Supporting Sustainable Development Goals through Regulation and Maintenance Ecosystem Services
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simensen, T.; Halvorsen, R.; Erikstad, L. Methods for Landscape Characterisation and Mapping: A Systematic Review. Land Use Policy 2018, 75, 557–569. [Google Scholar] [CrossRef]
- Geri, F.; Amici, V.; Rocchini, D. Human Activity Impact on the Heterogeneity of a Mediterranean Landscape. Appl. Geogr. 2010, 30, 370–379. [Google Scholar] [CrossRef]
- Rothacker, L.; Dosseto, A.; Francke, A.; Chivas, A.R.; Vigier, N.; Kotarba-Morley, A.M.; Menozzi, D. Impact of Climate Change and Human Activity on Soil Landscapes over the Past 12,300 Years. Sci. Rep. 2018, 8, 247. [Google Scholar] [CrossRef]
- United Nations Conference of the Parties Serving as the Meeting of the Parties to the Paris Agreement; Fifth Session: Dubai, United Arab Emirates, 2023.
- Carli, R.; Dotoli, M.; Pellegrino, R. Multi-Criteria Decision-Making for Sustainable Metropolitan Cities Assessment. J. Environ. Manag. 2018, 226, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Knox, P.L. Spatial Transformation of Metropolitan Cities. Environ. Plan. A 2015, 47, 50–68. [Google Scholar] [CrossRef]
- Zhou, Q.; Nizamani, M.M.; Zhang, H.-Y.; Zhang, H.-L. The Air We Breathe: An In-Depth Analysis of PM2.5 Pollution in 1312 Cities from 2000 to 2020. Environ. Sci. Pollut. Res. 2023, 30, 93900–93915. [Google Scholar] [CrossRef]
- Duranton, G.; Puga, D. The Growth of Cities. Handb. Econ. Growth 2014, 2, 781–853. [Google Scholar]
- Rentschler, J.; Avner, P.; Marconcini, M.; Su, R.; Strano, E.; Vousdoukas, M.; Hallegatte, S. Global Evidence of Rapid Urban Growth in Flood Zones since 1985. Nature 2023, 622, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Alqadhi, S.; Bindajam, A.A.; Mallick, J.; Rahman, A.; Talukdar, S. Mapping and Evaluating Sustainable and Unsustainable Urban Areas for Ecological Management towards Achieving Low-Carbon City: An Empirical Study of Asir Region, Saudi Arabia. Environ. Sci. Pollut. Res. 2023, 30, 65916–65932. [Google Scholar] [CrossRef]
- Araújo, R.G.; Chavez-Santoscoy, R.A.; Parra-Saldívar, R.; Melchor-Martínez, E.M.; Iqbal, H.M.N. Agro-Food Systems and Environment: Sustaining the Unsustainable. Curr. Opin. Environ. Sci. Health 2023, 31, 100413. [Google Scholar] [CrossRef]
- Leimgruber, W. Environmental Unsustainability or the Cost of Civilization. In Nature, Society, and Marginality: Case Studies from Nepal, Southeast Asia and Other Regions; Springer: Berlin/Heidelberg, Germany, 2023; pp. 9–31. [Google Scholar]
- Sepehriar, A.; Eslamipoor, R. An Economical Single-Vendor Single-Buyer Framework for Carbon Emission Policies. J. Bus. Econ. 2024, 94, 927–945. [Google Scholar] [CrossRef]
- Eslamipoor, R.; Sepehriyar, A. Promoting Green Supply Chain under Carbon Tax, Carbon Cap and Carbon Trading Policies. Bus. Strategy Environ. 2024, 33, 4901–4912. [Google Scholar] [CrossRef]
- Rapport, D.J.; Bohm, G.; Buckingham, D.; Cairns, J.; Costanza, R.; Karr, J.R.; de Kruijf, H.A.M.; Levins, R.; McMichael, A.J.; Nielsen, N.O.; et al. Ecosystem Health: The Concept, the ISEH, and the Important Tasks Ahead. Ecosyst. Health 1999, 5, 82–90. [Google Scholar] [CrossRef]
