Presence of Antimicrobial-Resistant Bacteria and Resistance Genes in Soil Exposed to Wastewater Treatment Plant Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collection
2.3. Chemicals
2.4. Analysis of Antimicrobial-Resistant Bacteria (Culture-Based Analysis)
2.5. Isolation of DNA from Soil
2.6. Analysis of Resistance Gene Copy Numbers in Soil Bacteria (Non-Culture-Based Analysis)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preliminary Analysis of AMR
3.2. Full-Scale Analysis of a Suite of Three ARGs and intI1
3.2.1. Comparison of Gene Abundance by Soil Profile Depth
3.2.2. Gene Abundance by Type
3.2.3. Gene Correlations
3.2.4. Impacts of Amount of Effluent Irrigation and Location on Gene Abundance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Kolpin, D.W.; Furlong, M.T.; Meyer, E.M.; Thurman, S.D.; Zaugg, L.B. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A National reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.; Kolpin, D.; Teta, C. Pharmaceutical pollution in the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Glassmeyer, S.T. Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination. Environ. Sci. Technol. 2005, 39, 5157–5169. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aqua. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Brausch, J.M.; Rand, G.M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 2011, 82, 1518–1532. [Google Scholar] [CrossRef] [PubMed]
- EMA (European Medicines Agency). Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use; CPMP/SWP/4447/00; European Medicines Agency: London, UK, 2024; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-revision-1_en.pdf (accessed on 18 March 2024).
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E., Jr.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12, Erratum in Clin. Infect. Dis. 2009, 48, 1334. [Google Scholar] [CrossRef] [PubMed]
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, K.J.; Reyes, A.; Wang, B.; Selleck, E.M.; Sommer, M.O.A.; Dantas, G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337, 1107–1111. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Janzon, A.; Kristiansson, E.; Larsson, D.G.J. Environmental microbial communities living under very high antibiotic selection pressure. In Antimicrobial Resistance in the Environment; Keen, P.L., Montforts, M., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 483–501. [Google Scholar] [CrossRef]
- Marti, E.; Jofre, J.; Balcazar, J.L. Prevalence of antibiotic resistance genes and bacterial community composition influenced by wastewater treatment plant. PLoS ONE 2013, 8, e78906. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef]
- Munir, M.; Wong, K.; Xagoraraki, I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011, 45, 681–693. [Google Scholar] [CrossRef]
- Mokracka, J.; Koczura, R.; Kaznowski, A. Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant. Water Res. 2012, 46, 3353–3363. [Google Scholar] [CrossRef]
- Burch, K.D.; Han, B.; Pichtel, J.; Zubkov, T. Removal efficiency of commonly prescribed antibiotics via tertiary wastewater treatment. Environ. Sci. Pollut. Res. 2019, 26, 6301–6310. [Google Scholar] [CrossRef]
- Viswanathan, M.N.; Al Senafy, M.N.; Rashid, T.; Al-Awadi, E.; Al-Fahad, K. Improvement of tertiary wastewater quality by soil aquifer treatment. Water Sci. Technol. 1999, 40, 159–163. [Google Scholar] [CrossRef]
- Franklin, A.M.; Williams, C.F.; Watson, J.E. Assessment of soil to mitigate antibiotics in the environment due to release of wastewater treatment plant effluent. J. Environ. Qual. 2018, 47, 1347–1355. [Google Scholar] [CrossRef]
- Dalkmann, P.; Broszat, M.; Siebe, C.; Willaschek, E.; Sakinc, T.; Heubner, J.; Amelung, W.; Grohmann, E.; Siemens, J. Accumulation of Pharmaceuticals, Enterococcus, and Resistance Genes in Soils Irrigated with Wastewater for Zero to 100 Years in Central Mexico. PLoS ONE 2012, 7, e45397, Erratum in PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Han, X.-M.; Hu, H.-W.; Shi, X.-Z.; Wang, J.-T.; Han, L.-L.; Chen, D.; He, J.-Z. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. Environ. Pollut. 2016, 211, 48–57. [Google Scholar] [CrossRef]
- Proia, L.; von Schiller, D.; Sànchez-Melsió, A.; Sabater, S.; Borrego, C.M.; Rodríguez-Mozaz, S.; Balcázar, J.L. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environ. Pollut. 2016, 210, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Zammit, I.; Roberto, B.M.; Marano, V.V.; Cytryn, E.; Rizzo, L. Changes in antibiotic resistance gene levels in soil after irrigation with treated wastewater: A comparison between heterogeneous photocatalysis and chlorination. Environ. Sci. Technol. 2020, 54, 7677–7686. [Google Scholar] [CrossRef]
