Strategic Siting of Hydroelectric Power Plants to Power Railway Operations with Renewable Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of MID
2.2. Data Collection
3. Results
3.1. Potential Rivers for Hydropower Dam Construction
3.2. Power Transmission Technology
- Wires buried under snow cornices.
- Wires broken or damaged by ice.
- Pylon collapse due to avalanche or snow accumulation.
- Loss of railway-associated members due to sudden weather changes.
- Short circuits and wire breaks caused by falling ice.
- Earth faults from trees falling due to snow accumulation.
3.3. Process of Determining the MID Location
3.4. Power Generation Efficiency
3.5. Historical Transition of Areas Surrounding the Selected Location
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kemp, P.S.; O’Hanley, J.R. Procedures for evaluating and prioritising the removal of fish passage barriers: A synthesis. Fish. Manag. Ecol. 2010, 17, 297–322. [Google Scholar] [CrossRef]
- Jumani, S.; Deitch, M.J.; Kaplan, D.; Anderson, E.P.; Krishnaswamy, J.; Lecours, V.; Whiles, M.R. River fragmentation and flow alteration metrics: A review of methods and directions for future research. Environ. Res. Lett. 2020, 15, 123009. [Google Scholar] [CrossRef]
- Meynell, P.J.; Metzger, M.J.; Stuart, N. Assessing the impacts of changing connectivity of hydropower dams on the distribution of fish species in the 3S rivers, a tributary of the lower Mekong. Water 2024, 16, 1505. [Google Scholar] [CrossRef]
- Atminarso, D.; Baumgartner, L.J.; Watts, R.J.; Rourke, M.L.; Bond, J.; Wibowo, A. Evidence of fish community fragmentation in a tropical river upstream and downstream of a dam, despite the presence of a fishway. Pac. Conserv. Biol. 2024, 30, PC22035. [Google Scholar] [CrossRef]
- Wu, H.; Dai, J.; Sun, S.; Du, C.; Long, Y.; Chen, H.; Yu, G.; Ye, S.; Chen, J. Responses of habitat suitability for migratory birds to increased water level during middle of dry season in the two largest freshwater lake wetlands of China. Ecol. Indic. 2021, 121, 107065. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, Y.; Wang, M.; Zhu, Y.; Cui, H.; Du, S.; Xu, C.Y. Quantifying the impact of climate change and human activities on the eco-hydrological regimes of the Weihe River Basin, Northwest China. Hydrol. Res. 2023, 54, 49–64. [Google Scholar] [CrossRef]
- Ndzana Biloa, E.B.N.; Mamonekene, V.; Micha, J.C. Characterization of fish spawning grounds near the Likouala-Aux-Herbes River, Lac Tele community reserve (LTCR), republic of Congo, for sustainable wetland management. Sustainability 2024, 16, 3353. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Y.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Hua, S.; Wu, H.; Zhu, Y.; An, H.; et al. Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland, China: Implications for biological conservation. Ecol. Eng. 2016, 90, 473–481. [Google Scholar] [CrossRef]
- Dugan, P.J.; Barlow, C.; Agostinho, A.A.; Baran, E.; Cada, G.F.; Chen, D.; Cowx, I.G.; Ferguson, J.W.; Jutagate, T.; Mallen-Cooper, M.; et al. Fish migration, dams, and loss of ecosystem services in the Mekong Basin. Ambio 2010, 39, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management. In Applications of the River Styles Framework; Blackwell Publishing: Chichester, UK, 2004. [Google Scholar]
- Tockner, K.; Paetzold, A.; Karaus, U.; Claret, C.; Zettel, J. Ecology of braided rivers Braided Rivers. In IAS Special Publication; Sambrook Smith, G.H., Best, J., Bristow, C., Petts, G.E., Eds.; Blackwell Publishers: London, UK, 2006. [Google Scholar]
- Hohensinner, S.; Hauer, C.; Muhar, S. River morphology, channelization, and habitat restoration. Riverine Ecosyst. Manag. 2018, 8, 41–65. [Google Scholar]
- Bice, C.M.; Huisman, J.; Kimball, M.E.; Mallen-Cooper, M.; Zampatti, B.P.; Gillanders, B.M. Tidal barriers and fish—Impacts and remediation in the face of increasing demand for freshwater and climate change. Estuar. Coast. Shelf Sci. 2023, 289, 108376. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, F.B.; Haghighi, A.T.; Riml, J.; Alfredsen, K.; Koskela, J.J.; Kløve, B.; Marttila, H. Changes in short term river flow regulation and hydropeaking in Nordic rivers. Sci. Rep. 2018, 8, 17232. [Google Scholar] [CrossRef]
