scholar] [CrossRef]
- Castellar, J.A.; Popartan, L.A.; Pueyo-Ros, J.; Atanasova, N.; Langergraber, G.; Säumel, I.; Corominas, L.; Comas, J.; Acuna, V. Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 2021, 779, 146237. [Google Scholar] [CrossRef]
- Mayor, B.; Toxopeus, H.; McQuaid, S.; Croci, E.; Lucchitta, B.; Reddy, S.E.; Egusquiza, A.; Altamirano, M.A.; Trumbic, T.; Tuerk, A. State of the art and latest advances in exploring business models for nature-based solutions. Sustainability 2021, 13, 7413. [Google Scholar] [CrossRef]
- Nika, C.-E.; Expósito, A.; Kisser, J.; Bertino, G.; Oral, H.V.; Dehghanian, K.; Vasilaki, V.; Iacovidou, E.; Fatone, F.; Atanasova, N. Validating circular performance indicators: The interface between circular economy and stakeholders. Water 2021, 13, 2198. [Google Scholar] [CrossRef]
- Prenner, S.; Allesch, A.; Staudner, M.; Rexeis, M.; Schwingshackl, M.; Huber-Humer, M.; Part, F. Static modelling of the material flows of micro-and nanoplastic particles caused by the use of vehicle tyres. Environ. Pollut. 2021, 290, 118102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, C.; Shi, W.; Fu, Y. Quantitative evaluation and optimized utilization of water resources-water environment carrying capacity based on nature-based solutions. J. Hydrol. 2019, 568, 96–107. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Xi, X.; Nan, Z. Nature-based Solutions to address climate change. Adv. Clim. Chang. Res. 2020, 16, 336. [Google Scholar]
- Sowińska-Świerkosz, B.; García, J. What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- van Welie, M.J.; Boon, W.P.; Truffer, B. Innovation system formation in international development cooperation: The role of intermediaries in urban sanitation. Sci. Public Policy 2020, 47, 333–347. [Google Scholar] [CrossRef]
- Buyukkamaci, N.; Alkan, H.S. Public acceptance potential for reuse applications in Turkey. Resour. Conserv. Recycl. 2013, 80, 32–35. [Google Scholar] [CrossRef]
- Garcia-Cuerva, L.; Berglund, E.Z.; Binder, A.R. Public perceptions of water shortages, conservation behaviors, and support for water reuse in the US. Resour. Conserv. Recycl. 2016, 113, 106–115. [Google Scholar] [CrossRef]
- Furlong, C.; Jegatheesan, J.; Currell, M.; Iyer-Raniga, U.; Khan, T.; Ball, A.S. Is the global public willing to drink recycled water? A review for researchers and practitioners. Util. Policy 2019, 56, 53–61. [Google Scholar] [CrossRef]
- Fielding, K.S.; Gardner, J.; Leviston, Z.; Price, J. Comparing public perceptions of alternative water sources for potable use: The case of rainwater, stormwater, desalinated water, and recycled water. Water Resour. Manag. 2015, 29, 4501–4518. [Google Scholar] [CrossRef]
- Fielding, K.S.; Dolnicar, S.; Schultz, T. Public acceptance of recycled water. Int. J. Water Resour. Dev. 2019, 34, 551–586. [Google Scholar] [CrossRef]
- Kronenberg, J.; Haase, A.; Łaszkiewicz, E.; Antal, A.; Baravikova, A.; Biernacka, M.; Dushkova, D.; Filčak, R.; Haase, D.; Ignatieva, M. Environmental justice in the context of urban green space availability, accessibility, and attractiveness in postsocialist cities. Cities 2020, 106, 102862. [Google Scholar] [CrossRef]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.-C. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2019, 96, 10–22. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- United Nations Environment Programme. United Nations Environment Programme, Annual Report; UN: New York, NY, USA, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ristić Trajković, J.; Krstić, V.; Milovanović, A.; Calheiros, C.S.C.; Ćujić, M.; Karanac, M.; Kazak, J.K.; Di Lonardo, S.; Pineda-Martos, R.; Garcia Mateo, M.C.; et al. Moving Towards a Holistic Approach to Circular Cities: Obstacles and Perspectives for Implementation of Nature-Based Solutions in Europe. Sustainability 2024, 16, 7085. https://doi.org/10.3390/su16167085
Ristić Trajković J, Krstić V, Milovanović A, Calheiros CSC, Ćujić M, Karanac M, Kazak JK, Di Lonardo S, Pineda-Martos R, Garcia Mateo MC, et al. Moving Towards a Holistic Approach to Circular Cities: Obstacles and Perspectives for Implementation of Nature-Based Solutions in Europe. Sustainability. 2024; 16(16):7085. https://doi.org/10.3390/su16167085
Chicago/Turabian StyleRistić Trajković, Jelena, Verica Krstić, Aleksandra Milovanović, Cristina Sousa Coutinho Calheiros, Mirjana Ćujić, Milica Karanac, Jan K. Kazak, Sara Di Lonardo, Rocío Pineda-Martos, Mari Carmen Garcia Mateo, and et al. 2024. "Moving Towards a Holistic Approach to Circular Cities: Obstacles and Perspectives for Implementation of Nature-Based Solutions in Europe" Sustainability 16, no. 16: 7085. https://doi.org/10.3390/su16167085
APA StyleRistić Trajković, J., Krstić, V., Milovanović, A., Calheiros, C. S. C., Ćujić, M., Karanac, M., Kazak, J. K., Di Lonardo, S., Pineda-Martos, R., Garcia Mateo, M. C., Milošević, D., Milousi, M., Niță, M. R., Palermo, S. A., Piro, P., Pirouz, B., Siscan, Z., Turco, M., Vaccari, M., ... Đolić, M. (2024). Moving Towards a Holistic Approach to Circular Cities: Obstacles and Perspectives for Implementation of Nature-Based Solutions in Europe. Sustainability, 16(16), 7085. https://doi.org/10.3390/su16167085