Enhancing Sustainable Cultivation of Organic Bell Pepper through Fulvic Acid (FA) Application: Impact on Phytochemicals and Antioxidant Capacity under Open-Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
Chemicals
2.2. Sample Preparation
2.3. Preparation of Methanolic Extracts
2.4. Total Phenolic Content (TPC)
2.5. Total Flavonoid Content (TFC)
2.6. Vitamin C
2.7. Antioxidant Quantities
2.7.1. DPPH (1,1-Diphenyl-2-picrylhydrazyl Radical) Assay
2.7.2. Reducing Power Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.2. DPPH and Reducing Power
3.3. Vitamin C
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. J. Funct. Foods 2011, 3, 44–49. [Google Scholar] [CrossRef]
- Deepa, N.; Kaur, C.; Singh, B.; Kapoor, H. Antioxidant activity in some red sweet pepper cultivars. J. Food Compos. Anal. 2006, 19, 572–578. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Blanco-Ríos, A.; Medina-Juárez, L.Á.; González-Aguilar, G.A.; Gámez-Meza, N. Antiox-idant activity of the phenolic and oily fractions of different sweet bell peppers. J. Mex. Chem. Soc. 2013, 57, 137–143. [Google Scholar]
- Deng, G.-F.; Lin, X.; Xu, X.-R.; Gao, L.-L.; Xie, J.-F.; Li, H.-B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Srivastava, N.; Sharma, V.; Saraf, K.; Dobriyal, A.K.; Kamal, B.; Jadon, V.S. In Vitro Anti-Microbial Activity of Aerial Parts Extracts of Aconitum Heterophyllum Wall. ex Royle. 2011. Available online: https://www.semanticscholar.org/paper/In-vitro-antimicrobial-activity-of-aerial-parts-of-Srivastava-Sharma/414c1b4661e4beab97facd2f4eb70e42a0548ec0 (accessed on 9 July 2024).
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive characteristics and antioxidant activities of nine peppers. J. Funct. Foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
- El-Ghorab, A.; Javed, Q.; Anjum, F.M.; Hamed, S.F.; Shaaban, H. Pakistani bell pepper (Capsicum annum L.): Chemical compositions and its antioxidant activity. Int. J. Food Prop. 2012, 16, 18–32. [Google Scholar] [CrossRef]
- Howard, L.R.; Wildman, R.E.C. Antioxidant vitamin and phytochemical content of fresh and processed pepper fruit (Capsicum annuum). In Handbook of Nutraceuticals and Functional Foods; CRC Press: Boca Raton, FL, USA, 2007; pp. 165–191. [Google Scholar]
- Mohd Hassan, N.; Yusof, N.A.; Yahaya, A.F.; Mohd Rozali, N.N.; Othman, R. Carotenoids of Capsicum Fruits: Pigment profile and health-promoting functional attributes. Antioxidants 2019, 8, 469. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Anjum, F.M.; Khan, M.R.; Saeed, M.; Riaz, A. Antioxidant po-tential of bell pepper (Capsicum annum L.)-A review. Pak. J. Food Sci. 2011, 21, 45–51. [Google Scholar]
- Manikharda, M.; Takahashi, M.; Arakaki, M.; Yonamine, K.; Hashimoto, F.; Takara, K.; Wada, K. Influence of fruit ripening on color, organic acid contents, capsaicinoids, aroma compounds, and antioxidant capacity of shimatogarashi (Capsicum frutescens). J. Oleo Sci. 2018, 67, 113–123. [Google Scholar] [CrossRef]
- Hallmann, E.; Rembiałkowska, E. Characterisation of antioxidant compounds in sweet bell pepper (Capsicum annuum L.) under organic and conventional growing systems. J. Sci. Food Agric. 2012, 92, 2409–2415. [Google Scholar] [CrossRef] [PubMed]
- Flores, P.; Hellín, P.; Lacasa, A.; López, A.; Fenoll, J. Pepper antioxidant composition as affected by organic, low-input and soilless cultivation. J. Sci. Food Agric. 2009, 89, 2267–2274. [Google Scholar] [CrossRef]