- Hayes, D.S.; Moreira, M.; Boavida, I.; Haslauer, M.; Unfer, G.; Zeiringer, B.; Greimel, F.; Auer, S.; Ferreira, T.; Schmutz, S. Life stage-specific hydropeaking flow rules. Sustainability 2019, 11, 1547. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, B.; Yin, X.; Zhao, Y. The influence of channel morphological changes on environmental flow requirements in urban rivers. Water 2019, 11, 1800. [Google Scholar] [CrossRef]
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human appropriation of renewable fresh water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- Postel, S.L. Water for food production: Will there be enough in 2025? BioScience 1998, 48, 629–637. [Google Scholar] [CrossRef]
- Bergman, J.N.; Bennett, J.R.; Minelga, V.; Vis, C.; Fisk, A.T.; Cooke, S.J. Ecological connectivity of invasive and native fishes in a historic navigation waterway. Can. J. Fish. Aquat. Sci. 2024, 81, 600–619. [Google Scholar] [CrossRef]
- Rosenberg, D.M.; McCully, P.; Pringle, C.M. Global-scale environmental effects of hydrological alterations: Introduction. BioScience 2000, 50, 746–751. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, S.; Ren, L.; Xu, C.Y.; Wei, L.; Cui, H.; Yuan, F.; Liu, Y.; Yang, X. The development of a nonstationary standardised streamflow index using climate and reservoir indices as covariates. Water Resour. Manage. 2022, 36, 1377–1392. [Google Scholar] [CrossRef]
- Japan Commission on Large Dams. Dams in Japan Overview; Japan Commission on Large Dams: Tokyo, Japan, 2018; Volume 2018. [Google Scholar]
- Cui, H.; Jiang, S.; Ren, L.; Xiao, W.; Yuan, F.; Wang, M.; Wei, L. Dynamics and potential synchronization of regional precipitation concentration and drought-flood abrupt alternation under the influence of reservoir climate. J. Hydrol. Reg. Stud. 2022, 42, 101147. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, M.; Ren, L.; Liu, Y.; Zhou, L.; Cui, H.; Xu, C.Y. An integrated approach for identification and quantification of ecological drought in rivers from an ecological streamflow perspective. Ecol. Indic. 2022, 143, 109410. [Google Scholar] [CrossRef]
- Hayes, D.S.; Brändle, J.M.; Seliger, C.; Zeiringer, B.; Ferreira, T.; Schmutz, S. Advancing towards functional environmental flows for temperate floodplain rivers. Sci. Total Environ. 2018, 633, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Okuma, T.; Ohkawa, H.; Koudate, H.; Miya, T.; Mizuochi, N.; Nakamura, I. A fundamental study on standard-design methods of snow-conveyance-gutter systems and snow-melting gutter systems. J. Jpn. Soc. Snow Ice 1989, 51, 239–251. [Google Scholar] [CrossRef]
- Fuentes-Pérez, J.F.; García-Vega, A.; Bravo-Córdoba, F.J.; Sanz-Ronda, F.J. Smart fishways: A sensor network for the assessment of fishway performance. Biol. Life Sci. Forum 2022, 13, 76. [Google Scholar] [CrossRef]
- Masumoto, T.; Nakai, M.; Asaeda, T.; Rahman, M. Effectiveness of new rock-ramp fishway at Miyanaka intake dam compared with existing large and small stair-type fishways. Water 2022, 14, 1991. [Google Scholar] [CrossRef]
- Virbickas, T.; Kesminas, V. Prioritisation of barriers according to their impact on migratory fish in the lowland river basin district. Fishes 2024, 9, 113. [Google Scholar] [CrossRef]
- Masumoto, T.; Nakai, M.; Aoki, T.; Asaeda, T.; Rahman, M. Quantifying vegetation on a rock-ramp fishway for fish run-up and habitat enhancement: The case of the Miyanaka intake dam in Japan. Water 2023, 15, 2188. [Google Scholar] [CrossRef]
- Humpert, C. Long distance transmission systems for the future electricity supply—Analysis of possibilities and restrictions. Energy 2012, 48, 278–283. [Google Scholar] [CrossRef]
- Matsumiya, H.; Eguchi, Y.; Nishihara, T. Research on snow related damage of overhead transmission facilities. Seppyo 2018, 80, 461–474. [Google Scholar]
- Satake, M. Soudennsennnosetugai. J. Jpn. Soc. Snow Ice 1940, 2, 131–139. [Google Scholar]
