Photocatalytic Degradation and Adsorptive Removal of Emerging Organic Pesticides Using Metal Oxide and Their Composites: Recent Trends and Future Perspectives
Abstract
:1. Introduction
2. Nanoarchitectures of Metal Oxides and Oxide Perovskites
2.1. Cobalt Oxide
2.2. Copper Oxide
2.3. Zinc Oxide
2.4. Iron Oxide
2.5. Titanium Oxide
2.6. Magnesium Oxide
2.7. Cerium Oxide
2.8. Aluminum Oxide
2.9. Other Metal Oxides
2.10. Effect of Metal Oxide’s Crystalline Structure on the Photocatalytic/Sorption Performance
3. Classification of Pesticides
4. Removal of Pesticides Using Functionalized Metal Oxide Nanomaterials by Adsorption
Adsorbent a | Targeted Pesticides b | Target Operation Parameters | Adsorption Modelling | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pesticide Conc. | Adsorbent Dosage (g) or g/L | pH | Temp. (K) | Time (min) | Kinetics c | Isotherm d | Mechanism e | Qmax (mg/g) or Percentage Removal (%)/Percentage Recovery | |||
Co3O4/G-MCM-41 | Methyl parathion | - | - | - | - | - | PFO, PSO | L, F, DA | - | 175.2 | [274] |
NiO/Co@C | Chlorothalonil | 0.045 g/L | 0.01 g | - | - | 15 | PSO | L | π-CM, H | 62.2 | [275] |
Tebuconazole | 0.045 g/L | 0.01 g | - | - | 15 | PSO | L | π-CM, H | 40.5 | ||
Chlorpyrifos | 0.045 g/L | 0.01 g | - | - | 15 | PSO | L | π-CM, H | 60.3 | ||
Butralin | 0.045 g/L | 0.01 g | - | - | 15 | PSO | L | π-CM, H | 50.2 | ||
Deltamethrin | 0.045 g/L | 0.01 g | - | - | 15 | PSO | L | π-CM, H | 54.1 | ||
Pyridaben | 0.045 g/L | 0.01 g | - | - | 15 | PSO | L | π-CM, H | 51.3 | ||
CeO2 | 2,4-Dichlorophenoxyacetic acid | 0.01 g/L | 0.025 g | - | 308 | 120 | PSO | L, F, S | π–π, e− | 95.78 | [276] |
Fe3O4@ZnAl-LDH@MIL-53(Al) | Triadimefon | 5.0–600 mg kg−1 | 30 g/L | 6 | 308.15 | 5 | PSO | L | π–π, H, C, (π-CM), P | 46.08 | [277] |
MgFe2O4 | Chlorpyrifos | 20 mg/L | 0.01 g/L | 10 | 295 | 360 | PSO | L | - | 4461 | [278] |
Fe3O4 | Atrazine | 50 mg/L | 0.1 g | 2 | 298 | 55 | PFO | L | - | 77.5 | [279] |
Methoxychlor | 50 mg/L | 0.1 g | 2 | 298 | 55 | PFO | L | - | 163.9 | ||
ZnO | Naphthalene | 25 mg/L | 0.012 g | 4 | 298 | 40 | PSO | L, F, T | - | 66.8 | [280] |
CTAB-ZnO | Naphthalene | 25 mg/L | 0.08 g | 4 | 298 | 40 | PSO | L, F, T | - | 89.96 | |
BMTF-IL-ZnO | Naphthalene | 25 mg/L | 0.06 g | 4 | 298 | 40 | PSO | L, F, T | - | 148.3 | |
ZnO/ZnFe2O4 | Atrazine | 50 mL aq. solution | 0.4 g/L | 7 | 298 | 4320 | - | D.A | π–π, H, h, e- | - | [281] |
