Development and Techno-Economic Analysis of a Tracked Indirect Forced Solar Dryer Integrated Photovoltaic System for Drying Tomatoes
Abstract
:1. Introduction
- Design and conduct performance assessments of a PV-integrated SD based on IoT technology and an automatic solar collector tracker (ASCT) for drying the most popular TF variety in Luxor Governorate, Luxor, Egypt, and decreasing the MC to a safe level for storage and handling.
- Study some important parameters related to DR and drying time, such as the type of SD, SR intensity, AV, and hot AT.
- Perform an economic analysis of both investigated SDs.
2. Materials and Methods
2.1. Design Equations of the SD
2.1.1. Amount of Moisture to Be Removed ()
2.1.2. Heat Quantity
2.1.3. The SC’s Surface Area
2.1.4. Determination of Angle of Inclination (Tilt Angle)
2.2. Description of the SDs
2.2.1. DCh and Trays
2.2.2. Description of the SC
Fixed SC
Automatic SC Tracker (ASCT)
2.2.3. Design of Smart Monitoring Unit and Solar Tracking Circuit
2.2.4. Operating Algorithm of the ASCT
2.2.5. AT and RH Measuring Unit
2.3. Experimental Procedure and Uncertainties
2.4. Performance Analysis of the SDs
2.4.1. Moisture Content (MC)
2.4.2. Drying Rate (DR)
2.4.3. Thermal Balance of PV System
2.4.4. Thermal Analysis of the Solar Collectors
2.4.5. Economic Analysis
2.5. Statistical Analysis
3. Results and Discussions
3.1. Initial MC
3.2. Estimation of Drying Weather Conditions
3.3. Effect of AV on MC and DR
3.4. Effect of ST on MC and DR
3.5. Thermal Balance of PV System
3.6. Thermal Analysis of SC
3.7. Economic Analysis
4. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviation
Nomenclature | ||||
Mi | Initial moisture content of TF sample | The savings obtained from the SD after the first year | ||
Mf | Final moisture content of TF sample | The savings obtained from the SD per day | ||
Ww | Initial total weight of TF sample, kg | The drying cost per kg of TF | ||
ΔT | Change in air temperature inside the drying room | The amount of product dried inside the dryer per year | ||
Wd | Final weight of tomato sample, g | The amount of TF dried inside the SD per batch | ||
Cp | Specific heat of tomato, kJ/kg.K | D | The number of days the SD operates in a year | |
Mw | Amount of moisture removed from TF, g | The drying period per batch | ||
Latent heat of vaporization, (J/kg), of water | The cost of fresh TF per kg of dried product | |||
Open-circuit voltage, V | The cost of fresh TF | |||
η | Efficiency of the glass cover,% | The quantity of fresh TF loaded inside the SD | ||
The savings obtained from the SD per batch | Savings obtained per kg of dried product The selling price of dried TF per kg | |||
Ac | The surface area of the solar collector, m2 | Abbreviation | ||
Total sunshine hours available on a particular day | TS | Tomato slice | ||
n | The operating life | TF | Tomato fruit | |
Total heat quantity absorbed by the solar collector, W | RH | Relative humidity | ||
N | The payback time | MC | Moisture content | |
Lat ∅ | The latitude of the collector location, truly facing south | SD | Solar dryer | |
The inflation rate | SC | Solar collector | ||
Short-circuit current, A | IoT | Internet of things | ||
Acoll | SC surface area, m2 | OSD | Open-sun drying | |
ma | Air mass flow rate, kg/s | DR | Drying rate | |
ua | Airspeed, m/s | MC | Moisture content | |
ρa | Air density, kg/m3 | SR | Solar radiation | |
Inscoll | Solar intensity, W/m2 | ASCT | Automatic solar collector tracker | |
Independent variable affecting the measurement | FSC | Fixed solar collector | ||
The annualized investment cost | PV | Photovoltaic | ||
The annualized capital cost | TE | Thermal efficiency | ||
The maintenance costs | DT | Drying time, h | ||
The salvage value of the SD | DCh | Drying chamber | ||
The total capital cost of the SD | DP | Drying process | ||
It | Total solar radiation, W/m2 | AV | Air velocity |
References
- Global Production of Vegetables in 2022. Available online: https://www.statista.com/statistics/264065/global-production-of-vegetables-by-type/ (accessed on 16 July 2024).
