Assessing the Influence of Open Innovation among Chinese Cities on Enterprise Carbon Emissions
Abstract
1. Introduction
2. Literature Review and Theoretical Mechanism
2.1. Literature Review
2.2. Theoretical Mechanism
3. Model and Variables
3.1. Setting a Model
3.2. Variable Description
- (1)
- The dependent variable: Carbon emission intensity of enterprise (intecoo2). Constrained by data limitations, current studies lack continuous variable data to measure Chinese carbon emissions. To measure intecoo2, this study divides the carbon dioxide emissions of an enterprise by the main business revenue of the enterprise [49]. However, the vast majority of Chinese enterprises have not directly disclosed their carbon dioxide emissions, and this study estimates them approximately by industrial energy consumption. The calculation formula is as follows:
- (2)
- Core explanatory variable: Open innovation (opi1). This study uses cooperative patent applications to measure the level of open innovation between cities. The specific identification process is as follows:
- (3)
- Control variables. This study has two control variables: enterprise and city. Here, there are 6 variables at the enterprise level and 4 variables at the city level, as shown in Table 1.
3.3. Data Sources and Descriptive Statistical Analysis
3.4. Correlation Analysis
4. Empirical Analysis
4.1. Benchmark Regression
4.2. Endogeneity Regression
4.3. Restricted Sample Regression
5. Mechanism Verification
5.1. Transaction Costs
5.2. Industrial Structure
6. Heterogeneity Analysis
6.1. Equity Nature
6.2. Enterprise Size
6.3. Polluting Industrial Enterprises
6.4. Geographical Location
7. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chesbrough, H.W. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Boston, MA, USA, 2003. [Google Scholar]
- Stefan, I.; Bengtsson, L. Unravelling appropriability mechanisms and openness depth effects on firm performance across stages in the innovation process. Technol. Forecast. Soc. 2017, 120, 252–260. [Google Scholar] [CrossRef]
- Chesbrough, H. The Logic of Open Innovation: Managing Intellectual Property. Calif. Manag. Rev. 2003, 45, 33–58. [Google Scholar] [CrossRef]
- Dahlander, L.; Gann, D.M. How open is innovation? Res. Policy 2010, 39, 699–709. [Google Scholar] [CrossRef]
- Michelino, F.; Cammarano, A.; Lamberti, E.; Caputo, M. Measurement of Open Innovation through Intellectual Capital Flows: Framework and Application. Int. J. Intell. Enterp. 2014, 2, 213–235. [Google Scholar] [CrossRef]
- Brockman, P.; Khurana, I.K.; Zhong, R.I. Societal Trust and Open Innovation. Res. Policy 2018, 47, 2048–2065. [Google Scholar] [CrossRef]
- Kogut, B.; Zander, U. Knowledge of the firm, combinative capabilities, and the replication of technology. Organ. Sci. 1992, 3, 383–397. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.P.; Shuen, A. Dynamic capabilities and strategic management. Strategic. Manag. J. 1997, 7, 509–533. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Su, S.; Su, Y. How green technological innovation ability influences enterprise competitiveness. Technol. Soc. 2019, 59, 101136. [Google Scholar] [CrossRef]
- Liu, F.; Lai, K.; He, C. Open innovation and market value: An extended resource-based view. IEEE Trans. Eng. Manag. 2022, 99, 1–14. [Google Scholar] [CrossRef]
- Fang, L.; Tang, H.; Mou, M. Innovation-driven development and urban carbon emission reduction: A quasi-natural experiment in China. Environ. Sci. Pollut. Res. 2022, 30, 8002–8019. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Jiang, W.; Chen, H. Innovative urban design for low-carbon sustainable development: Evidence from China’s innovative city pilots. Sustain. Dev. 2023, 31, 698–715. [Google Scholar] [CrossRef]