- Patthamakanokporn, O.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P.P. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J. Food Compos. Anal. 2007, 21, 241–248. [Google Scholar] [CrossRef]
- Chávez-Mendoza, C.; Sanchez, E.; Muñoz-Marquez, E.; Sida-Arreola, J.P.; Flores-Cordova, M.A. Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants 2015, 4, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.; Ramanathan, A.L.; Bauddh, K.; Korstad, J. Humic substances: Structure, function and benefits for agroecosystems—A review. Pedosphere 2023, 33, 237–249. [Google Scholar] [CrossRef]
- Braziene, Z.; Paltanavicius, V.; Avizienytė, D. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environ. Res. 2021, 195, 110824. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef]
- Bocanegra, M.P.; Lobartini, J.C.; Orioli, G.A. Plant uptake of iron chelated by humic acids of different molecular weights. Commun. Soil Sci. Plant Anal. 2006, 37, 239–248. [Google Scholar] [CrossRef]
- Chen, Y.; De Nobili, M.; Aviad, T. Stimulatory effects of humic substances on plant growth. In Soil Organic Matter in Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2004; pp. 103–129. [Google Scholar]
- Zimmerli, L.; Hou, B.-H.; Tsai, C.-H.; Jakab, G.; Mauch-Mani, B.; Somerville, S. The xenobiotic β-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J. 2008, 53, 144–156. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Ali, E.F.; Al-Yasi, H.M.; Issa, A.A.; Hessini, K.; Hassan, F.A.S. Ginger extract and fulvic acid foliar applications as novel practical approaches to improve the growth and productivity of damask rose. Plants 2022, 11, 412. [Google Scholar] [CrossRef] [PubMed]
- Bayat, H.; Shafie, F.; Aminifard, M.H.; Daghighi, S. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Sci. Hortic. 2021, 279, 109912. [Google Scholar] [CrossRef]
- Aminifard, M.H.; Aroiee, H.; Nemati, H.; Azizi, M.; Jaafar, H.Z. Fulvic acid affects pepper antioxidant activity and fruit quality. Afr. J. Biotechnol. 2012, 11, 13179–13185. [Google Scholar] [CrossRef]
- Elrys, A.S.; Abdo, A.I.; Abdel-Hamed, E.M.; Desoky, E.-S.M. Integrative application of licorice root extract or lipoic acid with fulvic acid improves wheat production and defenses under salt stress conditions. Ecotoxicol. Environ. Saf. 2019, 190, 110144. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Iqbal, E.; Abu Salim, K.; Lim, L.B. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud Univ. Sci. 2015, 27, 224–232. [Google Scholar] [CrossRef]
- Rahman, M.; Khan, M.M.R.; Hosain, M.M. Analysis of vitamin C (ascorbic acid) Contents in various fruits and vegetables by UV-spectrophotometry. Bangladesh J. Sci. Ind. Res. 1970, 42, 417–424. [Google Scholar] [CrossRef]
- Desai, A.P.; Desai, S. UV Spectroscopic method for determination of vitamin C (ascorbic acid) content in different fruits in south gujarat region. Int. J. Environ. Sci. Nat. Resour. 2019, 22, 41–44. [Google Scholar] [CrossRef]
- Wang, L.; Clardy, A.; Hui, D.; Gao, A.; Wu, Y. Antioxidant and antidiabetic properties of Chinese and Indian bitter melons (Momordica charantia L.). Food Biosci. 2019, 29, 73–80. [Google Scholar] [CrossRef]
- Guilherme, R.; Aires, A.; Rodrigues, N.; Peres, A.M.; Pereira, J.A. Phenolics and antioxidant activity of green and red sweet peppers from organic and conventional agriculture: A comparative study. Agriculture 2020, 10, 652. [Google Scholar] [CrossRef]