- Wang, S.; Qiang, Q.; Xiang, L.; Fernie, A.R.; Yang, J. Targeted Approaches to Improve Tomato Fruit Taste. Hortic. Res. 2023, 10, uhac229. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, P.D.; Gharat, S.A.; Jozwiak, A.; Barbole, R.; Heinicke, S.; Almekias-Siegl, E.; Meir, S.; Rogachev, I.; Connor, S.E.O.; Giri, A.P. A BAHD-Type Acyltransferase Concludes the Biosynthetic Pathway of Non-Bitter Glycoalkaloids in Ripe Tomato Fruit. Nat. Commun. 2023, 14, 4540. [Google Scholar] [CrossRef] [PubMed]
- Elwakeel, A.E.; Gameh, M.A.; Eissa, A.S.; Mostafa, M.B. Recent Advances in Solar Drying Technology for Tomato Fruits: A Comprehensive Review. Int. J. Appl. Energy Syst. 2024, 6, 37–44. [Google Scholar] [CrossRef]
- Mahmoud, W.A.E.-M.; Elwakeel, A. elshawadfy Study on Some Properties of Tomato Fruits for Natural Sun Drying. J. Soil. Sci. Agric. Eng. 2021, 12, 763–767. [Google Scholar]
- Naeem, M.; Zhao, W.; Ahmad, N.; Zhao, L. Beyond Green and Red: Unlocking the Genetic Orchestration of Tomato Fruit Color and Pigmentation. Funct. Integr. Genom. 2023, 23, 243. [Google Scholar] [CrossRef] [PubMed]
- Corzo, O.; Bracho, N.; Alvarez, C. Water Effective Diffusion Coefficient of Mango Slices at Different Maturity Stages during Air Drying. J. Food Eng. 2008, 87, 479–484. [Google Scholar] [CrossRef]
- El-Mesery, H.S.; Farag, H.A.; Kamel, R.M.; Alshaer, W.G. Convective Hot Air Drying of Grapes: Drying Kinetics, Mathematical Modeling, Energy, Thermal Analysis. J. Therm. Anal. Calorim. 2023, 148, 6893–6908. [Google Scholar] [CrossRef]
- Georgaki, E.; Nifakos, K.; Kotsiras, A.; Fanourakis, D.; Tsaniklidis, G.; Delis, C.; Spiliopoulos, I.K. Comparison of Nutrient Composition and Antioxidant Activity of Hydroponically Grown Commercial and Traditional Greek Tomato Cultivars. Horticulturae 2023, 9, 163. [Google Scholar] [CrossRef]
- Owureku-Asare, M.; Ambrose, R.P.K.; Oduro, I.; Tortoe, C.; Saalia, F.K. Consumer Knowledge, Preference, and Perceived Quality of Dried Tomato Products in Ghana. Food Sci. Nutr. 2017, 5, 617–624. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Life Cycle Analysis of Organic Tomato Production and Supply in Sweden. J. Clean. Prod. 2018, 196, 635–643. [Google Scholar] [CrossRef]
- Al Maiman, S.A.; Albadr, N.A.; Almusallam, I.A.; Al-Saád, M.J.; Alsuliam, S.; Osman, M.A.; Hassan, A.B. The Potential of Exploiting Economical Solar Dryer in Food Preservation: Storability, Physicochemical Properties, and Antioxidant Capacity of Solar-Dried Tomato (Solanum Lycopersicum) Fruits. Foods 2021, 10, 734. [Google Scholar] [CrossRef] [PubMed]
- Elwakeel, A.E.; Ahmed, S.F.; Zein, A.M.; Nasrat, L. Design and Evaluation of A Self-Propelled Field Sprayer to Be Operated and Controlled Remotely. Al-Azhar J. Agric. Eng. 2022, 2, 40–52. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, A.; Huang, G.; Yang, M.; Li, D.; Teng, M.; Han, D. Enhanced efficiency with CDCA co-adsorption for dye-sensitized solar cells based on metallosalophen complexes. Sol. Energy 2020, 209, 316–324. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, M.; Guo, M.; Deng, J.; Du, Q.; Wei, W.; Ashraf Talesh, S.S. Optimizing solar-driven multi-generation sys-tems: A cascade heat recovery approach for power, cooling, and freshwater production. Appl. Therm. Eng. 2024, 240, 122214. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; Wang, M.; Deng, J.; Cai, Y.; Wei, W.; Guo, M. Optimization, validation and analyses of a hybrid PV-battery-diesel power system using enhanced electromagnetic field optimization algorithm and ε-constraint. Energy Rep. 2024, 11, 5335–5349. [Google Scholar] [CrossRef]
- Poonia, S.; Singh, A.K.; Santra, P.; Mishra, D. Design, Development and Performance Evolution of A Low-Cost Solar Dryer. In Concentrated Solar Thermal Energy Technologies: Recent Trends and Applications; Springer: Singapore, 2018; pp. 219–223. [Google Scholar]
- Shimpy; Kumar, M.; Kumar, A. Designs, Performance and Economic Feasibility of Domestic Solar Dryers. Food Eng. Rev. 2023, 15, 156–186. [Google Scholar] [CrossRef]
- ElGamal, R.; Kishk, S.; Al-Rejaie, S.; ElMasry, G. Incorporation of A Solar Tracking System for Enhancing the Performance of Solar Air Heaters in Drying Apple Slices. Renew. Energy 2021, 167, 676–684. [Google Scholar] [CrossRef]