- You, X.; Chen, Z. Interaction and mediation effects of economic growth and innovation performance on carbon emissions: Insights from 282 Chinese cities. Sci. Total Environ. 2022, 831, 154910. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Peng, Y.L.; Ma, C.Q.; Shen, B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 2017, 100, 18–28. [Google Scholar] [CrossRef]
- Shang, Y.; Raza, S.A.; Huo, Z.; Shahzad, U.; Zhao, X. Does enterprise digital transformation contribute to the carbon emission reduction? Micro-level evidence from China. Int. Rev. Econ. Financ. 2023, 86, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X. Industrial agglomeration, technological innovation, and carbon productivity: Evidence from China. Resour. Conserv. Recycl. 2021, 166, 105330. [Google Scholar] [CrossRef]
- Fang, G.; Gao, Z.; Wang, L.; Tian, L. How does green innovation drive urban carbon emission efficiency?—Evidence from the Yangtze River Economic Belt. J. Clean. Prod. 2022, 375, 134196. [Google Scholar] [CrossRef]
- Xu, L.; Fan, M.; Yang, L.; Shao, S. Heterogeneous green innovations and carbon emission performance: Evidence at China’s city level. Energy Econ. 2021, 99, 105269. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model. Technol. Forecast. Soc. 2022, 176, 121434. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Z.; Qian, Z.; Zheng, L.; Fan, S.; Zuo, S. Is cooperative green innovation better for carbon reduction? Evidence from China. J. Clean. Prod. 2023, 394, 136400. [Google Scholar] [CrossRef]
- Li, W.; Xu, J.; Ostic, D.; Yang, J.; Zhu, L. Why low-carbon technological innovation hardly promotes energy efficiency in China?–Based on spatial econometric method and machine learning. Comput. Ind. Eng. 2021, 160, 107566. [Google Scholar] [CrossRef]
- Li, F.; Xu, X.; Li, Z.; Du, P.; Ye, J. Can low-carbon technological innovation truly improve enterprise performance? The case of Chinese manufacturing companies. J. Clean. Prod. 2021, 293, 125949. [Google Scholar] [CrossRef]
- Liu, H.; Fan, L.; Shao, Z. Threshold effects of energy consumption, technological innovation, and supply chain management on enterprise performance in China’s manufacturing industry. J. Environ. Manag. 2021, 300, 113687. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, Z.; Zhao, X. Does innovative city construction improve urban carbon unlocking efficiency? Evidence from China. Sustain. Cities Soc. 2023, 92, 104494. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Zhu, J.; Jiang, P.; Lin, H.; Cai, Z.; Huang, H. Achieving co-benefits by implementing the low-carbon city pilot policy in China: Effectiveness and efficiency. Environ. Technol. Innov. 2023, 30, 103137. [Google Scholar] [CrossRef]
- Ren, H.; Gu, G.; Zhou, H. Assessing the low-carbon city pilot policy on carbon emission from consumption and production in China: How underlying mechanism and spatial spillover effect? Environ. Sci. Pollut. Res. 2022, 29, 71958–71977. [Google Scholar] [CrossRef]
- Han, F.; Xie, R.; Lu, Y.; Fang, J.; Liu, Y. The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities. J. Clean. Prod. 2018, 172, 1096–1110. [Google Scholar] [CrossRef]
- Zhao, J.; Shahbaz, M.; Dong, X.; Dong, K. How does financial risk affect global CO2 emissions? The role of technological innovation. Technol. Forecast. Soc. 2021, 168, 120751. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y. Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Sci. Total Environ. 2020, 726, 138574. [Google Scholar] [CrossRef]
- He, A.; Xue, Q.; Zhao, R.; Wang, D. Renewable energy technological innovation, market forces, and carbon emission efficiency. Sci. Total Environ. 2021, 796, 148908. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wang, J.; Lin, S. Impact of technological innovation on carbon emissions in China’s logistics industry: Based on the rebound effect. J. Clean. Prod. 2022, 377, 134371. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, T.; Feng, Q. Capital allocation efficiency, technological innovation and vehicle carbon emissions: Evidence from a panel threshold model of Chinese new energy vehicles enterprises. Sci. Total Environ. 2021, 784, 147104. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Song, Y.; Fan, X.; Zhu, Y.; Zhang, C. Can industry-university-research collaborative innovation efficiency reduce carbon emissions? Technol. Forecast. Soc. 2020, 157, 120094. [Google Scholar] [CrossRef]