- Su, M.; Yang, Z.; Chen, B.; Liu, G.; Zhang, Y.; Zhang, L.; Xu, L.; Zhao, Y. Urban Ecosystem Health Assessment and Its Application in Management: A Multi-Scale Perspective. Entropy 2012, 15, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, L.; Qiu, Q.; Chen, H.; Wu, T.; Shao, G. Assessment of Regional Ecosystem Health—A Case Study of the Golden Triangle of Southern Fujian Province, China. Int. J. Environ. Res. Public Health 2018, 15, 802. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Cai, Z.; Xu, D.; Lin, W.; Gao, J.; Li, L. Land Use Change and Ecosystem Health Assessment on Shanghai–Hangzhou Bay, Eastern China. Land 2022, 11, 867. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A Need for Relevant Indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Kluza, K.; Zioło, M.; Bąk, I.; Spoz, A. Achieving Environmental Policy Objectives through the Implementation of Sustainable Development Goals. The Case for European Union Countries. Energies 2021, 14, 2129. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Domingues, J.P.; Dima, A.M. Mapping the Sustainable Development Goals Relationships. Sustainability 2020, 12, 3359. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report 2023 Special Edition; The Sustainable Development Goals Report 2023; United Nations: New York, NY, USA, 2023; pp. 37–39. [Google Scholar]
- Stoycheva, V.; Geneletti, D. A Review of Regulating Ecosystem Services in the Context of Urban Planning. J. Bulg. Geogr. Soc. 2023, 48, 27–42. [Google Scholar] [CrossRef]
- Caprioli, C.; Bottero, M.; Zanetta, E.; Mondini, G. Ecosystem Services in Land-Use Planning: An Application for Assessing Transformation Scenarios at the Local Scale. Smart Innov. Syst. Technol. 2021, 178, 1332–1341. [Google Scholar] [CrossRef]
- Calzolari, C.; Tarocco, P.; Lombardo, N.; Marchi, N.; Ungaro, F. Assessing Soil Ecosystem Services in Urban and Peri-Urban Areas: From Urban Soils Survey to Providing Support Tool for Urban Planning. Land Use Policy 2020, 99, 105037. [Google Scholar] [CrossRef]
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L. Distilling the Role of Ecosystem Services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Cherubini, F.; Fu, B.; Pereira, P. Prioritizing Sustainable Development Goals and Linking Them to Ecosystem Services: A Global Expert’s Knowledge Evaluation. Geogr. Sustain. 2020, 1, 321–330. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Cherubini, F.; Pereira, P. Integrate Ecosystem Services into Socio-Economic Development to Enhance Achievement of Sustainable Development Goals in the Post-Pandemic Era. Geogr. Sustain. 2021, 2, 68–73. [Google Scholar] [CrossRef]
- Maes, M.J.A.; Jones, K.E.; Toledano, M.B.; Milligan, B. Mapping Synergies and Trade-Offs between Urban Ecosystems and the Sustainable Development Goals. Environ. Sci. Policy 2019, 93, 181–188. [Google Scholar] [CrossRef]
- Rozas-Vásquez, D.; Spyra, M.; Jorquera, F.; Molina, S.; Caló, N.C. Ecosystem Services Supply from Peri-Urban Landscapes and Their Contribution to the Sustainable Development Goals: A Global Perspective. Land 2022, 11, 2006. [Google Scholar] [CrossRef]
- Roy, H.-Y.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5.1 Guidance on the Application of the Revised Structure. 2018. Available online: https://www.zemeunvalsts.lv/documents/view/8b6dd7db9af49e67306feb59a8bdc52c/Common%20International%20Classification%20of%20Ecosystem%20Services%20Guidance-V51-01012018.pdf (accessed on 4 July 2024).
