Life Cycle Sustainability Assessment of Building Construction: A Case Study in China
Abstract
:1. Introduction
2. Methods
2.1. Life Cycle Models
2.2. Integration of the Three Pillars
2.3. Description of the Studied Case
2.4. Goal and Scope Definition
2.5. Life Cycle Inventory
3. Results
3.1. LCA Results
3.2. LCC Results
3.3. S-LCA Results
3.4. Integration of the Three Pillars
3.5. Interpretation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards life cycle sustainability assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef]
- Costa, D.; Quinteiro, P.; Dias, A.C. A systematic review of life cycle sustainability assessment: Current state, methodological challenges, and implementation issues. Sci. Total Environ. 2019, 686, 774–787. [Google Scholar] [CrossRef]
- Klöpffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Integrating triple bottom line input–output analysis into life cycle sustainability assessment framework: The case for US buildings. Int. J. Life Cycle Assess. 2014, 19, 1488–1505. [Google Scholar] [CrossRef]
- Visentin, C.; da Silva Trentin, A.W.; Braun, A.B.; Thomé, A. Life cycle sustainability assessment: A systematic literature review through the application perspective, indicators, and methodologies. J. Clean. Prod. 2020, 270, 122509. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Halog, A.; Cloutier, S. Systems thinking for life cycle sustainability assessment: A review of recent developments, applications, and future perspectives. Sustainability 2017, 9, 706. [Google Scholar] [CrossRef]
- Hossaini, N.; Reza, B.; Akhtar, S.; Sadiq, R.; Hewage, K. AHP based life cycle sustainability assessment (LCSA) framework: A case study of six storey wood frame and concrete frame buildings in Vancouver. J. Environ. Plan. Manag. 2015, 58, 1217–1241. [Google Scholar] [CrossRef]
- Janjua, S.; Sarker, P.; Biswas, W. Sustainability assessment of a residential building using a life cycle assessment approach. Chem. Eng. Trans. 2019, 72, 19–24. [Google Scholar]
- Arshad, H.; Thaheem, M.J.; Bakhtawar, B.; Shrestha, A. Evaluation of road infrastructure projects: A life cycle sustainability-based decision-making approach. Sustainability 2021, 13, 3743. [Google Scholar] [CrossRef]
- Bianchi, P.F.; Yepes, V.; Vitorio Jr, P.C.; Kripka, M. Study of alternatives for the design of sustainable low-income housing in Brazil. Sustainability 2021, 13, 4757. [Google Scholar] [CrossRef]
- Filho, M.V.; da Costa, B.B.; Najjar, M.; Figueiredo, K.V.; de Mendonça, M.B.; Haddad, A.N. Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis. Buildings 2022, 12, 181. [Google Scholar] [CrossRef]
- Gencturk, B.; Hossain, K.; Lahourpour, S. Life cycle sustainability assessment of RC buildings in seismic regions. Eng. Struct. 2016, 110, 347–362. [Google Scholar] [CrossRef]
- Balasbaneh, A.T.; Marsono, A.K.B.; Khaleghi, S.J. Sustainability choice of different hybrid timber structure for low medium cost single-story residential building: Environmental, economic and social assessment. J. Build. Eng. 2018, 20, 235–247. [Google Scholar] [CrossRef]
- Liu, S.; Qian, S. Towards sustainability-oriented decision making: Model development and its validation via a comparative case study on building construction methods. Sustain. Dev. 2019, 27, 860–872. [Google Scholar] [CrossRef]
- Tokede, O.O.; Roetzel, A.; Ruge, G. A holistic life cycle sustainability evaluation of a building project. Sustain. Cities Soc. 2021, 73, 103107. [Google Scholar] [CrossRef]
- Figueiredo, K.; Pierott, R.; Hammad, A.W.; Haddad, A. Sustainable material choice for construction projects: ALife Cycle Sustainability Assessment framework based on Fuzzy-AHP. Build. Environ. 2021, 196, 107805. [Google Scholar] [CrossRef]