- Cetorelli, N.; Gambera, M. Banking Market Structure, Financial Dependence, and Growth: International Evidence from Industry Data. J. Financ. 2002, 56, 617–648. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Hitt, L.M. Beyond computation: Information technology, organizational transformation and business performance. J. Econ. Perspect. 2000, 14, 23–48. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Automation and new tasks: How technology displaces and reinstates labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
- Woerdman, E. Emissions trading and transaction costs: Analyzing the flaws in the discussion. Ecol. Econ. 2001, 38, 293–304. [Google Scholar] [CrossRef]
- Betz, R.; Sanderson, T.; Ancev, T. In or out: Efficient inclusion of installations in an emissions trading scheme? J. Regul. Econ. 2010, 37, 162–179. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Fan, Y. Transaction costs, market structure and efficient coverage of emissions trading scheme: A microlevel study from the pilots in China. Appl. Energy 2018, 220, 657–671. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, M.; Meng, S. Corporate transaction costs and corporate green total factor productivity. Financ. Res. Lett. 2024, 61, 105041. [Google Scholar] [CrossRef]
- Rocchetta, S.; Mina, A. Technological coherence and the adaptive resilience of regional economies. Reg. Stud. 2019, 53, 1421–1434. [Google Scholar] [CrossRef]
- Castaldi, C.; Frenken, K.; Los, B. Related variety, unrelated variety and technological breakthroughs: An analysis of US state-level patenting. Reg. Stud. 2015, 49, 767–781. [Google Scholar] [CrossRef]
- Boschma, R. Towards an evolutionary perspective on regional resilience. Reg. Stud. 2015, 49, 733–751. [Google Scholar] [CrossRef]
- Bencivenga, V.R.; Smith, B.D.; Starr, R.M. Transactions costs, technological choice, and endogenous growth. J. Econ. Theory 1995, 67, 153–177. [Google Scholar] [CrossRef]
- Wang, B.; Yu, M.; Zhu, Y.; Bao, P. Unveiling the driving factors of carbon emissions from industrial resource allocation in China: A spatial econometric perspective. Energy Policy. 2021, 158, 112557. [Google Scholar] [CrossRef]
- You, J.; Zhang, W.; Lin, W.; Chen, J.; Huang, Y.; Jiang, L. The impact of technological progress and industrial structure optimization on manufacturing carbon emissions: A new perspective based on interaction. Environ. Dev. Sustain. 2024, 24, 1–32. [Google Scholar] [CrossRef]
- Chapple, L.; Clarkson, P.M.; Gold, D.L. The Cost of Carbon: Capital Market Effects of the Proposed Emission Trading Scheme (ETS). Abacus 2013, 49, 1–33. [Google Scholar] [CrossRef]
- Lin, B.; Jia, Z. How does tax system on energy industries affect energy demand, CO2 emissions, and economy in China? Energ. Econ. 2019, 84, 104496. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, X.; Lai, J. Does Confucian culture influence corporate R&D investment? Evidence from Chinese private firms. Financ. Res. Lett. 2021, 40, 101719. [Google Scholar] [CrossRef]
- Gan, C.; Zheng, R.; Yu, D. An empirical study on the effects of industrial structure on economic growth and fluctuations in China. Econ. Res. J. 2011, 46, 4–16. [Google Scholar] [CrossRef]





| Variable Type | Variable Type | Variable Representation Symbol | Explanation |
|---|---|---|---|
| The dependent variable | Carbon emission intensity of the enterprise | lnintencoo2 | CO2 emissions of enterprise/main business income of the enterprise |