- IAEG-SDGs IAEG-SDGs—SDG Indicators. Available online: https://unstats.un.org/sdgs/iaeg-sdgs/ (accessed on 28 December 2023).
- Strollo, A.; Smiraglia, D.; Bruno, R.; Assennato, F.; Congedo, L.; De Fioravante, P.; Giuliani, C.; Marinosci, I.; Riitano, N.; Munafò, M. Land Consumption in Italy. J. Maps 2020, 16, 113–123. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliú, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-Functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Lejano, R.P. Climate Change and the Relational City. Cities 2019, 85, 25–29. [Google Scholar] [CrossRef]
- Santos, M.M.; Lanzinha, J.C.G.; Ferreira, A.V. Review on Urbanism and Climate Change. Cities 2021, 114, 103176. [Google Scholar] [CrossRef]
- Arnell, N.W. The Implications of Climate Change for Emergency Planning. Int. J. Disaster Risk Reduct. 2022, 83, 103425. [Google Scholar] [CrossRef]
- Di Pirro, E.; Sallustio, L.; Sgrigna, G.; Marchetti, M.; Lasserre, B. Strengthening the Implementation of National Policy Agenda in Urban Areas to Face Multiple Environmental Stressors: Italy as a Case Study. Environ. Sci. Policy 2022, 129, 1–11. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M. Monitoring the Performance of Sustainable Development Goals in the Italian Regions. Sustainability 2023, 15, 14094. [Google Scholar] [CrossRef]
- Romano, B. (Ed.) Pianificazione Sostenibile del Territorio; Verdone Editore: Teramo, Italy, 2014; ISBN 9788896868270. [Google Scholar]
- Romano, B.; Fiorini, L.; Zullo, F.; Marucci, A. Urban Growth Control DSS Techniques for De-Sprinkling Process in Italy. Sustainability 2017, 9, 1852. [Google Scholar] [CrossRef]
- Fiorini, L.; Zullo, F.; Marucci, A.; Romano, B. Land Take and Landscape Loss: Effect of Uncontrolled Urbanization in Southern Italy. J. Urban Manag. 2019, 8, 42–56. [Google Scholar] [CrossRef]
- Romano, B.; Zullo, F.; Saganeiti, L.; Montaldi, C. Evaluation of Cut-off Values in the Control of Land Take in Italy towards the SDGs 2030. Land Use Policy 2023, 130, 106669. [Google Scholar] [CrossRef]
- Marucci, A.; Zullo, F.; Fiorini, L.; Romano, B. The Role of Infrastructural Barriers and Gaps on Natura 2000 Functionality in Italy: A Case Study on Umbria Region. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 223–235. [Google Scholar] [CrossRef]
- Sargolini, M.; Pierantoni, I.; Renzi, A.; Perna, P. Sun Life Strategia per La Gestione della Rete Natura 2000 in Umbria. 2018. Available online: https://www.amazon.it/life-Strategia-gestione-Natura-Umbria/dp/8898774230 (accessed on 4 July 2024).
- Fiorini, L. Progetto Life Imagine Umbria-Life19 IPE/IT/000015-Integrated Management and Grant Investments for the N2000 Network in Umbria; del Dipartimento di Ingegneria Civile, Edile-Architettura e Ambientale dell’Università degli Studi dell’Aquila: Aquila, Italy, 2022; p. 36. [Google Scholar]
- Ronchi, S.; Arcidiacono, A.; Di Martino, V. Il Progetto Soil4Life. In Consumo di Suolo, Servizi Ecosistemici e Green Infrastructures: Metodi, Ricerche e Progetti Innovativi per Incrementare il Capitale Naturale e Migliorare la Resilienza Urbana; Rapporto CRCS 2022; INU Edizioni: Roma, Italy, 2022; pp. 253–257. ISBN 8876032339. [Google Scholar]
- Salata, S.; Giaimo, C.; Alberto Barbieri, C.; Garnero, G. The Utilization of Ecosystem Services Mapping in Land Use Planning: The Experience of LIFE SAM4CP Project. J. Environ. Plan. Manag. 2020, 63, 523–545. [Google Scholar] [CrossRef]
- Giaimo, C.; Salata, S. Ecosystem Services Assessment Methods for Integrated Processes of Urban Planning. The Experience of LIFE SAM4CP towards Sustainable and Smart Communities. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 290, p. 12116. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and Classifying Ecosystem Services for Decision Making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Roy, H.-Y.; Potschi, M. Classifying Ecosystem Services_HUGIN OpenNESS.Pdf. 2013, pp. 1–4. Available online: https://openness.hugin.com/example/cices (accessed on 4 July 2024).