- Hongo, E. Snow pressures on the leg structures of power transmission towers. J. Jpn. Soc. Snow Ice 1998, 60, 473–490. [Google Scholar] [CrossRef]
- Yaguchi, R.; Kurihara, T.; Takahashi, K. Study on member deformation of steel tower due to snowcap and evaluation method. In Proceedings of the JSSI & JSSE Joint Conference, Chiba, Japan, 13–16 September 2021; Volume 2021. [Google Scholar]
- Seki, S.; Kawakami, T. Shinanogawasoudensenronosetsugai. J. Jpn. Soc. Snow Ice 1941, 3, 43–59. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef]
- Rinaldi, M.; Amponsah, W.; Benvenuti, M.; Borga, M.; Comiti, F.; Lucía, A.; Marchi, L.; Nardi, L.; Righini, M.; Surian, N. An integrated approach for investigating geomorphic response to extreme events: Methodological framework and application to the October 2011 flood in the Magra River catchment, Italy. Earth Surf. Process. Landf. 2016, 41, 835–846. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the World’s Large River systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, B.; Sulaiman, M.S.; Shahrizal Ab Razak, M.; Nurhidayu, S. Morphological Assessment of River Stability: Review of the Most Influential Parameters. Sustainability 2022, 14, 10025. [Google Scholar] [CrossRef]
- Melcher, A.H.; Bakken, T.H.; Friedrich, T.; Greimel, F.; Humer, N.; Schmutz, S.; Zeiringer, B.; Webb, J.A. Drawing together multiple lines of evidence from assessment studies of hydropeaking pressures in impacted rivers. Freshw. Sci. 2017, 36, 220–230. [Google Scholar] [CrossRef]
- Casas-Mulet, R.; Alfredsen, K.; Killingtveit, Å. Modelling of environmental flow options for optimal Atlantic salmon, Salmo salar, embryo survival during hydropeaking. Fish. Manag. Ecol. 2014, 21, 480–490. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Sultana, R.; Paul, S.K. Exploring the impacts of river morphology change associated natural disasters on Teesta riparian environment of Bangladesh. In Climate, Environment and Disaster in Developing Countries; Springer: Berlin/Heidelberg, Germany, 2022; pp. 361–373. [Google Scholar] [CrossRef]
- Quadroni, S.; Crosa, G.; Gentili, G.; Doretto, A.; Talluto, N.; Servanzi, L.; Espa, P. Ecological impact of hydraulic dredging from an alpine reservoir on the downstream river. Sustainability 2023, 15, 16626. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- Li, Z.; Yan, C.; Boota, M.W. Review and outlook of river morphology expression. J. Water Clim. Chang. 2022, 13, 1725–1747. [Google Scholar] [CrossRef]
- Hale, R.L.; Cook, E.M.; Beltrán, B.J. Cultural ecosystem services provided by rivers across diverse social-ecological landscapes: A social media analysis. Ecol. Indic. 2019, 107, 105580. [Google Scholar] [CrossRef]
- Oteros-Rozas, E.; Martín-López, B.; Fagerholm, N.; Bieling, C.; Plieninger, T. Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecol. Indic. 2018, 94, 74–86. [Google Scholar] [CrossRef]
- Feng, J.; Wen, Y.; Zhang, H.; Hou, Y.; Zhang, Z. Trap or opportunity: Impact of the fishing ban compensation policy on the income of returning fishermen in China. Sustainability 2024, 16, 4401. [Google Scholar] [CrossRef]
- Mattah, P.A.D.; Akwetey, M.F.A.; Abrokwah, S.; Prah, P.; Tuffour, D.K.; Aheto, D.W.; Subramanian, S. Perspectives on drivers of biodiversity and environmental changes in the keta lagoon Ramsar site of Ghana. Sustainability 2024, 16, 666. [Google Scholar] [CrossRef]
- Jung, E.; Joo, G.J.; Kim, H.G.; Kim, D.K.; Kim, H.W. Effects of seasonal and diel variations in thermal stratification on phytoplankton in a regulated river. Sustainability 2023, 15, 16330. [Google Scholar] [CrossRef]
- Obeso, M.P.; Marques, E.E.; Guedes, T.L.O.; Mendonça da Silva, J.F.M.; Makrakis, M.C.; Carvalho, A.G.; Makrakis, S. Hydropower plants and ichthyofauna in the Tocantins–Araguaia river basin: Challenges for planning and approaches to ichthyofauna conservation. Sustainability 2024, 16, 2303. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Liang, X.; Li, X.; Wang, F. Cumulative effects of cascade dams on river water cycle: Evidence from hydrogen and oxygen isotopes. J. Hydrol. 2019, 568, 604–610. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Moreira, M.; Hayes, D.S.; Boavida, I.; Schletterer, M.; Schmutz, S.; Pinheiro, A. Ecologically based criteria for hydropeaking mitigation: A review. Sci. Total Environ. 2019, 657, 1508–1522. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes. Ecol. Appl. 2001, 11, 179–190. [Google Scholar] [CrossRef]