Fe3O4@SiO2@GO-2- phenylethylamine | Chlorpyrifos | 10 mL aq. Solution | 0.015 g | 7 | 298 | 15 | PSO | S | π–π, H | 88% | [32] |
Malathion | 10 mL aq. Solution | 0.015 g | 7 | 298 | 15 | PSO | S | H | 76% | ||
Parathion | 10 mL aq. Solution | 0.015 g | 7 | 298 | 15 | PSO | S | π–π, H | 85% | ||
Fe3O4/MOF-99 | Dinotefuran | 0.3–1.5 ng/mL | 0.015 g | - | - | 20 | - | - | π–π | 88–107% | [282] |
Thiamethoxam | 0.3–1.5 ng/mL | 0.015 g | - | - | 20 | - | - | π–π | 88–107% | ||
Fe3O4@SiO2@MOF/TiO2 | Triadimenol | 0.001 g/L | 0.04 g | 7 | 298–313.15 | 1–60 | PSO | - | π–π | 90.2–104% | [283] |
Hexaconazole | 0.001 g/L | 0.04 g | 7 | 298–313.15 | 1–60 | PSO | - | π–π | 90.2–104% | ||
Diniconazole | 0.001 g/L | 0.04 g | 7 | 298–313.15 | 1–60 | PSO | - | π–π | 90.2–104% | ||
Fe3O4-GO@MOF-199. | Flusilazole | 0.002 g/L | 0.02 g | - | - | 15 | - | - | h, π–π, H, e− | 0.0356 | [284] |
Fenbuconazole | 0.002 g/L | 0.02 g | - | - | 15 | - | - | h, π–π, H, e− | 0.0342 | ||
Myclobutanil | 0.002 g/L | 0.02 g | - | - | 15 | - | - | h, π–π, H, e− | 0.0324 | ||
Fe3O4–MWCNTs-ZIF-8 | Triazophos | 0.015 g | 0.002–0.08 g/L | 4 | RT | 15 | - | F | - | 3.12 | [285] |
Diazinon | 0.015 g | 0.002–0.08 g/L | 4 | RT | 15 | - | F | - | 2.59 | ||
Phosalone | 0.015 g | 0.002–0.08 g/L | 4 | RT | 15 | - | F | - | 3.80 | ||
Profenofos | 0.015 g | 0.002–0.08 g/L | 4 | RT | 15 | - | F | - | 3.89 | ||
Methidathion | 0.015 g | 0.002–0.08 g/L | 4 | RT | 15 | - | F | - | 2.34 | ||
Ethoprop | 0.015 g | 0.002–0.08 g/L | 4 | RT | 15 | - | F | - | 2.18 | ||
Sulfotep | 0.015 g | 0.002–0.08 g/L | 4 | RT | 15 | - | F | - | 2.84 | ||
Isazofos | 0.015 g | 0.002–0.08 g/L | 4 | RT | 15 | - | F | - | 3 | ||
Chitosan–CuO | Thiophanate-methyl | 0.1 g/L | 0.1 g | 7 | RT | 25 | - | L, F | h | 250 | [286] |
Methomyl | 0.1 g/L | 0.1 g | 7 | RT | 25 | - | L.F | - | 20 | ||
Malathion | 0.02 g/L | 1 g/L | 2 | 303 | 960 | PSO | L, F | - | 322.6 | ||
Chitosan-ZnO | Thiophanate-methyl | 0.1 g/L | 0.1 g | 7 | RT | 25 | - | L, F | h | 100 | |
Methomyl | 0.1 g/L | 0.1 g | 7 | RT | 25 | - | L, F | - | 10 | ||
Permethrin | 0.0001 g/L | 0.5 g | 7 | 298 | 90 | - | - | - | 99% | [287] | |
Fe3O4/CuO/Activa-ted carbon | Imidacloprid | 0.01 g/L | 0.02 g | 7 | 298 | 10 | PSO | F | C | 99% | [288] |
ZnO-IPPs | Chlorpyrifos | 0.01–0.6 g/L | 0.03 g | 2 | 303–323 | 30 | PSO | L, F, T, D. A | - | 47.846 | [289] |
ZnO-CP | Metribuzin | 0.033–0.155 | 0.08 g | 3 | 303–363 | 80 | PSO | F | - | 200 | [290] |