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Liski, J.; Lehtonen, A.; Palosuo, T.; Peltoniemi, M.; Eggers, T.; Muukkonen, P.; Mäkipää, R. Carbon Accumulation in Finland’s Forests 1922–2004–an Estimate Obtained by Combination of Forest Inventory Data with Modelling of Biomass, Litter and Soil. Ann. For. Sci. 2006, 63, 687–697. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.; Slosberg, R. Mitigating New York City’s Heat Island with Urban Forestry, Living Roofs, and Light Surfaces; A Report to the New York State Energy Research and Development Authority; 2006; pp. 1–5. Available online: https://www.researchgate.net/publication/242139673_Mitigating_New_York_City’s_heat_island_with_urban_forestry_living_roofs_and_light_surfaces (accessed on 4 July 2024).
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. How Much Does Agriculture Depend on Pollinators? Lessons from Long-Term Trends in Crop Production. Ann. Bot. 2009, 103, 1579–1588. [Google Scholar] [CrossRef] [PubMed]
- Liquete, C.; Cid, N.; Lanzanova, D.; Grizzetti, B.; Reynaud, A. Perspectives on the Link between Ecosystem Services and Biodiversity: The Assessment of the Nursery Function. Ecol. Indic. 2016, 63, 249–257. [Google Scholar] [CrossRef]
- Benvenuti, S. Weed Seed Movement and Dispersal Strategies in the Agricultural Environment. Weed Biol. Manag. 2007, 7, 141–157. [Google Scholar] [CrossRef]
- Pinto, L.V.; Inacio, M.; Ferreira, C.S.S.; Ferreira, A.D.; Pereira, P. Ecosystem Services and Well-Being Dimensions Related to Urban Green Spaces–A Systematic Review. Sustain. Cities Soc. 2022, 85, 104072. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Q.; He, C.; Chen, P.; Yin, D.; Zhou, Y.; Bai, Y. A Bibliographic Review of the Relationship between Ecosystem Services and Human Well-Being. Environ. Dev. Sustain. 2024, 26, 1–28. [Google Scholar] [CrossRef]
- McCartney, M.; Cai, X.; Smakhtin, V. Evaluating the Flow Regulating Functions of Natural Ecosystems in the Zambezi River Basin; IWMI: Colombo, Sri Lanka, 2013; Volume 148, ISBN 9290907630. [Google Scholar]
- Burel, F. Hedgerows and Their Role in Agricultural Landscapes. CRC Crit. Rev. Plant Sci. 1996, 15, 169–190. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, J.; Robles, A.B.; González-Rebollar, J.L. Two-Year Evaluation of Fuelbreaks Grazed by Livestock in the Wildfire Prevention Program in Andalusia (Spain). Agric. Ecosyst. Environ. 2011, 141, 13–22. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Witt, A.; Koschke, L.; Makeschin, F. Making Use of the Ecosystem Services Concept in Regional Planning—Trade-Offs from Reducing Water Erosion. Landsc. Ecol. 2014, 29, 1377–1391. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking Soils to Ecosystem Services—A Global Review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Duarte, C.M. Coastal Eutrophication Research: A New Awareness. Hydrobiologia 2009, 629, 263–269. [Google Scholar] [CrossRef]
- Finlay, J.C.; Small, G.E.; Sterner, R.W. Human Influences on Nitrogen Removal in Lakes. Science 2013, 342, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Maes, J.; Hauck, J.; Paracchini, M.L.; Ratamäki, O.; Termansen, M.; Perez-Soba, M.; Kopperoinen, L.; Rankinen, K.; Schänger, J.P.; Henrys, P.; et al. A Spatial Assessment of Ecosystem Services in Europe: Methods, Case Studies and Policy Analysis—Phase 2 Synthesis Report; Partnership for European Environmental Research: Rome, Italy, 2013. [Google Scholar]
- Steingröver, E.G.; Geertsema, W.; van Wingerden, W.K.R.E. Designing Agricultural Landscapes for Natural Pest Control: A Transdisciplinary Approach in the Hoeksche Waard (The Netherlands). Landsc. Ecol. 2010, 25, 825–838. [Google Scholar] [CrossRef]