- Thorne, C.R.; Allen, R.G.; Simon, A. Geomorphological river channel reconnaissance for river analysis, engineering and management. Trans. Inst. Br. Geogr. 1996, 21, 469–483. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Buijse, A.D.; Gurnell, A.M.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2015, 73, 2079–2100. [Google Scholar] [CrossRef]
- Taylor, K.G.; Owens, P.N. Sediments in urban river basins: A review of sediment–contaminant dynamics in an environmental system conditioned by human activities. J. Soils Sediments 2009, 9, 281–303. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Morley, S.A.; Karr, J.R. Assessing and restoring the health of urban streams in the Puget Sound Basin. Conserv. Biol. 2002, 16, 1498–1509. [Google Scholar] [CrossRef]
- Yousefi, S.; Moradi, H.R.; Keesstra, S.; Pourghasemi, H.R.; Navratil, O.; Hooke, J. Effects of urbanization on river morphology of the talar River, Mazandarn Province, Iran. Geocarto Int. 2019, 34, 276–292. [Google Scholar] [CrossRef]
- Lee, J.H.; Kil, J.T.; Jeong, S. Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecol. Eng. 2010, 36, 1251–1259. [Google Scholar] [CrossRef]
- Le, T.B.; Crosato, A.; Uijttewaal, W.S.J. Long-term morphological developments of river channels separated by a longitudinal training wall. Adv. Water Resour. 2018, 113, 73–85. [Google Scholar] [CrossRef]
- Mouton, A.M.; Schneider, M.; Depestele, J.; Goethals, P.L.M.; De Pauw, N. Fish habitat modelling as a tool for river management. Ecol. Eng. 2007, 29, 305–315. [Google Scholar] [CrossRef]
- Schmutz, S.; Bakken, T.H.; Friedrich, T.; Greimel, F.; Harby, A.; Jungwirth, M.; Melcher, A.; Unfer, G.; Zeiringer, B. Response of fish communities to hydrological and morphological alterations in Hydropeaking Rivers of Austria. River Res. Appl. 2015, 31, 919–930. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Guo, W. The impacts of water level fluctuations of East Dongting Lake on habitat suitability of migratory birds. Ecol. Indic. 2021, 132, 108277. [Google Scholar] [CrossRef]
- Im, D.; Kang, H.; Kim, K.-H.; Choi, S.U. Changes of river morphology and physical fish habitat following weir removal. Ecol. Eng. 2011, 37, 883–892. [Google Scholar] [CrossRef]
- Rinderer, M.; Ali, G.; Larsen, L.G. Assessing structural, functional and effective hydrologic connectivity with brain neuroscience methods: State-of-the-art and research directions. Earth Sci. Rev. 2018, 178, 29–47. [Google Scholar] [CrossRef]
- Hayes, D.S.; Auer, S.; Fauchery, E.; Graf, D.; Hasler, T.; Mameri, D.; Schmutz, S.; Führer, S. The interactive effect of river bank morphology and daytime on downstream displacement and stranding of cyprinid larvae in hydropeaking conditions. Ecohydrol. Hydrobiol. 2023, 23, 152–161. [Google Scholar] [CrossRef]
- Wang, H.; Huang, L.; Hu, J.; Yang, H.; Guo, W. Effect of urbanization on the river network structure in Zhengzhou City, China. Int. J. Environ. Res. Public Health 2022, 19, 2464. [Google Scholar] [CrossRef]
- Ramos, V.; Formigo, N.; Maia, R. Environmental flows under the WFD implementation. Water Resour. Manag. 2018, 32, 5115–5149. [Google Scholar] [CrossRef]
- Song, S.; Zeng, L.; Wang, Y.; Li, G.; Deng, X. The response of river network structure to urbanization: A multifractal perspective. J. Clean. Prod. 2019, 221, 377–388. [Google Scholar] [CrossRef]
- Sear, D.A.; Newson, M.D. Environmental change in river channels: A neglected element. Towards geomorphological typologies, standards and monitoring. Sci. Total Environ. 2003, 310, 17–23. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Large Dams (ICOLD). World Regist. Dams. 2013. Available online: http://www.icold-cigb.net (accessed on 22 June 2024).