- Abdalla, M.U.E.; Taher, M.; Sanad, M.I.; Tadros, L.K. Chemical properties, phenolic profiles and antioxidant activities of pepper fruits. J. Agric. Chem. Biotechnol. 2019, 10, 133–140. [Google Scholar] [CrossRef]
- Thuphairo, K.; Sornchan, P.; Suttisansanee, U. Bioactive compounds, antioxidant activity and inhibition of key enzymes relevant to Alzheimer’s disease from sweet pepper (Capsicum annuum) extracts. Prev. Nutr. Food Sci. 2019, 24, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; la Mora, Z.V.-D.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell peppers (Capsicum annum L.) losses and wastes: Source for food and pharmaceutical applications. Molecules 2021, 26, 5341. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-G.; Shibamoto, T. Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. et Perry]. Food Chem. 2001, 74, 443–448. [Google Scholar] [CrossRef]
- Cisternas-Jamet, J.; Salvatierra-Martínez, R.; Vega-Gálvez, A.; Stoll, A.; Uribe, E.; Goñi, M.G. Biochemical composition as a function of fruit maturity stage of bell pepper (Capsicum annum) inoculated with Bacillus amyloliquefaciens. Sci. Hortic. 2019, 263, 109107. [Google Scholar] [CrossRef]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in Phytochemical and antioxidant activity of selected pepper cultivars (Capsicum Species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of green, red and yellow bell peppers. J. Food Agric. Environ. 2003, 1, 22–27. [Google Scholar] [CrossRef]
- Hernandez, O.L.; Calderín, A.; Huelva, R.; Martínez-Balmori, D.; Guridi, F.; Aguiar, N.O.; Olivares, F.L.; Canellas, L.P. Humic substances from vermicompost enhance urban lettuce production. Agron. Sustain. Dev. 2014, 35, 225–232. [Google Scholar] [CrossRef]
- Salamatullah, A.M.; Hayat, K.; Husain, F.M.; Ahmed, M.A.; Arzoo, S.; Althbiti, M.M.; Alzahrani, A.; Al-Zaied, B.A.M.; Alyahya, H.K.; Albader, N.; et al. Effects of different solvents extractions on total polyphenol content, HPLC analysis, antioxidant capacity, and antimicrobial properties of peppers (red, yellow, and green (Capsicum annum L.)). Evidence-Based Complement. Altern. Med. 2022, 2022, 7372101. [Google Scholar] [CrossRef]
- Pandey, A.; Kaushik, A.; Wanjari, M.; Dey, Y.N.; Jaiswal, B.S.; Dhodi, A. Antioxidant and anti-inflammatory activities of Aerva pseudotomentosa leaves. Pharm. Biol. 2017, 55, 1688–1697. [Google Scholar] [CrossRef]
- Martínez, S.; López, M.; González-Raurich, M.; Alvarez, A.B. The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). Int. J. Food Sci. Nutr. 2005, 56, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Xu, Q.; Allan, A.C.; Xu, X. L-Ascorbic acid metabolism and regulation in fruit crops. Plant Physiol. 2023, 192, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Li, Z.; Peng, M.; Deng, W. Metabolism and Regulation of Ascorbic Acid in Fruits. Plants 2022, 11, 1602. [Google Scholar] [CrossRef] [PubMed]
- Olivares, F.L.; Aguiar, N.O.; Rosa, R.C.C.; Canellas, L.P. Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci. Hortic. 2015, 183, 100–108. [Google Scholar] [CrossRef]
- Rimmer, D.L. Free radicals, antioxidants, and soil organic matter recalcitrance. Eur. J. Soil Sci. 2006, 57, 91–94. [Google Scholar] [CrossRef]
- Akladious, S.A.; Mohamed, H.I. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci. Hortic. 2018, 236, 244–250. [Google Scholar] [CrossRef]