- Droby, S. Improving Quality and Safety of Fresh Fruits and Vegetables after Harvest by the Use of Biocontrol Agents and Natural Materials. In I International Symposium on Natural Preservatives in Food Systems 709; ISHS: Princeton, NJ, USA, 2005; pp. 45–52. [Google Scholar]
- Humborg, C.; Conley, D.J.; Rahm, L.; Wulff, F.; Cociasu, A.; Ittekkot, V. Silicon Retention in River Basins: Far-Reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. AMBIO J. Hum. Environ. 2000, 29, 45–50. [Google Scholar] [CrossRef]
- Hassan, R. Millenium Ecosystem Assessment Series: Ecosystems and Human Well-Being: Current State and Trends; Findings of the Condition and Trends Working Group; Island Press: Washington, DC, USA, 2005; ISBN 1559632283. [Google Scholar]
- Onur, A.C.; Tezer, A. Ecosystem Services Based Spatial Planning Decision Making for Adaptation to Climate Changes. Habitat. Int. 2015, 47, 267–278. [Google Scholar] [CrossRef]
- Blum, J. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain. In Urban Forests; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 21–54. ISBN 1315366088. [Google Scholar]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem Service Bundles along the Urban-Rural Gradient: Insights for Landscape Planning and Management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef]
- Gebre, T.; Gebremedhin, B. The Mutual Benefits of Promoting Rural-Urban Interdependence through Linked Ecosystem Services. Glob. Ecol. Conserv. 2019, 20, e00707. [Google Scholar] [CrossRef]
- Munang, R.; Thiaw, I.; Alverson, K.; Liu, J.; Han, Z. The Role of Ecosystem Services in Climate Change Adaptation and Disaster Risk Reduction. Curr. Opin. Environ. Sustain. 2013, 5, 47–52. [Google Scholar] [CrossRef]
- Ronchi, S.; Arcidiacono, A. Adopting an Ecosystem Services-Based Approach for Flood Resilient Strategies: The Case of Rocinha Favela (Brazil). Sustainability 2018, 11, 4. [Google Scholar] [CrossRef]
- Inkoom, J.N.; Frank, S.; Greve, K.; Fürst, C. A Framework to Assess Landscape Structural Capacity to Provide Regulating Ecosystem Services in West Africa. J. Environ. Manag. 2018, 209, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Sandholz, S.; Lange, W.; Nehren, U. Governing Green Change: Ecosystem-Based Measures for Reducing Landslide Risk in Rio de Janeiro. Int. J. Disaster Risk Reduct. 2018, 32, 75–86. [Google Scholar] [CrossRef]
- Scholes, R.J. Climate Change and Ecosystem Services. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 537–550. [Google Scholar] [CrossRef]
- Nilsson, M.; Chisholm, E.; Griggs, D.; Howden-Chapman, P.; McCollum, D.; Messerli, P.; Neumann, B.; Stevance, A.-S.; Visbeck, M.; Stafford-Smith, M. Mapping Interactions between the Sustainable Development Goals: Lessons Learned and Ways Forward. Sustain. Sci. 2018, 13, 1489–1503. [Google Scholar] [CrossRef] [PubMed]
- Griggs, D.J.; Nilsson, M.; Stevance, A.; McCollum, D. A Guide to SDG Interactions: From Science to Implementation; International Council for Science: Paris, France, 2017. [Google Scholar]
- Wilkerson, M.L.; Mitchell, M.G.E.; Shanahan, D.; Wilson, K.A.; Ives, C.D.; Lovelock, C.E.; Rhodes, J.R. The Role of Socio-Economic Factors in Planning and Managing Urban Ecosystem Services. Ecosyst. Serv. 2018, 31, 102–110. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Z.; Xing, Q.; Sun, J.; Xia, T.; Yu, H. Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province. Sustainability 2021, 13, 11092. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. Ecosystem Services in Urban Plans: What Is There, and What Is Still Needed for Better Decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Jaligot, R.; Chenal, J. Integration of Ecosystem Services in Regional Spatial Plans in Western Switzerland. Sustainability 2019, 11, 313. [Google Scholar] [CrossRef]