- Samimi-Akhijahani, H.; Arabhosseini, A. Accelerating Drying Process of Tomato Slices in a PV-Assisted Solar Dryer Using a Sun Tracking System. Renew. Energy 2018, 123, 428–438. [Google Scholar] [CrossRef]
- Ghoniem, E.Y.; Gamea, G.R. Design and Evaluation of an Enhanced Solar Dryer Using Heat Storage Unit for Tomatoes Drying. Misr J. Agric. Eng. 2014, 31, 1025–1046. [Google Scholar] [CrossRef]
- Djebli, A.; Hanini, S.; Badaoui, O.; Boumahdi, M. A New Approach to the Thermodynamics Study of Drying Tomatoes in Mixed Solar Dryer. Sol. Energy 2019, 193, 164–174. [Google Scholar] [CrossRef]
- Bakry, R.S.; Khater, E.-S.G.; Bahnasawy, A.H.; Ali, S.A. Effect of Drying Methods on the Quality of Dried Tomatoes. Misr J. Agric. Eng. 2021, 38, 155–180. [Google Scholar]
- Ebadi, H.; Zare, D.; Ahmadi, M.; Chen, G. Performance of a Hybrid Compound Parabolic Concentrator Solar Dryer for Tomato Slices Drying. Sol. Energy 2021, 215, 44–63. [Google Scholar] [CrossRef]
- Chouikhi, H.; Amer, B.M.A. Performance Evaluation of an Indirect-Mode Forced Convection Solar Dryer Equipped with a PV/T Air Collector for Drying Tomato Slices. Sustainability 2023, 15, 5070. [Google Scholar] [CrossRef]
- Suherman, S.; Rilna, R.M.; Afriandi, N.; Susanto, E.E.; Hadiyanto, H. Drying of Tomato Slices Using Solar Drying Method. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2023; Volume 2667. [Google Scholar]
- Kumar, L.; Prakash, O.; Pandey, V.K.; Ahmad, A.; Das, B. Development of Finite-Element Model for Drying of Tomato Flakes under Passive Greenhouse Dryer: Experimental Validation and Optimization Potential. Energy Technol. 2024, 12, 2300920. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, O.; Kumar, A.; Hussain, M.S. Drying Kinetics and Performance Analysis of Thermal Storage-Based Hybrid Greenhouse Dryer for Uniform Drying of Tomato Flakes. J. Therm. Sci. Eng. Appl. 2023, 15, 50908. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, O. Performance evaluation of A Solar Greenhouse Dryer At Different Bed Conditions Under Passive Mode. J. Sol. Energy Eng. 2020, 142, 11006. [Google Scholar] [CrossRef]
- Dehshiri, S.S.H.; Firoozabadi, B. Comparison, Evaluation and Prioritization of Solar Photovoltaic Tracking Systems Using Multi Criteria Decision Making Methods. Sustain. Energy Technol. Assess. 2023, 55, 102989. [Google Scholar]
- Bhowmik, H.; Amin, R. Efficiency Improvement of Flat Plate Solar Collector Using Reflector. Energy Rep. 2017, 3, 119–123. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, L.; Zhang, H.; You, S.; Zhu, C. Numerical and Experimental investigation on a New Type of Compound Parabolic Concentrator Solar Collector. Energy Convers. Manag. 2016, 129, 11–22. [Google Scholar] [CrossRef]
- Zou, B.; Dong, J.; Yao, Y.; Jiang, Y. An Experimental investigation on a Small-Sized Parabolic Trough Solar Collector for Water Heating in Cold Areas. Appl. Energy 2016, 163, 396–407. [Google Scholar] [CrossRef]
- Chamsa-ard, W.; Sukchai, S.; Sonsaree, S.; Sirisamphanwong, C. Thermal Performance Testing of Heat Pipe Evacuated Tube with Compound Parabolic Concentrating Solar Collector by ISO 9806-1. Energy Procedia 2014, 56, 237–246. [Google Scholar] [CrossRef]
- Rittidech, S.; Donmaung, A.; Kumsombut, K. Experimental Study of the Performance of a Circular Tube Solar Collector with Closed-Loop Oscillating Heat-Pipe with Check Valve (CLOHP/CV). Renew. Energy 2009, 34, 2234–2238. [Google Scholar] [CrossRef]
- Wei, L.; Yuan, D.; Tang, D.; Wu, B. A Study on a Flat-Plate Type of Solar Heat Collector with an integrated Heat Pipe. Sol. Energy 2013, 97, 19–25. [Google Scholar] [CrossRef]
- Verma, S.K.; Sharma, K.; Gupta, N.K.; Soni, P.; Upadhyay, N. Performance Comparison of Innovative Spiral Shaped Solar Collector Design with Conventional Flat Plate Solar Collector. Energy 2020, 194, 116853. [Google Scholar] [CrossRef]
- Ramachandran, S.; Nene, A.A.; Suyambazhahan, S. integrated System of Flat Plate Collector and Scheffler Solar Concentrator for Enhancing Thermal Efficiency and Steam Generation Rate. Int. J. Ambient Energy 2022, 43, 3154–3163. [Google Scholar] [CrossRef]