| The core explanatory variables | Level of open innovation | lnopi1 | Natural logarithm of (total word frequency of joint patent authorization + 1) |
| The control variables | Enterprise scale | lnsize | Natural logarithm of total assets of enterprise |
| Cash flow ratio of enterprise | cflow | Net cash flow generated from business activities of enterprise/total assets of enterprise | |
| Enterprise nature | govcon | If it is a state-owned enterprise, it is defined as 1, otherwise, it is defined as 0. | |
| Growth rate of enterprises | tagr | Growth rate of total assets of the enterprise | |
| Years of listing | lnage | Natural logarithm of (sample year of enterprise—year of listing) | |
| Concentration of enterprise equity | top10 | Shareholding ratio of the top ten shareholders of the enterprise | |
| Level of foreign investment in cities | fdi | Foreign direct investment in cities/urban GDP | |
| Advancement of urban industrial structure | indu | Added value of urban tertiary industry/added value of secondary industry | |
| Urbanization rate | urban | Urban population/regional total population | |
| Level of urban economic development | lnrgdp | Natural logarithm of urban GDP |
| Variable | N | Mean | S.D. | Min | Max |
|---|---|---|---|---|---|
| lnintenco | 10,747 | 3.1635 | 1.1242 | 0.3874 | 5.9787 |
| lnopi1 | 10,747 | 7.0079 | 1.3925 | 1.0986 | 10.3198 |
| lnsize | 10,747 | 22.1138 | 1.1946 | 16.1613 | 27.5470 |
| cflow | 10,747 | 0.0498 | 0.1306 | −10.2162 | 2.2216 |
| govcon | 10,747 | 0.2711 | 0.4445 | 0.0000 | 1.0000 |
| tagr | 10,747 | 0.1424 | 0.4125 | −0.9661 | 22.5489 |
| lnage | 10,747 | 2.1071 | 0.7599 | 0.6931 | 3.4657 |
| top10 | 10,747 | 0.4170 | 0.1896 | 0.1011 | 0.9849 |
| fdi | 10,747 | 0.0212 | 0.0109 | 0.0001 | 0.0796 |
| indus | 10,747 | 1.4992 | 0.8824 | 0.6112 | 5.2440 |
| urban | 10,747 | 68.6936 | 10.9000 | 35.7300 | 89.6000 |
| lnrgdp | 10,747 | 11.6015 | 0.4249 | 9.4548 | 13.0557 |
| EV: lnintencoo2 | |||||
|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | |
| lnopi1 | −0.0542 *** | −0.0698 *** | −0.0503 *** | −0.0414 *** | −0.0429 *** |
| (0.0050) | (0.0055) | (0.0094) | (0.0090) | (0.0089) | |
| lnsize | 0.0141 *** | 0.0142 *** | |||
| (0.0039) | (0.0039) | ||||
| cflow | −0.2030 * | −0.2036 * | |||
| (0.1226) | (0.1228) | ||||
| govcon | 0.0684 *** | 0.0682 *** | |||
| (0.0124) | (0.0124) | ||||
| tagr | −0.0245 ** | −0.0249 ** | |||
| (0.0097) | (0.0099) | ||||
| lnage | 0.0622 *** | 0.0616 *** | |||
| (0.0071) | (0.0070) | ||||
| top10_HHI | 0.0268 | 0.0265 | |||
| (0.0231) | (0.0230) | ||||
| fdi | −0.7671 | ||||
| (0.5204) | |||||
| indus | 0.0541 | ||||
| (0.0373) | |||||
| urban | 0.0104 *** | ||||
| (0.0035) | |||||
| lnrgdp | −0.0192 | ||||
| (0.0187) | |||||
| Constant | 3.5434 *** | 3.6527 *** | 3.5146 *** | 2.9921 *** | 2.4439 *** |
| (0.0335) | (0.0370) | (0.0651) | (0.1002) | (0.3234) | |
| FEindu | YES | YES | YES | YES | YES |
| FEyear | NO | YES | YES | YES | YES |
| FEcity | NO | NO | YES | YES | YES |
| Observations | 10,747 | 10,747 | 10,733 | 10,733 | 10,733 |
| R-squared | 0.9466 | 0.9516 | 0.9537 | 0.9580 | 0.9581 |
| Replacing Explanatory Variables | Controlling the Cooperative Effect | IV1 = L.lnopi1 | IV2 = lnshc × year | |
|---|---|---|---|---|
| (1) | (2) | (3) | (4) | |
| lnopi1 | −0.0407 *** (0.0080) | −0.0785 *** (0.0219) | −0.4907 *** (0.1607) | |
| lnopi2 | −0.0337 *** (0.0102) | |||
| Controls | YES | YES | YES | YES |
| FEindu | YES | YES | YES | YES |
| FEyear | YES | YES | YES | YES |
| FEcity | YES | YES | YES | YES |
| N | 10,733 | 10,721 | 7736 | 10,683 |
| R2 | 0.9581 | 0.9650 | 0.0331 | −0.1126 |
| First stage regression | ||||
| IV | 0.286 *** (0.016) | 0.011 *** (0.002) | ||
| F | 338.61 *** | 25.89 *** | ||
| Kleibergen–Paap rk LM statistic | 475.83 *** | 26.58 *** | ||
| Cragg–Donald Wald F statistic | 849.06 *** | 51.39 *** | ||
| Kleibergen–Paap rk Wald F statistic | 338.61 *** | 25.89 *** | ||