MOM-Fe3O4 | Triclosan | 0.005–0.2 g/L | 0.01–0.05 g/L | 4, 7, 10 | 293, 303, 313 | 600 | PFO | L | - | 103.45 | [291] |
N-NiO@N-Fe3O4@N-ZnO | Atrazine | 0.04 g/L | 0.1 g | 5 | - | 80 | PSO | L | - | 92% | [292] |
MgAl2O4 | Dimethomorph | - | 0.5–2 g | 5.5 | - | 10 | - | - | - | % Recovery = 90–94% | [293] |
Fe3O4 @PS | Lindane | 2, 10, 50, 200 µg/L | 0.02 g/L | - | RT | <20 | PSO | L | - | 10.2 | [294] |
Aldrin | 2, 10, 50, 200 µg/L | 0.02 g/L | - | RT | <20 | PSO | L | - | 24.7 | ||
Dieldrin | 2, 10, 50, 200 µg/L | 2 × 10−5 g/L | - | RT | <20 | PSO | L | - | 21.3 | ||
Endrin | 2, 10, 50, 200 µg/L | 2 × 10−5 g/L | - | RT | <20 | PSO | L | - | 33.5 | ||
MgO | Diazinon | 0.30 g/L | 0.05 or 0.10 g | - | - | <5 | - | - | - | 21–37% | [295] |
Fenitrothion | 0.28 g/L | 0.05 or 0.10 g | - | - | 5–60 | - | - | 27–47% | |||
Fe3O4@nSiO2@mSiO2 | DDT | 0.0015 g/L | 0.05 g | - | - | 15 | PSO | - | - | 94% | [296] |
5. Removal of Pesticides Using Functionalized Metal Oxide Nanomaterials by Photocatalytic Degradation
Photocatalyst | Structure | Target Pesticide | Light Source | Conc. of Pollutant | Conc. of Photocatalyst | Irradiation Time (min) | pH | Degradation Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Co3O4/MCM-41 NPs | MCM-41 nanospheres decorated Co3O4. | methyl parathion | visible | 100 mg/L | 0.25 g | 90 | 8 | 100 | [274] |
MCM-41/Co3O4 nanocomposite | Spherical shape. | acephate | visible | 100 mg/L | 0.25 g | 70 | 8 | 100 | [308] |
Co3O4/MCM-41 nanocomposite | MCM-41 spherical grains decorated by Co3O4 NPs. | omethoate | visible | 50 mg/L | 0.25 g | 30 | >6.5 | 100 | [309] |
Cu/ZnO nanocomposite | Spherical and elliptical. | monocrotophos | visible | 0.5 L | 0.5 g | 180 | 7 | ~90 | [310] |
CuO/TiO2/PANI nanocomposite | CuO/TiO2 spherical NPs embedded in tubular PANI. | chlorpyrifos | visible | 5 mg/L | 45 mg | 90 | 7 | 95 | [35] |
ZnO/CuO nanocomposites | Shape depends on the synthesis conditions. | triclopyr | UV | 10 mg/L | 0.10 g/150 mL | 100 | 4 | 100 | [311] |
CuO NPs | Spherical and flower-like shape. | lambda-cyhalothrin | UV | 10 mg/L | 3 mg/L | 180 | 7 | 99 | [312] |
NiO NPs | Spherical and flower-like shape. | lambda-cyhalothrin | UV | 10 mg/L | 4 mg/L | 180 | 7 | 89 | [312] |
Cu2O/BiVO4 composites | Shape depends on the synthesis conditions. | 4-chlorophenol | visible | 50 mg/L | 5 g/L | 240 | - | 44 | [313] |
Mn-doped zinc oxide/graphene nanocomposite | Spherical particles distributed onto graphene sheets. | 2,4-dichlorophenoxyacetic acid | LED | 25 mg/L | 2 g/L | 120 | 5 | 66.2 | [235] |