Green | Red | Green | Red | |
---|---|---|---|---|
Treatment (mL L−1) | TPC (mg GAE g−1 d. w.) | TFC (mg CE g−1 d. w.) | ||
Control | 2.82 ± 0.29 cd | 2.58 ± 0.01 d | 11.77 ± 0.88 bc | 11.85 ± 2.70 c |
Foliar 2.3 | 3.09 ± 0.22 bc | 2.67 ± 0.28 d | 12.40 ± 0.11 b | 14.32 ± 0.73 ab |
Foliar 5.5 | 3.13 ± 0.07 bc | 2.69 ± 0.25 d | 10.39 ± 0.32 d | 14.69 ± 0.68 a |
Foliar 7.8 | 3.58 ± 0.11 a | 2.72 ± 0.06 d | 11.35 ± 0.11 c | 12.42 ± 0.17 c |
Foliar 10.9 | 2.90 ± 0.30 cd | 2.76 ± 0.25 d | 11.58 ± 0.26 c | 15.57 ± 0.00 a |
Soil 2.3 | 2.83 ± 0.16 cd | 3.34 ± 0.26 ab | 10.51 ± 0.44 d | 15.34 ± 0.24 a |
Soil 5.5 | 3.21 ± 0.12 abc | 3.53 ± 0.13 a | 11.58 ± 0.45 c | 11.73 ± 1.25 c |
Soil 7.8 | 3.39 ± 0.29 ab | 3.03 ± 0.11 c | 11.87 ± 0.16 bc | 15.62 ± 0.16 a |
Soil 10.9 | 2.58 ± 0.28 d | 3.13 ± 0.05 bc | 13.94 ± 0.30 a | 12.83 ± 0.08 bc |
Green | Red | Green | Red | |
---|---|---|---|---|
Treatment (mL L−1) | DPPH (%) | Reducing Power | ||
Control | 88.82 ± 1.27 bc | 90.04 ± 2.53 ab | 0.48 ± 0.02 de | 0.46 ± 0.01 bcd |
Foliar 2.3 | 86.59 ± 2.19 c | 90.65 ± 2.14 ab | 0.47 ± 0.01 e | 0.43 ± 0.01 de |
Foliar 5.5 | 88.28 ± 3.36 bc | 89.29 ± 3.64 b | 0.48 ± 0.01 e | 0.49 ± 0.02 ab |
Foliar 7.8 | 90.44 ± 1.41 ab | 92.88 ± 0.88 a | 0.50 ± 0.01 bc | 0.43 ± 0.02 de |
Foliar 10.9 | 89.02 ± 1.61 bc | 91.73 ± 1.05 ab | 0.43 ± 0.01 f | 0.44 ± 0.02 cde |
Soil 2.3 | 90.17 ± 2.28 ab | 92.55 ± 1.03 ab | 0.50 ± 0.02 ab | 0.41 ± 0.01 e |
Soil 5.5 | 90.24 ± 1.59 ab | 91.05 ± 2.81 ab | 0.48 ± 0.01 cde | 0.47 ± 0.03 bc |
Soil 7.8 | 89.02 ± 2.19 bc | 91.33 ± 0.82 ab | 0.48 ± 0.01 cde | 0.46 ± 0.03 cd |
Soil 10.9 | 88.48 ± 3.77 bc | 91.53 ± 1.12 ab | 0.50 ± 0.02 bcd | 0.51 ± 0.01 a |
Green | Red | |
---|---|---|
Treatment (mL L−1) | Vitamin C (mg 100 g−1 d. w.) | |
Control | 142.74 ± 3.61 f | 154.69 ± 0.97 f |
Foliar 2.3 | 143.76 ± 0.70 f | 148.11 ± 0.73 g |
Foliar 5.5 | 144.59 ± 1.13 f | 148.85 ± 1.37 g |
Foliar 7.8 | 209.13 ± 1.31 a | 233.21 ± 0.85 c |
Foliar 10.9 | 162.65 ± 1.97 c | 240.24 ± 0.42 b |
Soil 2.3 | 156.91 ± 0.85 d | 187.65 ± 2.56 e |
Soil 5.5 | 190.05 ± 1.73 b | 255.71 ± 2.24 a |
Soil 7.8 | 156.63 ± 1.58 d | 240.43 ± 1.85 b |
Soil 10.9 | 153.30 ± 1.25 e | 209.22 ± 1.21 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanabar, P.; Wu, Y.; Nandwani, D. Enhancing Sustainable Cultivation of Organic Bell Pepper through Fulvic Acid (FA) Application: Impact on Phytochemicals and Antioxidant Capacity under Open-Field Conditions. Sustainability 2024, 16, 6745. https://doi.org/10.3390/su16166745
Kanabar P, Wu Y, Nandwani D. Enhancing Sustainable Cultivation of Organic Bell Pepper through Fulvic Acid (FA) Application: Impact on Phytochemicals and Antioxidant Capacity under Open-Field Conditions. Sustainability. 2024; 16(16):6745. https://doi.org/10.3390/su16166745
Chicago/Turabian StyleKanabar, Pinkky, Ying Wu, and Dilip Nandwani. 2024. "Enhancing Sustainable Cultivation of Organic Bell Pepper through Fulvic Acid (FA) Application: Impact on Phytochemicals and Antioxidant Capacity under Open-Field Conditions" Sustainability 16, no. 16: 6745. https://doi.org/10.3390/su16166745
APA StyleKanabar, P., Wu, Y., & Nandwani, D. (2024). Enhancing Sustainable Cultivation of Organic Bell Pepper through Fulvic Acid (FA) Application: Impact on Phytochemicals and Antioxidant Capacity under Open-Field Conditions. Sustainability, 16(16), 6745. https://doi.org/10.3390/su16166745