- Das, M.; Akpinar, E.K. Determination of Thermal and Drying Performances of the Solar Air Dryer with Solar Tracking System: Apple Drying Test. Case Stud. Therm. Eng. 2020, 21, 100731. [Google Scholar] [CrossRef]
- Ismail, M.A.; Kreshnaveyashadev, A.; Ramanathan, L.; Idris, M.H.; Ananda-Rao, K.; Mazlan, M.; Fairuz, N. Improving the Performance of Solar Panels by the Used of Dual Axis Solar Tracking System with Mirror Reflection. J. Phys. Conf. Series 2020, 1432, 12060. [Google Scholar] [CrossRef]
- Sun, S.-C.; Wang, G.-J.; Chen, H. An efficient inverse approach for reconstructing time-and space-dependent heat flux of participating medium. Chin. Phys. B 2020, 29, 110202. [Google Scholar] [CrossRef]
- Sun, S.; Wang, G.; Chen, H. Application of Improved Decentralized Fuzzy inference Methods for Estimating the Thermal Boundary Condition of Participating Medium. Int. J. Therm. Sci. 2020, 149, 106216. [Google Scholar] [CrossRef]
- Sun, S.; Chang, Z.; Ji, Y.; Wang, G.; Wei, L. inverse Estimation of Transient Heat Flux Using Sequential Function Specification Method. Heat Transf. Eng. 2024, 45, 233–243. [Google Scholar] [CrossRef]
- Sun, S. Simultaneous Reconstruction of Thermal Boundary Condition and Physical Properties of Participating Medium. Int. J. Therm. Sci. 2021, 163, 106853. [Google Scholar] [CrossRef]
- Mohammed, I.A.; Al Dulaimi, M.A.K. An Economic Analysis of the Costs of Producing Tomato Under Greenhouse in Anbar Governorate for the Agricultural Season 2019-2020. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 904, p. 12061. [Google Scholar]
- ELkhadraoui, A.; Kooli, S.; Hamdi, I.; Farhat, A. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew. Energy 2015, 77, 1–8. [Google Scholar] [CrossRef]
- Singh, P.; Gaur, M.K. Environmental and Economic Analysis of Novel Hybrid Active Greenhouse Solar Dryer with Evacuated Tube Solar Collector. Sustain. Energy Technol. Assess. 2021, 47, 101428. [Google Scholar] [CrossRef]
- Saleem, A.; Iqbal, A.; Hayat, M.A.; Panjwani, M.K.; Mangi, F.H.; Larik, R.M. The Effect of Environmental Changes on the Efficiency of the PV System. Indones. J. Electr. Eng. Comput. Sci. 2020, 18, 558–564. [Google Scholar] [CrossRef]
- Breyer, C.; Koskinen, O.; Blechinger, P. Profitable Climate Change Mitigation: The Case of Greenhouse Gas Emission Reduction Benefits Enabled by Solar Photovoltaic Systems. Renew. Sustain. Energy Rev. 2015, 49, 610–628. [Google Scholar] [CrossRef]
- Ahmed, W.; Sheikh, J.A.; Farjana, S.H.; Mahmud, M.A.P. Defects impact on PV system GHG mitigation potential and climate change. Sustainability 2021, 13, 7793. [Google Scholar] [CrossRef]
- Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The Underestimated Potential of Solar Energy to Mitigate Climate Change. Nat. Energy 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Xu, Q.; Luo, Q.; Xuan, Y. MXene Reconciles Concurrent Enhancement of Thermal Conductivity and Mechanical Robustness of Sic-Based Thermal Energy Storage Composites. DeCarbon 2023, 1, 100005. [Google Scholar] [CrossRef]
- Koli, P.; Kumar, R.; Dayma, Y.; Dheerata; Jonwal, M. Graphite Counter Electrode Modified Tropaeolin-O Photo-Sensitized Photogalvanic Cells for Solar Power and Storage. EcoEnergy 2024, 2, 278–298. [Google Scholar]
- Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of Things (IoT): A literature review. J. Comput. Commun. 2015, 3, 164–173. [Google Scholar] [CrossRef]
- Senapaty, M.K.; Ray, A.; Padhy, N. IoT-enabled soil nutrient analysis and crop recommendation model for precision agriculture. Computers 2023, 12, 61. [Google Scholar] [CrossRef]
- Elwakeel, A.E.; Wapet, D.E.M.; Mahmoud, W.A.E.; Abdallah, S.E.; Mahmoud, M.M.; Ardjoun, S.A.E.M.; Tantawy, A.A. Design and Implementation of a PV-integrated Solar Dryer Based on internet of Things and Date Fruit Quality Monitoring and Control. Int. J. Energy Res. 2023, 2023, 7425045. [Google Scholar] [CrossRef]
- Rohith, M.; Sainivedhana, R.; Fatima, N.S. IoT Enabled Smart Farming and Irrigation System. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, india, 6–8 May 2021; pp. 434–439. [Google Scholar]
- Batuto, A.; Dejeron, T.B.; Cruz, P.D.; Samonte, M.J.C. e-poultry: An IoT poultry management system for small farms. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand, 16–21 April 2020; pp. 738–742. [Google Scholar]