- Seyoum, M.M.; Obayomi, O.; Bernstein, N.; Williams, C.F.; Gillor, O. Occurrence and distribution of antibiotics and corresponding antibiotic resistance genes in different soil types irrigated with treated wastewater. Sci. Total Environ. 2021, 782, 146835. [Google Scholar] [CrossRef]
- Storteboom, H.; Arabi, M.; Davis, J.G.; Crimi, B.; Pruden, A. Tracking Antibiotic Resistance Genes in the South Platte River Basin Using Molecular Signatures of Urban Agricultural, And Pristine Sources. Environ. Sci. Technol. 2010, 44, 7397–7404. [Google Scholar] [CrossRef]
- Hess, S.; Berendonk, T.U.; Kneis, D. Antibiotic resistant bacteria and resistance genes in the bottom sediment of a small stream and the potential impact of remobilization. FEMS Microbiol. Ecol. 2018, 94, fiy128. [Google Scholar] [CrossRef]
- Negreanu, Y.; Pasternak, Z.; Jurkevitch, E.; Cytryn, E. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ. Sci. Technol. 2012, 46, 4800–4808. [Google Scholar] [CrossRef]
- McLain, J.E.; Williams, C.F. Sustainability of water reclamation: Long-term recharge with reclaimed wastewater does not enhance antibiotic resistance in sediment bacteria. Sustainability 2014, 6, 1313–1327. [Google Scholar] [CrossRef]
- Pepper, I.L.; Brooks, J.P.; Gerba, C.P. Antibiotic resistant bacteria in municipal wastes: Is there reason for concern? Environ. Sci. Technol. 2018, 52, 3949–3959. [Google Scholar] [CrossRef]
- Gillings, M.R.; Gaze, W.H.; Pruden, A.; Smalla, K.; Tiedje, J.M.; Zhu, Y.-G. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 2015, 9, 1269–1279. [Google Scholar] [CrossRef]
- Loughran, J.; College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA. Personal communication, 2015.
- Dadio, S.D. Ponding and Runoff Dynamics of a Closed Hillslope System Undergoing Irrigation with Treated Wastewater. Doctoral Dissertation, Pennsylvania State University, University Park, PA, USA, 1998. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Pei, R.; Kim, S.-C.; Carlson, K.H.; Pruden, A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 2006, 40, 2427–2435. [Google Scholar] [CrossRef]
- Green, H.C.; Dick, L.K.; Gilpin, B.; Samadpour, M.; Field, K. Genetic markers for rapid PCR-based detection of gull, Canada goose, duck and chicken fecal contamination in water. Appl. Environ. Microbiol. 2011, 78, 503–510. [Google Scholar] [CrossRef]
- Little, T. Method validation essentials, limit of blank, limit of detection, and limit of quantification. BioPharm Int. 2015, 28, 48–51. [Google Scholar]
- Zhang, H.; Du, M.; Jiang, H.; Zhang, D.; Lin, L.; Ye, H.; Zhang, X. Occurrence, seasonal variation, and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China. Environ. Sci. Process. Impacts 2015, 17, 225. [Google Scholar] [CrossRef]
- Azuma, T.; Nakano, T.; Koizumi, R.; Matsunaga, N.; Ohmagari, N.; Hayashi, T. Evaluation of the correspondence between the concentration of antimicrobials entering sewage treatment plant influent and the predicted concentration of antimicrobials using annual sales, shipping, and prescription data. Antibiotics 2022, 11, 472. [Google Scholar] [CrossRef]
- Staley, J.T.; Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 1985, 39, 321–346. [Google Scholar] [CrossRef]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H.; Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef]
- Hugenholtz, P.; Goebel, B.M.; Pace, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 1998, 180, 4765–4774. [Google Scholar] [CrossRef]
- Dantas, G.; Sommer, M.O.; Oluwasegun, R.D.; Church, G.M. Bacteria subsisting on antibiotics. Science 2008, 320, 100–103. [Google Scholar] [CrossRef]
- Van Goethem, M.W.; Pierneef, R.; Bezuidt, O.K.I.; Van De Peer, Y.; Cowan, D.A.; Makhalanyane, T.P. A reservoir of “historical” antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 2018, 6, 40. [Google Scholar] [CrossRef]
- McGuire, J.M.; Bunch, R.L.; Anderson, R.C.; Boaz, H.E.; Flynn, E.H.; Powell, H.M.; Smith, J.W. Ilotycin, a new antibiotic. Antibiot. Chemother. 1952, 2, 281–283. [Google Scholar] [PubMed]
- Martinez, J.L. Natural antibiotic resistance and contamination by antibiotic resistance determinants: The two ages in the evolution of resistance to antimicrobials. Front. Microbiol. 2012, 3, 1. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Zhong, W.; Xiong, W.; Zeng, Z.; Sun, Y. Presence and distribution of Macrolides-Lincosamide-Streptogramin resistance genes and potential indicator ARGs in the university ponds in Guangzhou, China. Environ. Sci. Pollut. Res. Int. 2016, 23, 22937–22946. [Google Scholar] [CrossRef]
- Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef]
- Spigaglia, P.; Carucci, V.; Barbanti, F.; Mastrantonio, P. ErmB determinants and Tn916-like elements in clinical isolates of Clostridium difficile. Antimicrob. Agents Chemother. 2005, 49, 2550–2553. [Google Scholar] [CrossRef]
- Liu, P.; Jia, S.; He, X.; Zhang, X.; Ye, L. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Chemosphere 2017, 188, 455–464. [Google Scholar] [CrossRef]
- Li, Q.; Guanshui, N.; Zhang, L.; Lu, Z.; Gao, H.; Li, R.; Jin, S. Effects of corresponding and non-corresponding contaminants on the fate of sulfonamide and quinolone resistance gens in the Laizhou Bay, China. Marine Pollut. Bull. 2018, 128, 475–482. [Google Scholar] [CrossRef]
- Dominguez, M.; Miranda, C.D.; Fuentes, O.; de la Fuente, M.; Godoy, F.A.; Bello-Toledo, H.; Gonzalez-Rocha, G. Occurrence of transferable integrons and sul and dfr genes among sulfonamide- and/or trimethoprim-resistant bacteria isolated from Chilean salmonid farms. Front. Microbiol. 2019, 10, 748. [Google Scholar] [CrossRef]
- Dungan, R.S.; Strausbaugh, C.A.; Leytem, A.B. Survey of selected antibiotic resistance genes in agricultural and non-agricultural soils in south-central Idaho. FEMS Microl. Ecol. 2019, 95, fiz071. [Google Scholar] [CrossRef]
- Fatta-Kassinos, D.; Kalavrouziotis, I.K.; Koukoulakis, P.H.; Vasquez, M.I. The risks associated with wastewater reuse and xenobioitics in agroecological environment. Sci. Total Environ. 2011, 409, 3555–3563. [Google Scholar] [CrossRef]
- Su, J.; Wei, B.; Xu, C.Y.; Qiao, M.; Zhu, Y.G. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environ. Int. 2014, 65, 9–15. [Google Scholar] [CrossRef]
- Kyselkova, M.; Kotrbova, L.; Bhumibhamon, G.; Chronakova, A.; Jirout, J.; Vrchotova, N.; Schmitt, H.; Elhottova, D. Tetracycline resistance genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure. Soil. Biol. Biochem. 2015, 81, 259–265. [Google Scholar] [CrossRef]
- Wepking, C.; Avera, B.; Badgley, B.; Barrett, J.E.; Franklin, J.; Knowlton, K.F. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities. Proc. R. Soc. B Biol. Sci. 2017, 284, 2016–2233. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, M.; Dai, J.; Sun, Y.; Zeng, Z. Application of manure containing tetracyclines slowed down the dissipation of tet resistance genes and caused changes in the composition of soil bacteria. Ecotoxicol. Environ. Saf. 2018, 147, 455–460. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, Part 3. Chemical Methods. Soil Science Society of America Book Series Number 5; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Franklin, A.M. Analysis of Four Human Antibiotics and Antibiotic Resistant Bacteria in Soil and Water Impacted by Wastewater Treatment Plant Effluent. Master’s Thesis, Pennsylvania State University, University Park, PA, USA, 2015. Available online: https://etda.libraries.psu.edu/files/final_submissions/10416 (accessed on 7 April 2024).
- Franklin, A.M. Influence of Wastewater Reuse on the Occurrence of Antibiotics, Antibiotic Resistant Bacteria, and Toxicological Impacts in the Environment. Ph.D. Dissertation, Pennsylvania State University, University Park, PA, USA, 2019. Available online: https://etda.libraries.psu.edu/files/final_submissions/20042 (accessed on 7 April 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franklin, A.M.; Kariyawasam, S.; Andrews, D.M.; McLain, J.E.; Watson, J.E. Presence of Antimicrobial-Resistant Bacteria and Resistance Genes in Soil Exposed to Wastewater Treatment Plant Effluent. Sustainability 2024, 16, 7022. https://doi.org/10.3390/su16167022
Franklin AM, Kariyawasam S, Andrews DM, McLain JE, Watson JE. Presence of Antimicrobial-Resistant Bacteria and Resistance Genes in Soil Exposed to Wastewater Treatment Plant Effluent. Sustainability. 2024; 16(16):7022. https://doi.org/10.3390/su16167022
Chicago/Turabian StyleFranklin, Alison M., Subhashinie Kariyawasam, Danielle M. Andrews, Jean E. McLain, and John E. Watson. 2024. "Presence of Antimicrobial-Resistant Bacteria and Resistance Genes in Soil Exposed to Wastewater Treatment Plant Effluent" Sustainability 16, no. 16: 7022. https://doi.org/10.3390/su16167022
APA StyleFranklin, A. M., Kariyawasam, S., Andrews, D. M., McLain, J. E., & Watson, J. E. (2024). Presence of Antimicrobial-Resistant Bacteria and Resistance Genes in Soil Exposed to Wastewater Treatment Plant Effluent. Sustainability, 16(16), 7022. https://doi.org/10.3390/su16167022