- Song, J.; Sciubba, M.; Kam, J. Risk and impact assessment of dams in the contiguous United States using the 2018 national inventory of dams database. Water 2021, 13, 1066. [Google Scholar] [CrossRef]
- Setiawan, I.; Sundari, R.S.; Asdak, C.; Kurnia, G. Integration of Tacit and Explicit Strategies in Sustainable Livelihood Recovery: A Case Study on Project-Affected Communities of a Hydropower Plant in West Java, Indonesia. Sustainability 2023, 15, 13534. [Google Scholar] [CrossRef]
- Perera, D.; Williams, S.; Smakhtin, V. Present and future losses of storage in large reservoirs due to sedimentation: A country-wise global assessment. Sustainability 2023, 15, 219. [Google Scholar] [CrossRef]
- Wirfs-Brock, J. Lost in transmission: How much electricity disappears between A power plant and your plug? Inside Energy 2015, 6. [Google Scholar]
- Sawassi, A.; Khadra, R.; Crookston, B. Water banking as a strategy for the management and conservation of a critical resource: A case study from Tunisia’s Medjerda River Basin (MRB). Sustainability 2024, 16, 3875. [Google Scholar] [CrossRef]
- Sasaki, M.; Senga, Y.; Kawajiri, Y.; Endo, T. Water rights and river conciliation. Jour Jsidre 1981, 49, 143–150. (In Japanese) [Google Scholar]
- Vander Pluym, J.L.; Eggleston, D.B.; Levine, J.F. Impacts of road crossings on fish movement and community structure. J. Freshw. Ecol. 2008, 23, 565–574. [Google Scholar] [CrossRef]
- Maeda, S.; Yoshida, Y.; Yoshinari, K.; Takahashi, N. Effective placement strategies for portable fishways in agricultural drainage canals: A numerical investigation. Sustainability 2023, 15, 16283. [Google Scholar] [CrossRef]
- Pernice, R. The Transformation of Tokyo during the 1950s and Early 1960s Projects between City Planning and Urban Utopia. J. Asian Arch. Build. Eng. 2006, 5, 253–260. [Google Scholar] [CrossRef]
- Niimura, Y. The Nagara River Estuary Barrage Fishway and the Stream Fishway: Comparison of Functions of Young Sweetfish During Upstream Migration. Ecol. Civil. Eng. 2000, 3, 169–178. [Google Scholar] [CrossRef]
- Masumoto, T.; Nakai, M.; Asaeda, T.; Rahman, M. Preferential behavior of Tribolodon hakonensis for fishways according to biological characteristics. River Res. Appl. 2023, 39, 1520–1536. [Google Scholar] [CrossRef]
- Nakai, M.; Masumoto, T.; Asaeda, T.; Rahman, M. Improving the efficiency of adaptive management methods in multiple fishways using environmental DNA. PLoS ONE 2024, 19, e0301197. [Google Scholar] [CrossRef]
- Dewi Kartika, S.; Rahmayanti, A.Y. Fishery cooperatives and sustainable blue economy: Scoping review from a business perspective. Proceedings 2022, 83, 30. [Google Scholar] [CrossRef]
- Sueyoshi, M.; Akasaka, T.; Mori, T.; Ishiyama, N.; Kawamoto, T.; Takegawa, Y.; Inoue, M.; Mitsuhashi, H.; Kawaguchi, Y.; Onikura, N.; et al. Utilizing the National Riverside Census for Conservation: Issues and Research Examples Related to the Data. Jpn. J. Conserv. Ecol. 2016, 21, 167–180. [Google Scholar] [CrossRef]