- Elwakeel, A.E.; Mazrou, Y.S.A.; Eissa, A.S.; Okasha, A.M.; Elmetwalli, A.H.; Makhlouf, A.H.; Metwally, K.A.; Mahmoud, W.A. Design and Validation of a Variable-Rate Control Metering Mechanism and Smart Monitoring System for a High-Precision Sugarcane Transplanter. Agriculture 2023, 13, 2218. [Google Scholar] [CrossRef]
- Elwakeel, A.E.; Mohamed, S.M.A.; Tantawy, A.A.; Okasha, A.M.; Elsayed, S.; Elsherbiny, O.; Farooque, A.A.; Yaseen, Z.M. Design, construction and field testing of a manually feeding semiautomatic sugarcane dud chipper. Sci. Rep. 2024, 14, 5373. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Nasrat, L.S.; Badawy, M.E.; Mbadjoun Wapet, D.E.; Ourapi, M.A.; El-Messery, T.M.; Aleksandrova, I.; Mahmoud, M.M.; Hussein, M.M.; Elwakeel, A.E. A new automatic sugarcane seed cutting machine based on internet of things technology and RGB color sensor. PLoS ONE 2024, 19, e0301294. [Google Scholar] [CrossRef] [PubMed]
- Nasrat, L.S.; Badawy, M.E.; Ourapi, M.A.; Elwakeel, A.E. Some Engineering Factors Affecting the Performance of an Automatic Sugarcane Seed Cutting Machine 1- introduction. Aswan Univ. J. Environ. Stud. 2024, 5, 87–100. [Google Scholar] [CrossRef]
- Elwakeel, A.E.; Mazrou, Y.S.A.; Tantawy, A.A.; Okasha, A.M. Multi-Purpose, Automatic System-Based RGB Color Sensor for Sorting Fruits. Agriculture 2023, 13, 1824. [Google Scholar] [CrossRef]
- Vijayakumar, N.; Ramya, R. The Real time monitoring of water quality in IoT environment. In Proceedings of the 2015 international Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015; pp. 1–5. [Google Scholar]
- Eissa, A.S.; Gameh, M.A.; Mostafa, M.B.; Elwakeel, A.E. Some Engineering Factors Affecting Utilization of Solar Energy in Drying Tomato Fruits Introduction. Aswan Univ. J. Environ. Studies 2024, 5, 52–68. [Google Scholar] [CrossRef]
- Etim, P.J.; Eke, A.B.; Simonyan, K.J. Design and Development of an Active indirect Solar Dryer for Cooking Banana. Sci. African 2020, 8, e00463. [Google Scholar] [CrossRef]
- Dissa, A.O.; Desmorieux, H.; Bathiebo, J.; Koulidiati, J. A Comparative Study of Direct and indirect Solar Drying of Mango. Glob. J. Pure Appl. Sci. 2011, 17, 273–294. [Google Scholar]
- Eke, A.B.; Simonyan, K.J. Development of Small Scale Direct Mode Passive Solar Dryers for Effective Drying of Tomato. J. Appl. Agric. Res. 2014, 6, 111–119. [Google Scholar]
- Babar, O.A.; Tarafdar, A.; Malakar, S.; Arora, V.K.; Nema, P.K. Design and performance Evaluation of A Passive Flat Plate Collector Solar Dryer for Agricultural Products. J. Food Process Eng. 2020, 43, e13484. [Google Scholar] [CrossRef]
- Eke, A.B. Prediction of Optimum Angle of inclination for Flat Plate Solar Collector in Zaria, Nigeria. Agric. Eng. Int. CIGR J. 2011, 13, 1–7. [Google Scholar]
- Gulcimen, F.; Karakaya, H.; Durmus, A. Drying of Sweet Basil with Solar Air Collectors. Renew. Energy 2016, 93, 77–86. [Google Scholar] [CrossRef]
- AR, U.S.; Veeramanipriya, E. Performance Evaluation, Morphological Properties and Drying Kinetics of Untreated Carica Papaya Using Solar Hybrid Dryer integrated with Heat Storage Material. J. Energy Storage 2022, 55, 105679. [Google Scholar] [CrossRef]
- Rulazi, E.L.; Marwa, J.; Kichonge, B.; Kivevele, T.T. Techno-economic Analysis of A Solar-Assisted Heat Pump Dryer for Drying Agricultural Products. Food Sci. Nutr. 2023, 12, 952–970. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Tesfaye, A.; Habtu, N.G. Fabrication and Performance Evaluation of Solar Tunnel Dryer for Ginger Drying. Int. J. Photoenergy 2022, 2022, 6435080. [Google Scholar] [CrossRef]
- Etim, P.J.; Eke, A.B.; Simonyan, K.J. Effect of Air inlet Duct Features and Grater Thickness on Cooking Banana Drying Characteristics Using Active indirect Mode Solar Dryer. Niger. J. Technol. 2019, 38, 1056–1063. [Google Scholar] [CrossRef]
- Shen, L.; Li, Z.; Ma, T. Analysis of the Power Loss and Quantification of the Energy Distribution in PV Module. Appl. Energy 2020, 260, 114333. [Google Scholar] [CrossRef]
- Qi, B.; Wang, J. Fill Factor in Organic Solar Cells. Phys. Chem. Chem. Phys. 2013, 15, 8972–8982. [Google Scholar] [CrossRef]