- Francis, A.; Thomas, A. A framework for dynamic life cycle sustainability assessment and policy analysis of built environment through a system dynamics approach. Sustain. Cities Soc. 2022, 76, 103521. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Galeana, I.B.; Llatas, C.; Montes, M.V.; Hoxha, E.; Passer, A. How to conduct consistent environmental, economic, and social assessment during the building design process. A BIM-based Life Cycle Sustainability Assessment method. J. Build. Eng. 2022, 45, 103516. [Google Scholar] [CrossRef]
- Huang, T.; Shi, F.; Tanikawa, H.; Fei, J.; Han, J. Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis. Resour. Conserv. Recycl. 2013, 72, 91–101. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, Y.; Yan, D.; Guo, S.Y.; Liu, Y.; Jiang, Y. Definition and Modelling of Energy Consumption and Carbon Emissions in China’s Building Sector. Build. Sci. 2020, 2, 288–297. (In Chinese) [Google Scholar]
- Yu, D.; Tan, H.; Ruan, Y. A future bamboo-structure residential building prototype in China: Life cycle assessment of energy use and carbon emission. Energy Build. 2011, 43, 2638–2646. [Google Scholar] [CrossRef]
- Satola, D.; Kristiansen, A.B.; Houlihan-Wiberg, A.; Gustavsen, A.; Ma, T.; Wang, R.Z. Comparative life cycle assessment of various energy efficiency designs of a container-based housing unit in China: A case study. Build. Environ. 2020, 186, 107358. [Google Scholar] [CrossRef]
- Lu, K.; Jiang, X.; Yu, J.; Tam, V.W.; Skitmore, M. Integration of life cycle assessment and life cycle cost using building information modeling: A critical review. J. Clean. Prod. 2021, 285, 125438. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T. A life cycle assessment model for evaluating the environmental impacts of building construction in Hong Kong. Build. Environ. 2015, 89, 183–191. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T. A social life cycle assessment model for building construction in Hong Kong. Int. J. Life Cycle Assess. 2015, 20, 1166–1180. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T. A modeling framework to evaluate sustainability of building construction based on LCSA. Int. J. Life Cycle Assess. 2016, 21, 555–568. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; Van Zelm, R. ReCiPe 2008: A Life Cycle Impact Assessment Method which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Ministry of Housing, Spatial Planning and the Environment: The Hague, The Netherlands, 2009; pp. 1–126. [Google Scholar]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Llatas, C.; Soust-Verdaguer, B.; Passer, A. Implementing Life Cycle Sustainability Assessment during design stages in Building Information Modelling: From systematic literature review to a methodological approach. Build. Environ. 2020, 182, 107164. [Google Scholar] [CrossRef]
- Alejandrino, C.; Mercante, I.; Bovea, M.D. Life cycle sustainability assessment: Lessons learned from case studies. Environ. Impact Assess. Rev. 2021, 87, 106517. [Google Scholar] [CrossRef]
- Thies, C.; Kieckhäfer, K.; Spengler, T.S.; Sodhi, M.S. Operations research for sustainability assessment of products: A review. Eur. J. Oper. Res. 2019, 274, 1–21. [Google Scholar] [CrossRef]
- Balasbaneh, A.T.; Yeoh, D.; Juki, M.I. Life Cycle Sustainability Assessment Study of Conventional and Prefabricated Construction Methods: MADM Analysis. In Life Cycle Sustainability Assessment (LCSA). Environmental Footprints and Eco-Design of Products and Processes; Springer: Singapore, 2021; pp. 179–201. [Google Scholar]
- Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-attribute decision making: A simulation comparison of select methods. Eur. J. Oper. Res. 1998, 107, 507–529. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, P.; Hossain, M.U.; Fang, Y.; He, Y.; Li, H. An Index of Completeness (IoC) of life cycle assessment: Implementation in the building sector. J. Clean. Prod. 2021, 283, 124672. [Google Scholar] [CrossRef]
- Dong, Y.; Ng, S.T.; Liu, P. A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic review. Build. Environ. 2021, 204, 108162. [Google Scholar] [CrossRef]
- Heijungs, R. The Weighting Step in Life Cycle Impact Assessment. Three Explorations at the Midpoint and Endpoint Level. Weighting with Damage Costs; CML, Leiden University: Leiden, The Netherlands, 2008. [Google Scholar]
- Lu, W.; Du, L.; Tam, V.W.; Yang, Z.; Lin, C.; Peng, C. Evolutionary game strategy of stakeholders under the sustainable and innovative business model: A case study of green building. J. Clean. Prod. 2022, 333, 130136. [Google Scholar] [CrossRef]
- Backes, J.G.; Traverso, M. Application of life cycle sustainability assessment in the construction sector: A systematic literature review. Processes 2021, 9, 1248. [Google Scholar] [CrossRef]
Category | Item | Amount | Unit |
---|---|---|---|
Material | Concrete C15 | 1000 | m3 |
Concrete C20 | 800 | m3 | |
Concrete C30 | 17,200 | m3 | |
Brick | 8000 | m2 | |
Aluminum | 12,000 | m2 | |
Cement | 60,000 | kg | |
Plaster | 15,000 | kg | |
Rebar | 2750 | ton | |
Glass | 150,000 | kg | |
Timber formwork | 12,000 | m2 | |
Transport | Ready-mix concrete | 5 | km |
Cement | 5 | km | |
Plaster | 5 | km | |
Aluminum | 5 | km | |
Timber formwork | 5 | km | |
Rebar | 10 | km | |
Brick | 25 | km | |
Glass | 5 | km | |
Tower crane | 10 | km | |
Hoist | 10 | km | |
Excavator | 10 | km | |
Energy and Resource | Electricity | 225,000 | kWh |
Diesel | 1000 | L | |
Water | 20,000,000 | L | |
Gasoline | 6800 | L | |
Construction Waste | Waste concrete | 1% | |
Waste rebar | 2% | ||
Waste brick | 2% | ||
Waste cement | 1% |
Item | Included in the Project (Yes/No) |
---|---|
Precast concrete element | No |
Dust reduction by spraying water | Yes |
Dust reduction by hard pavement | Yes |
Dust or noise reduction by physical barrier | Yes |
Adoption of biofuel | No |
Waste material recycling | Yes |
Adoption of EURO 5 trucks | Yes |
Generation of on-site renewable energy | No |
Natural ventilation | Yes |
Steel formwork | No |
Lift modernization program | No |
LED Bulkhead Light Fittings and two-level Lighting System | No |
Twin water tanks and rainwater harvesting system | No |
On-site measures, e.g., metal hoarding and scaffolding | Yes |
Green roof and enhanced tree protection measures | No |
Specification, e.g., VOC free deep penetrating water proofing treatment | No |
Application of dual flush water and sensor faucet | No |
On-site stormwater management | No |
Safety provisions on site for workers to use | Yes |
Waste sorting room in building | No |
Design (recycling at source) | No |
Water capture + recycling | No |
Apprenticeships | No |
Communication with local schools/groups | Yes |
Impact Category | Midpoint | Endpoint | ||||||
---|---|---|---|---|---|---|---|---|
Project | Per Unit | Per GFA (m2) | Unit | Project | Per Unit | Per GFA (m2) | Unit | |
Climate change | 1.75 × 107 | 8.59 × 104 | 5.01 × 102 | kg CO2 eq | 2.45 × 101 | 1.20 × 10−1 | 0.00070078 | DALY |
Climate change Ecosystems | 1.39 × 10−1 | 6.81 × 10−4 | 3.97 × 10−6 | species.yr | ||||
Ozone depletion | 1.08 | 5.30 × 10−3 | 3.09 × 10−5 | kg CFC-11 eq | 2.82 × 10−3 | 1.38 × 10−5 | 8.0642 × 10−8 | DALY |
Human toxicity | 6.21 × 106 | 3.04 × 104 | 1.77 × 102 | kg 1,4-DB eq | 4.34 | 2.13 × 10−2 | 0.00012409 | DALY |
Photochemical oxidant formation | 4.74 × 104 | 2.32 × 102 | 1.35 | kg NMVOC | 1.85 × 10−3 | 9.06 × 10−6 | 5.2827 × 10−8 | DALY |