| EV: lnintencoo2 | |||||||
|---|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | |
| lnopi1 | −0.0423 *** | −0.0390 *** | −0.0429 *** | −0.0429 *** | −0.0429 *** | 0.0301 | |
| (0.0096) | (0.0096) | (0.0138) | (0.0103) | (0.0118) | (0.0253) | ||
| lnopi1_w | −0.0290 *** | ||||||
| (0.0084) | |||||||
| lnopi1 × lnopi1 | −0.0053 *** | ||||||
| (0.0018) | |||||||
| Constant | 2.8980 *** | 3.1841 *** | 2.4439 *** | 2.4439 *** | 2.4439 *** | 2.8250 *** | 2.3991 *** |
| (0.3138) | (0.3487) | (0.5858) | (0.2444) | (0.5073) | (0.0955) | (0.3262) | |
| FEindu | YES | YES | YES | YES | YES | YES | YES |
| FEyear | YES | YES | YES | YES | YES | YES | YES |
| FEcity | YES | YES | YES | YES | YES | YES | YES |
| Observations | 7261 | 8921 | 10,733 | 10,733 | 10,733 | 10,733 | 10,733 |
| R-squared | 0.9635 | 0.9646 | 0.9581 | 0.9581 | 0.9581 | 0.9640 | 0.9582 |
| Cost1 | Cost2 | Cost2 | Cost2 | Ais | Ais | Ais | Ris1 | Ris2 | |
|---|---|---|---|---|---|---|---|---|---|
| All | All | Small E | Big E | All | Center C | NonCenter C | Center C | NonCenter C | |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
| lnopi1 | 0.0014 | −0.0067 ** | −0.0101 * | −0.0029 ** | 0.0239 *** | 0.0380 *** | −0.0596 *** | −0.0049 ** | 0.0105 *** |
| (0.0012) | (0.0029) | (0.0064) | (0.0014) | (0.0088) | (0.0111) | (0.0103) | (0.0022) | (0.0040) | |
| Constant | 0.2297 *** | 0.2703 ** | 0.1344 | 0.2744 | −1.1726 *** | −2.9419 *** | −0.4122 * | −0.2836 *** | −0.3754 |
| (0.0689) | (0.1136) | (0.1198) | (0.2107) | (0.2502) | (0.6153) | (0.2340) | (0.0665) | (0.2429) | |
| Observations | 10,733 | 10,733 | 4696 | 6015 | 10,623 | 4065 | 6558 | 6655 | 4073 |
| R-squared | 0.2869 | 0.0888 | 0.1055 | 0.1529 | 0.9835 | 0.8714 | 0.9867 | 0.8709 | 0.8924 |
| FEindu | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| FEyear | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| FEcity | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Equity Nature | Enterprise Size | Polluting Industrial Enterprises | Geographical Location | |
|---|---|---|---|---|
| (1) | (2) | (3) | (4) | |
| lnopi1 | −0.0572 *** | −0.3191 *** | −0.0276 *** | −0.0345 *** |
| (0.0098) | (0.0570) | (0.0074) | (0.0061) | |
| govcon | −0.1838 *** | 0.0667 *** | 0.0566 *** | 0.0589 *** |
| (0.0459) | (0.0123) | (0.0116) | (0.0118) | |
| lnopi1 × govcon | 0.0358 *** | |||
| (0.0065) | ||||
| lnsize | 0.0130 *** | −0.0760 *** | 0.0147 *** | 0.0145 *** |
| (0.0039) | (0.0178) | (0.0037) | (0.0038) | |
| lnopi1 × lnsize | 0.0124 *** | |||
| (0.0025) | ||||
| lnopi1 × pollute | −0.0384 *** | |||
| (0.0112) | ||||
| lnopi1 × central | −0.0057 *** | |||
| (0.0020) | ||||
| Constant | 2.7523 *** | 4.4204 *** | 2.2676 *** | 2.3007 *** |
| (0.3265) | (0.4970) | (0.2961) | (0.2988) | |
| FEindu | YES | YES | YES | YES |
| FEyear | YES | YES | YES | YES |
| FEcity | YES | YES | YES | YES |
| Observations | 10,733 | 10,733 | 10,747 | 10,747 |
| R-squared | 0.9582 | 0.9583 | 0.9572 | 0.9572 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wan, L.; Cheng, Q.; Shang, Y. Assessing the Influence of Open Innovation among Chinese Cities on Enterprise Carbon Emissions. Sustainability 2024, 16, 7017. https://doi.org/10.3390/su16167017
Chen X, Wan L, Cheng Q, Shang Y. Assessing the Influence of Open Innovation among Chinese Cities on Enterprise Carbon Emissions. Sustainability. 2024; 16(16):7017. https://doi.org/10.3390/su16167017
Chicago/Turabian StyleChen, Xiaoyan, Liwen Wan, Qunqun Cheng, and Yuping Shang. 2024. "Assessing the Influence of Open Innovation among Chinese Cities on Enterprise Carbon Emissions" Sustainability 16, no. 16: 7017. https://doi.org/10.3390/su16167017
APA StyleChen, X., Wan, L., Cheng, Q., & Shang, Y. (2024). Assessing the Influence of Open Innovation among Chinese Cities on Enterprise Carbon Emissions. Sustainability, 16(16), 7017. https://doi.org/10.3390/su16167017