- Usub, T.; Lertsatitthanakorn, C.; Poomsa-ad, N.; Wiset, L.; Yang, L.; Siriamornpun, S. Experimental Performance of A Solar Tunnel Dryer for Drying Silkworm Pupae. Biosyst. Eng. 2008, 101, 209–216. [Google Scholar] [CrossRef]
- Kocabiyik, H.; Yilmaz, N.; Tuncel, N.B.; Sumer, S.K.; Buyukcan, M.B. Drying, Energy, and Some Physical and Nutritional Quality Properties of Tomatoes Dried with Short-Infrared Radiation. Food Bioprocess Technol. 2015, 8, 516–525. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, K. Far-Infrared and Microwave Drying of Peach. LWT-Food Sci. Technol. 2006, 39, 247–255. [Google Scholar] [CrossRef]
- Nasiroglu, S.; Kocabiyik, H. Thin-layer infrared Radiation Drying of Red Pepper Slices. J. Food Process Eng. 2009, 32, 1–16. [Google Scholar] [CrossRef]
- Kocabiyik, H.; Tezer, D. Drying of Carrot Slices Using Infrared Radiation. Int. J. Food Sci. Technol. 2009, 44, 953–959. [Google Scholar] [CrossRef]
- Das Purkayastha, M.; Nath, A.; Deka, B.C.; Mahanta, C.L. Thin Layer Drying of Tomato Slices. J. Food Sci. Technol. 2013, 50, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Shahi, N.C.; Khan, J.N.; Lohani, U.C.; Singh, A.; Kumar, A. Development of Polyhouse Type Solar Dryer for Kashmir Valley. J. Food Sci. Technol. 2011, 48, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Jaiganesh, K.; Duraiswamy, K. Experimental Study of Enhancing the Performance of PV Panel Integrated with Solar Thermal System. Int. J. Eng. Technol. 2013, 5, 3419–3426. [Google Scholar]
- Yamamoto, K.; Yoshikawa, K.; Uzu, H.; Adachi, D. High-Efficiency Heterojunction Crystalline Si Solar Cells. Jpn. J. Appl. Phys. 2018, 57, 08RB20. [Google Scholar] [CrossRef]
- Haschke, J.; Dupré, O.; Boccard, M.; Ballif, C. Silicon Heterojunction Solar Cells: Recent Technological Development and Practical Aspects-FROM Lab to Industry. Sol. Energy Mater. Sol. Cells 2018, 187, 140–153. [Google Scholar] [CrossRef]
- Ho, W.-J.; Liu, J.-J.; Yang, Y.-C.; Ho, C.-H. Enhancing Output Power of Textured Silicon Solar Cells by Embedding Indium Plasmonic Nanoparticles in Layers within Antireflective Coating. Nanomaterials 2018, 8, 1003. [Google Scholar] [CrossRef]
- Müller, M.; Fischer, G.; Bitnar, B.; Steckemetz, S.; Schiepe, R.; Mühlbauer, M.; Köhler, R.; Richter, P.; Kusterer, C.; Oehlke, A. Loss Analysis of 22% Efficient Industrial PERC Solar Cells. Energy Procedia 2017, 124, 131–137. [Google Scholar] [CrossRef]
Items | Conditions and Assumptions |
---|---|
Drying location | 25.6890° N, and 32.6975° E |
Orientation | Southwards direction |
Tilt angle | 28° |
Product | TF (Lycopersi conesculentum) |
Loading capacity | 5 kg |
Initial MC, % | 92 ± 2% |
Total drying time | 10 h |
SC dimensions (length × width × height), cm | 100 × 50 × 15 cm |
DCh dimensions (length × width × height), cm | 44 × 44 × 63 cm |
SD dimensions (length × width × height), cm | 44 × 46 × 163 cm |
Tray dimensions (Length × Width), cm | 44 × 44 cm |
No. | Quantity | Component | Accuracy |
---|---|---|---|
1. | 1 | Arduino Uno (7–12 Vdc), China | --- |
2. | 2 | LDR sensor, China | ±1 Lux |
3. | 1 | Relay kit (4—channel), Generic, China | --- |
4. | 1 | Linear DC motor (actuator) (10 W, 0.4–0.8 A–36 V, 24-inch, model No: HARL-3624+), Germany | --- |
5. | 1 | Converter (input: 110–220 V AC; output: 36 V DC 10 A), DAJUNGUO, China | --- |
6. | 2 | Linear resistor (10 kΩ), China | ±0.5% |
Parameters | Unit | Instrument | Range | Resolution | Standard Division |
---|---|---|---|---|---|
AT | °C | DHT-22 sensor | −10–80°C | 0.1 °C | ±1 °C |
RH | % | DHT-22 sensor | 0–100% | 0.1% | ±2% |
SR | W/m2 | Spectral pyranometers | 0.1 W/m2 | ±10 W/m2 | |
Weight of TF samples | kg | Electronic digital balance | 0.0–50 kg | 5 g | ±0.020 |
Weight of dried TF inside DCh | kg | Electronic digital balance | 0.0–10 kg | 10 g | ±10 g |
Weight of dried TF in laboratory | kg | Electronic digital balance | 0.0–1.0 kg | 0.1 g | ±0.15 g |
Voltage and current (PV system) | V, A | Digital multimeter | 0.2–1000 V 20 µA–20 A | 0.01 V 0.01 A | -- |
Airspeed | m/s | A digital anemometer | 0.0–30 m/s | 0.1 m/s | ±0.1 m/s |
Light intensity (ASCT) | Lux | LDR sensor | 0.0–1000 Lux | 0.1 Lux | ±1 Lux |