- Pukowiec-Kurda, K. The Urban Ecosystem Services Index as a New Indicator for Sustainable Urban Planning and Human Well-Being in Cities. Ecol. Indic. 2022, 144, 109532. [Google Scholar] [CrossRef]
- Ronchi, S. Ecosystem Services for Planning: A Generic Recommendation or a Real Framework? Insights from a Literature Review. Sustainability 2021, 13, 6595. [Google Scholar] [CrossRef]
- Saco, P.M.; McDonough, K.R.; Rodriguez, J.F.; Rivera-Zayas, J.; Sandi, S.G. The Role of Soils in the Regulation of Hazards and Extreme Events. Philos. Trans. R. Soc. B 2021, 376, 20200178. [Google Scholar] [CrossRef] [PubMed]
- European Commission. The EU #NatureRestoration Law. Available online: https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-law_en (accessed on 21 May 2024).
- Hu, S.; Yang, Y.; Li, A.; Liu, K.; Mi, C.; Shi, R. Integrating Ecosystem Services into Assessments of Sustainable Development Goals: A Case Study of the Beijing-Tianjin-Hebei Region, China. Front. Environ. Sci. 2022, 10, 897792. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. A Global View of Regulatory Ecosystem Services: Existed Knowledge, Trends, and Research Gaps. Ecol. Process. 2020, 9, 40. [Google Scholar] [CrossRef]
- Kosanic, A.; Petzold, J. A Systematic Review of Cultural Ecosystem Services and Human Wellbeing. Ecosyst. Serv. 2020, 45, 101168. [Google Scholar] [CrossRef]
ReMES | ReMES Description (CICES V4.3) | References |
---|---|---|
AC | (i) Global climate regulation by reduction in greenhouse gas concentrations. (ii) Mediation of ambient atmospheric conditions (including micro- and mesoscale climates) by virtue of presence of plants. | [53,54,55] |
LM | (i) The presence of ecological conditions (usually habitats) necessary for sustaining populations of species. (ii) The fertilization of crops by plants or animals. (iii) The dispersal of seeds and spores. | [56,57,58] |
MPCA | Maintenance of physical, chemical, and abiotic conditions that affect people’s well-being or comfort. | [59,60] |
RBF | (i) The reduction in the loss of material by virtue of the stabilizing effects of the presence of plants and animals. (ii) The reduction in the speed of movement of solid material by virtue of the stabilizing effects of the presence of plants and animals. (iii) The regulation of water flows by virtue of the chemical and physical properties or characteristics of ecosystems. (iv) The reduction in the speed of movement of air by virtue of the presence of plants and animals. (v) The reduction in the incidence, intensity, or speed of spread of fire by virtue of the presence of plants and animals. (vi) Mediation of solid flows by natural abiotic structures. (vii) Mediation of liquid flows by natural abiotic structures. (viii) Mediation of gaseous flows by natural abiotic structures. | [61,62,63,64] |
RSQ | (i) Biological decomposition of minerals. (ii) Decomposition of biological materials and their incorporation in soils. | [65] |
WC | (i) Maintenance of the chemical condition of freshwater by plant or animal species. (ii) Maintenance of the chemical conditions of saltwater by plant or animal species. | [66,67,68] |