Name | Prefectures | Completion Year | Authorization Output (kW) | Total Water Storage Capacity (Million m3) | Power Generation Efficiency (kW/m3) | Basin Area (km2) |
---|---|---|---|---|---|---|
Miyanaka | Niigata | 1938 | 449,000 | 0.97 | 462,887 | 7841.0 |
Nisiotaki | Nagano | 1939 | 177,000 | 0.78 | 227,799 | 7020.0 |
Kanose | Fukushima | 1928 | 104,599 | 16.53 | 6330 | 6264.0 |
Toyomi | Fukushima | 1929 | 61,800 | 18.67 | 3311 | 6048.0 |
Akiba | Sizuoka | 1958 | 129,400 | 34.70 | 3729 | 4490.0 |
Kamigo | Yamagata | 1962 | 15,400 | 7.66 | 2010 | 1810.0 |
Nishiura | Nagano | 1937 | 16,300 | 0.34 | 48,657 | 1472.2 |
Tagokura | Fukushima | 1959 | 400,000 | 494.00 | 810 | 816.3 |
Futatsuno | Nara | 1962 | 58,000 | 43.00 | 1349 | 801.0 |
Yamba | Gunma | 2019 | 11,700 | 107.50 | 109 | 711.4 |
Ootori | Fukushima | 1963 | 182,000 | 15.80 | 11,519 | 656.9 |
Okutadami | Niigata | 1960 | 560,000 | 601.00 | 932 | 595.1 |
Komori | Mie | 1965 | 30,000 | 9.70 | 3093 | 564.0 |
Sameura | Kochi | 1978 | 42,000 | 316.00 | 133 | 472.0 |
Hitotsuse | Miyazaki | 1963 | 180,000 | 261.32 | 689 | 445.9 |
Miboro | Gifu | 1961 | 215,000 | 370.00 | 581 | 442.8 |
Tedorigawa | Ishikawa | 1979 | 250,000 | 231.00 | 1082 | 428.4 |
Fujiwara | Gunma | 1959 | 21,600 | 52.49 | 412 | 401.0 |
Shimokubo | Gunma | 1968 | 15,270 | 130.00 | 117 | 322.9 |
Yubari | Hokkaido | 2014 | 28,470 | 427.00 | 67 | 279.0 |
Ikari | Tochigi | 1956 | 15,300 | 55.00 | 278 | 271.2 |
Tokuyama | Gifu | 2007 | 161,900 | 660.00 | 245 | 254.5 |
Arimine | Toyama | 1959 | 534,170 | 222.00 | 2406 | 219.9 |
Kurobe | Toyama | 1963 | 337,000 | 199.29 | 1691 | 188.5 |
Kuzuryu | Fukui | 1968 | 220,000 | 353.00 | 623 | 184.5 |
Kawamata | Tochigi | 1966 | 27,000 | 87.60 | 308 | 179.4 |
Yagisawa | Gunma | 1967 | 240,000 | 204.30 | 1175 | 167.4 |
Tsudurao | Nara | 1937 | 2100 | 1.14 | 1847 | 120.4 |
Naramata | Gunma | 1990 | 12,800 | 90.00 | 142 | 95.4 |
Sagurigawa | Niigata | 1992 | 10,300 | 27.50 | 375 | 76.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakai, M.; Masumoto, T.; Asaeda, T. Strategic Siting of Hydroelectric Power Plants to Power Railway Operations with Renewable Energy. Sustainability 2024, 16, 7086. https://doi.org/10.3390/su16167086
Nakai M, Masumoto T, Asaeda T. Strategic Siting of Hydroelectric Power Plants to Power Railway Operations with Renewable Energy. Sustainability. 2024; 16(16):7086. https://doi.org/10.3390/su16167086
Chicago/Turabian StyleNakai, Masahiko, Taku Masumoto, and Takashi Asaeda. 2024. "Strategic Siting of Hydroelectric Power Plants to Power Railway Operations with Renewable Energy" Sustainability 16, no. 16: 7086. https://doi.org/10.3390/su16167086
APA StyleNakai, M., Masumoto, T., & Asaeda, T. (2024). Strategic Siting of Hydroelectric Power Plants to Power Railway Operations with Renewable Energy. Sustainability, 16(16), 7086. https://doi.org/10.3390/su16167086