Time | Weigh of Sample | Drying Rate | Moisture Content | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Slice Thickness = 4.0 mm | ||||||||||||||||||
Air Velocity (1 m/s) | Air Velocity (1.5 m/s) | Air Velocity (2 m/s) | Air Velocity (1 m/s) | Air Velocity (1.5 m/s) | Air Velocity (2 m/s) | Air Velocity (1 m/s) | Air Velocity (1.5 m/s) | Air Velocity (2 m/s) | ||||||||||
ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | |
8 | 195 b | 195 b | 200 ab | 200 ab | 204.67 a | 205 a | 0 p | 0 p | 0 p | 0 p | 0 p | 0 p | 92.3 a | 92.3 a | 92.3 a | 92.3 a | 92.2 a | 92.3 a |
9 | 120 e | 135 d | 130 d | 135 d | 145 c | 150 c | 75 a | 60 d | 70 b | 65 c | 59. d | 55 e | 87.5 a–c | 88.9 ab | 88.2 a–c | 88.6 a–c | 89.1 ab | 89.5 b |
10 | 75 g | 115 e | 70 gh | 85 f | 75 g | 90 f | 45 g | 20 l | 60 d | 50 f | 70 b | 60 d | 79.9 de | 86.9 a–c | 77.9 de | 81.9 cd | 78.9 de | 82.5 b–d |
11 | 40 l | 75 g | 40 l | 65 hi | 45 jk | 60 i | 35 i | 40 h | 30 j | 20 l | 30 j | 30 j | 62.3 i | 79.9 de | 61.4 i | 76.3 de | 64.8 hi | 73.6 ef |
12 | 25 m | 50 j | 21.3 mn | 40 l | 30 m | 40 l | 15 m | 25 k | 18.7 l | 25 k | 15 m | 20 l | 39.8 k | 69.8 gh | 26.1 l | 61.4 i | 46.8 j | 60.3 i |
13 | 20 mn | 25 m | 17.6 n | 25 m | 20 mn | 30 m | 5 o | 25 k | 3.7 op | 15 m | 10 n | 10 n | 24.4 l | 39.6 k | 12.8 m | 38.3 k | 20.5 l | 47.0 j |
8 | 265 b | 260 b | 188 c–e | 250 b | 303 a | 300 a | 0 g | 0 g | 0 g | 0 g | 0 g | 0 g | 92.3 a | 92.3 a | 81.8 c–f | 92.3 a | 92.2 a | 92.3 a |
Time | Slice thickness = 6.0 mm | |||||||||||||||||
Air velocity (1 m/s) | Air velocity (1.5 m/s) | Air velocity (2 m/s) | Air velocity (1 m/s) | Air velocity (1.5 m/s) | Air velocity (2 m/s) | Air velocity (1 m/s) | Air velocity (1.5 m/s) | Air velocity (2 m/s) | ||||||||||
ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | ASCT | |
9 | 190 c–e | 200 cd | 180 de | 200 cd | 220 c | 280 ab | 75 a | 60 a–c | 8 fg | 50 a–e | 83 a | 20 d–g | 89.3 a–c | 89.9 ab | 89.1 a–d | 90.4 ab | 89.3 a–c | 91.8 a |
10 | 110 h–j | 145 fg | 105 h–j | 160 ef | 165 ef | 215 c | 80 a | 55 a–d | 75 a | 40 b–f | 55 a–d | 65 ab | 81.5 e–h | 86.2 a–f | 81.3 e–h | 87.9 a–e | 85.8 a–f | 89.2 a–c |
11 | 80 j–m | 120 g–i | 75 k–n | 125 g–i | 115 g–i | 164 ef | 30 b–g | 25 c–g | 30 b–g | 34.66 b–g | 49.67 a–e | 51 a–e | 74.5 g–j | 83.3 b–f | 73.7 i–k | 84.6 a–f | 79.6 f–i | 85.91 a–f |
12 | 50 m–q | 95 i–l | 45 n–q | 105 h–j | 80 j–m | 135 f–h | 30 b–g | 25 c–g | 30 b–g | 20 d–g | 35 b–g | 29 c–g | 59.2 no | 7898 f–i | 56.3 op | 81.6 d–g | 70.6 j–m | 82.9 b–f |
13 | 35 pq | 70 l–o | 40 o–q | 75 k–n | 65 l–p | 110 h–j | 15 e–g | 25 c–g | 5 fg | 30 b–g | 15 e–g | 25 c–g | 41.4 r | 71.4 j–l | 50.8 pq | 74.3 h–j | 63.7 mn | 78.9 f–i |
14 | 30 pq | 60 m–q | 30 pq | 58 m–q | 50 m–q | 75 k–n | 5 fg | 10 fg | 10 fg | 17 e–g | 15 e–g | 35 b–g | 31.9 s | 66.5 lm | 34.1 s | 66.8 k–m | 52.9 oq | 69.1 j–m |
15 | 25 q | 35 pq | 25 q | 38 o–q | 35 pq | 45 n–q | 5 fg | 25 c–g | 5 fg | 20 d–g | 15 e–g | 30 b–g | 17.6 t | 42.0 r | 21.4 t | 48.75 q | 32.56 s | 48.5 q |
Time | Slice thickness = 8.0 mm | |||||||||||||||||
Air velocity (1 m/s) | Air velocity (1.5 m/s) | Air velocity (2 m/s) | Air velocity (1 m/s) | Air velocity (1.5 m/s) | Air velocity (2 m/s) | Air velocity (1 m/s) | Air velocity (1.5 m/s) | Air velocity (2 m/s) | ||||||||||
ASCT | FSC | ASCT | FSC | ASCT | FSC | ASCT | FSC | ASCT | FSC | ASCT | FSC | ASCT | FSC | ASCT | FSC | ASCT | FSC | |
8 | 375 a | 370 a | 380 a | 375 a | 375 a | 370 a | 0 m | 0 m | 0 m | 0 m | 0 m | 0 m | 92.4 a | 92.2 a | 92.3 a | 92.4 a | 92.3 a | 92.3 a |
9 | 315 de | 340 b | 310 ef | 330 bc | 300 fg | 325 cd | 60 c–f | 30 h–k | 70 a–d | 45 f–g | 75 a–c | 45 f–g | 90.8 a | 91.6 a | 90.6 a | 91.3 a | 91.4 a | 92.2 a |
10 | 250 mn | 295 hi | 260 lm | 278 jk | 245 no | 285 ij | 65 b–e | 45 f–g | 50 e–g | 52 e–g | 55 d–g | 40 g–i | 88.5 a–c | 90.4 a | 88.7 a–c | 89.6 a | 89.2 a–c | 9.01 a |
11 | 175 pq | 270 kl | 175 pq | 245 no | 165 pq | 240 no | 75 a–c | 25 i–k | 85 a | 33 h–j | 80 a–b | 45 f–g | 83.5 ef | 89.5 ab | 83.3 ef | 88.2 a–d | 83.5 ef | 89.1 a–c |
12 | 120 s–v | 195 o–q | 110 v | 185 o–q | 105 vw | 180 o–q | 55 d–g | 75 a–c | 65 b–e | 60 c–f | 60 c–f | 60 c–f | 75.9 gh | 85.4 b–e | 73.4 hi | 84.4 de | 73.5 hi | 85.2 c–e |