PDC | (i) The reduction by biological interactions in the incidence of species that prevent or reduce the output of food, material or energy from ecosystems, or their cultural importance, by consumption of biomass or competition. (ii) The reduction by biological interactions in the incidence of species that otherwise could prevent or reduce the output of food, material or energy from ecosystems, or their cultural importance, by hindering or damaging the ecological functioning of useful species. | [69,70] |
MWNL | (i) The reduction in concentration of an organic or inorganic substance by mixing in a freshwater ecosystem. (ii) The reduction in concentration of an organic or inorganic substance by mixing in the atmosphere. (iii) Mediation of waste, toxic substances, and other nuisances by natural chemical and physical processes. | [71] |
MWL | (i) Transformation of an organic or inorganic substance by a species of plant, animal, bacteria, fungi, or algae. (ii) The fixing and storage of an organic or inorganic substance by a species of plant, animal, bacteria, fungi, or algae. | [72] |
SDG Target Description | Connected ReMESs | References |
---|---|---|
13.2—Integrate climate change measures into national policies, strategies and planning. | MPCA–AC-MWL | [73,74] |
11.a—Support positive economic, social, and environmental links between urban, peri-urban and rural areas by strengthening national and regional development planning. | AC–RBF-MWL | [74,75,76] |
11.b—By 2020, substantially increase the number of cities and human settlements adopting and implementing integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to climate change, and resilience to disasters, and develop and implement, in line with the Sendai Framework for disaster risk reduction 2015–2030, holistic disaster risk management at all levels. | AC–RBF-MWL | [77] |
13.b—Promote mechanisms for raising capacity for effective climate-change-related planning and management in the least developed countries and small-island developing states, including focusing on women, youth, and local and marginalized communities. | AC–RBF-MWL | [73,78,79] |
15.9—By 2020, integrate ecosystem and biodiversity values into national and local planning, development processes, poverty reduction strategies, and accounts. | AC–LM–MPCA–RBF-RSQ–WC–MWNL-MWL | [73,78,79] |
Ecosystem Services | N. of SDGs | N. of SDG Targets | N. of ISTAT Indicators |
---|---|---|---|
Atmospheric composition and conditions | 5 | 10 | 28 |
Lifecycle maintenance, habitat, and gene pool protection | 4 | 8 | 15 |
Maintenance of physical, chemical, and abiotic conditions | 5 | 7 | 29 |
Mediation of waste, toxic substances, and other nuisances by non-living processes | 6 | 9 | 34 |
Mediation of waste or toxic substances of anthropogenic origin by living processes | 5 | 10 | 38 |
Regulation of baseline flows and extreme events | 5 | 9 | 12 |
Pest and disease control | 5 | 16 | 16 |
Regulation of soil quality | 4 | 5 | 10 |
Water conditions | 6 | 9 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falasca, F.; Marucci, A. Supporting Sustainable Development Goals through Regulation and Maintenance Ecosystem Services. Sustainability 2024, 16, 6744. https://doi.org/10.3390/su16166744
Falasca F, Marucci A. Supporting Sustainable Development Goals through Regulation and Maintenance Ecosystem Services. Sustainability. 2024; 16(16):6744. https://doi.org/10.3390/su16166744
Chicago/Turabian StyleFalasca, Federico, and Alessandro Marucci. 2024. "Supporting Sustainable Development Goals through Regulation and Maintenance Ecosystem Services" Sustainability 16, no. 16: 6744. https://doi.org/10.3390/su16166744
APA StyleFalasca, F., & Marucci, A. (2024). Supporting Sustainable Development Goals through Regulation and Maintenance Ecosystem Services. Sustainability, 16(16), 6744. https://doi.org/10.3390/su16166744