Particulate matter formation | 3.16 × 104 | 1.55 × 102 | 9.02 × 10−1 | kg PM10 eq | 8.10 | 3.97 × 10−2 | 0.00023458 | DALY |
Ionizing radiation | 3.26 × 106 | 1.60 × 104 | 9.33 × 101 | kg U235 eq | 5.35 × 10−2 | 2.62 × 10−4 | 1.5296 × 10−6 | DALY |
Terrestrial acidification | 5.50 × 104 | 2.70 × 102 | 1.57 | kg SO2 eq | 3.19 × 10−4 | 1.56 × 10−6 | 9.1158 × 10−9 | species.yr |
Freshwater eutrophication | 5.57 × 103 | 2.73 × 101 | 1.59 × 10−1 | kg P eq | 2.45 × 10−4 | 1.20 × 10−6 | 6.9894 × 10−9 | species.yr |
Marine eutrophication | 2.56 × 103 | 1.26 × 101 | 7.33 × 10−2 | kg N eq | species.yr | |||
Terrestrial ecotoxicity | 2.07 × 103 | 1.01 × 101 | 5.92 × 10−2 | kg 1,4-DB eq | 2.63 × 10−4 | 1.29 × 10−6 | 7.5158 × 10−9 | species.yr |
Freshwater ecotoxicity | 1.38 × 105 | 6.77 × 102 | 3.94 | kg 1,4-DB eq | 3.59 × 10−5 | 1.76 × 10−7 | 1.0265 × 10−9 | species.yr |
Marine ecotoxicity | 1.43 × 105 | 6.99 × 102 | 4.07 | kg 1,4-DB eq | 1.14 × 10−7 | 5.59 × 10−10 | 3.2607 × 10−12 | species.yr |
Agricultural land occupation | 2.70 × 106 | 1.32 × 104 | 7.70 × 101 | m2a | 3.02 × 10−2 | 1.48 × 10−4 | 8.6282 × 10−7 | species.yr |
Urban land occupation | 1.58 × 105 | 7.74 × 102 | 4.51 | m2a | 3.05 × 10−3 | 1.49 × 10−5 | 8.7043 × 10−8 | species.yr |
Natural land transformation | 2.99 × 103 | 1.47 × 101 | 8.55 × 10−2 | m2 | 4.65 × 10−3 | 2.28 × 10−5 | 1.3291 × 10−7 | species.yr |
Water depletion | 1.63 × 105 | 7.99 × 102 | 4.66 | m3 | $ | |||
Metal depletion | 2.95 × 106 | 1.45 × 104 | 8.42 × 101 | kg Fe eq | 2.11 × 105 | 1.03 × 103 | 6.02 | $ |
Fossil depletion | 4.07 × 106 | 1.99 × 104 | 1.16 × 102 | kg oil eq | 6.54 × 107 | 3.20 × 105 | 1.87 × 103 |
Stakeholder | Impact Category | Resource | Material | Construction | Total |
---|---|---|---|---|---|
Worker | 1 Freedom of association and collective bargaining | −1.36 × 10−2 | −2.91 | 0.00 | −2.93 |
2 Child labor | 6.99 × 10−3 | 1.50 | 0.00 | 1.51 | |
3 Fair salary | 1.67 × 10−2 | 3.59 | −5.45 × 10−2 | 3.55 | |
4 Working hours | 1.55 × 10−2 | 3.33 | −1.01 × 10−1 | 3.25 | |
5 Forced labors | −4.59 × 10−3 | −9.87 × 10−1 | −9.07 × 10−2 | −1.08 | |
6 Equal opportunities/discrimination | 3.00 × 10−3 | 6.43 × 10−1 | −4.88 × 10−2 | 5.97 × 10−1 | |
7 Health and safety | 1.07 × 10−2 | 2.31 | 1.01 | 3.33 | |
Local Community | 8 Access to material resources (e.g., sanitation, school) | 4.40 × 10−3 | 9.45 × 10−1 | 4.77 × 10−2 | 9.97 × 10−1 |
9 Cultural heritages | 0.00 | 0.00 | 8.91 × 10−2 | 8.91 × 10−2 | |
10 Safe/healthy living conditions | 2.98 × 10−3 | 6.41 × 10−1 | 1.22 | 1.87 | |
11 Community engagement | −3.90 × 10−3 | −8.37 × 10−1 | 5.82 × 10−1 | 9.03 × 10−1 | |
12 Local employment | −3.90 × 10−3 | −8.37 × 10−1 | 3.43 × 10−1 | 3.30 | |
Society | 13 Public commitments to sustainability issues | 1.49 × 10−3 | 3.20 × 10−1 | 1.14 | 1.14 |
Worker | 1.37 × 10−2 | 2.94 | 5.49 × 10−2 | 6.44 × 10−1 | |
Local Community | 0.00 | 0.00 | 1.76 × 10−1 | 5.83 × 10−1 | |
Society | 2.68 × 10−3 | 5.75 × 10−1 | 8.77 × 10−2 | 9.56 × 10−2 | |
Score | 1.74 × 10−3 | 3.73 × 10−1 | 3.18 × 10−1 | 1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Liu, P.; Hossain, M.U. Life Cycle Sustainability Assessment of Building Construction: A Case Study in China. Sustainability 2023, 15, 7655. https://doi.org/10.3390/su15097655
Dong Y, Liu P, Hossain MU. Life Cycle Sustainability Assessment of Building Construction: A Case Study in China. Sustainability. 2023; 15(9):7655. https://doi.org/10.3390/su15097655
Chicago/Turabian StyleDong, Yahong, Peng Liu, and Md. Uzzal Hossain. 2023. "Life Cycle Sustainability Assessment of Building Construction: A Case Study in China" Sustainability 15, no. 9: 7655. https://doi.org/10.3390/su15097655