13 | 90 x–y | 140 r | 80 x–y | 130 r–t | 85 x–y | 135 rs | 30 h–k | 55 d–g | 30 h–k | 55 d–g | 20 j–l | 45 f–g | 67.9 jk | 79.6 fg | 63.4 m–o | 77.8 g | 67.0 k–m | 79.9 fg |
14 | 75 x–y | 125 s–v | 65 xyz | 110 v | 70 x–y | 115 s–v | 15 k–m | 15 k–m | 15 k–m | 20 j–l | 15 k–m | 20 j–l | 61.4 no | 77.2 gh | 54.9 q | 73.6 hi | 59.8 op | 77.2 gh |
15 | 50 w | 100 vw | 40 z | 80 x–y | 55 wz | 85 x–y | 25 i–k | 25 i–k | 25 i–k | 30 h–k | 15 k–m | 30 h–k | 41.8 r | 71.5 ij | 26.34 s | 63.9 l–n | 48.5 q | 67.5 kl |
16 | 33 z | 75 x–y | 35 z | 55 wz | 33 z | 65 yz | 17 j–i | 25 i–k | 5 lm | 25 i–k | 22 jk | 20 j–l | 12.23 t | 61.9 no | 15.7 t | 47.3 q | 13.5 t | 57.2 pq |
Reference | DC Type | TE of Traditional SC | TE of Tracking SC | Increasing the Ratio of TE |
---|---|---|---|---|
ElGamal et al. [19] | Solar air heater | -- | 45% | -- |
Bhowmik [31] | Flat-plate SC | -- | -- | 10% |
Zheng et al. [32] | Parabolic concentrator SC | -- | 60.5% | -- |
Zou et al. [33] | Small-sized parabolic trough SC | -- | 67% | -- |
Chamsa-ard et al. [34] | Heat pipe evacuated tube with an SC | -- | 78%. | -- |
Rittidech et al. [35] | Circular glass tube SC | -- | 76% | -- |
Wei et al. [36] | Flat-plate heat SC | -- | 66% | -- |
Verma et al. [37] | Single spiral-shaped SC tube | -- | -- | 21.94% |
Ramachandran et al. [38] | Flat-plate SC integrated with Scheffler solar concentrator | -- | -- | 6% |
Das and Akpinar [39] | SD integrated with ASCT | -- | 75.7% | -- |
Current study | Flat-plate SC integrated with ASCT | 61.6% | 83.2% | 21.6% |
Cost Parameters | SD Integrated with FSC (USD) | SD Integrated with ASCT (USD) |
---|---|---|
Capital Cost of Dryer | 108.57 | 125 |
Annual Capital Cost | 36.262 | 41.75 |
Annual Maintenance Cost | 1.088 | 1.2525 |
Annual Salvage Value | 2.901 | 3.34 |
Annual Cost of SD | 34.449 | 39.662 |
Economic Analysis Parameters | SD Integrated with FSC | SD Integrated with ASCT |
---|---|---|
Mass of product dried per batch (kg) | 0.5 | 0.5 |
Quantity of dried product annually (kg) | 104.3 | 124.1 |
Drying Cost of per kg (USD) | 0.33 | 0.319 |
Cost of 1 kg fresh product (USD) | 0.285 | 0.285 |
Mass of fresh product per batch (kg) | 5.0 | 5.0 |
Cost of fresh product per kg of dried product (USD) | 2.85 | 2.85 |
Cost of 1 kg of crop dried inside the dryer (USD) | 3.18 | 3.17 |
Selling price per kg (USD) | 5.0 | 5.0 |
Saving per Kg (USD) | 1.82 | 1.83 |
Saving per batch (USD) | 0.91 | 0.915 |
Saving per day (USD) | 0.561 | 0.627 |
Saving after 1 year (USD) | 204 | 228.9 |
Payback Time (Years) | 0.655 | 0.672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elwakeel, A.E.; Gameh, M.A.; Oraiath, A.A.T.; Eissa, A.S.; Elsayed, S.; Elmessery, W.M.; Mostafa, M.B.; Alhag, S.K.; Al-Shuraym, L.A.; Moustapha, M.E.; et al. Development and Techno-Economic Analysis of a Tracked Indirect Forced Solar Dryer Integrated Photovoltaic System for Drying Tomatoes. Sustainability 2024, 16, 7008. https://doi.org/10.3390/su16167008
Elwakeel AE, Gameh MA, Oraiath AAT, Eissa AS, Elsayed S, Elmessery WM, Mostafa MB, Alhag SK, Al-Shuraym LA, Moustapha ME, et al. Development and Techno-Economic Analysis of a Tracked Indirect Forced Solar Dryer Integrated Photovoltaic System for Drying Tomatoes. Sustainability. 2024; 16(16):7008. https://doi.org/10.3390/su16167008
Chicago/Turabian StyleElwakeel, Abdallah Elshawadfy, Mohsen A. Gameh, Awad Ali Tayoush Oraiath, Ahmed S. Eissa, Salah Elsayed, Wael M. Elmessery, Mostafa B. Mostafa, Sadeq K. Alhag, Laila A. Al-Shuraym, Moustapha Eid Moustapha, and et al. 2024. "Development and Techno-Economic Analysis of a Tracked Indirect Forced Solar Dryer Integrated Photovoltaic System for Drying Tomatoes" Sustainability 16, no. 16: 7008. https://doi.org/10.3390/su16167008
APA StyleElwakeel, A. E., Gameh, M. A., Oraiath, A. A. T., Eissa, A. S., Elsayed, S., Elmessery, W. M., Mostafa, M. B., Alhag, S. K., Al-Shuraym, L. A., Moustapha, M. E., Elbeltagi, A., Salem, A., & Tantawy, A. A. (2024). Development and Techno-Economic Analysis of a Tracked Indirect Forced Solar Dryer Integrated Photovoltaic System for Drying Tomatoes. Sustainability, 16(16), 7008. https://doi.org/10.3390/su16167008