WO3 doped ZnO NPs immobilized on glass plates | Heterogenous surface. | 2,4-dichlorophenoxyacetic acid | UV | 25 mg/L | - | 120 | 7 | 80 | [236] |
Nano hydroxyapatite modified CFGO/ZnO nanorod composite | A complex porous surface. | chlorpyrifos | visible | 5 mg/L | 0.1 g | 30 | 3 | 100 | [302] |
WO3 doped ZnO NPs immobilized on glass plates | Heterogenous surface. | diazinon | UV | 10 mg/L | 10 mg/cm2 | 180 | 7 | 99 | [237] |
ZnO/rGO nanocomposite | rGO film with agglomerations of ZnO nanosheets. | dimethoate | UV | 5 mg/L | 50 mg | 180 | - | ~99 | [301] |
ZnO NPs | Spherical. | monocrotophos | UV | 500 mL aq. solution | 2 g | 120 | 4 | 88 | [314] |
ZnO NPs | - | methyl parathion | UV | - | 85 mg/L | 100 | >9 | ~70 | [315] |
ZnO NPs | - | parathion | UV | - | 85 mg/L | 100 | >9 | ~65 | [315] |
Cu-doped ZnO nanorods | Nanorods. | diazinon | UV | 20 mg/L | 0.2 g/L | 120 | 7 | 96.97 | [36] |
ZnO nanorods nanorod incorporated carboxylic GR/PANI composite | A complex porous surface. | diuron | visible | 5 mg/L | 0.1 g | 40 | 3.0 | 100 | [316] |
Fe-ZnO nanocomposite | Rough surface due to Fe ions doped in ZnO. | chlorpyrifos | UV | 10 mg/L | 25 mg/L | 60 | - | 93.5 | [317] |
Ag-ZnO nanocomposite | Uniform distribution of Ag onto ZnO surfaces. | chlorpyrifos | Sunlight | 50 mg/L | 20 mg | 40 | - | ~90 | [318] |
TiO2 NPs | Aggregated semi-spherical. | imidacloprid | UV | 100 mg | 100 mg/L | 20 | 7.5 | 88.15 | [319] |
ZnO NPs | Aggregated semi-spherical. | imidacloprid | UV | 100 mg | 100 mg/L | 20 | 7.5 | ~80 | [319] |
rGO/Fe3O4/ZnO ternary nanohybrid | A complex layered surface. | metalaxyl | visible | 10 mg/L | 0.5 g/L | 120 | 7 | 92.11 | [320] |
La-ZnO-PAN fibers | La and ZnO embedded on PAN nanofibers. | methyl parathion | UV | 10 mg/L | 50 mg/L | 150 | <3 | 100 | [321] |
La-ZnO-PAN fibers | La and ZnO embedded on PAN nanofibers. | atrazine | UV | 10 mg/L | 30 mg/L | 60 | 7 | 98 | [299] |
rGO/ZnO nanocatalyst | ZnO NPs uniformly distributed on rGO nanosheets. | metalaxyl | UV | 10 mg/L | 0.75 g/L | 120 | 7 | 90.25 | [322] |
Cu-ZnO nanocomposite | Cu loaded on ZnO nanorods. | methyl parathion | UV | 500 mg/L | 20 mg/L | 80 | - | 99 | [323] |
ZnO/CeO2 nanocomposite | CeO2 NPs loaded onto ZnO hexagonal nano-carrots. | triclopyr | UV | 150 mL aq. solution | 100 mg | 70 | 7 | 83.24 | [324] |
ZnO nanofilms | Nanoflowers. | temephos | Sunlight simulator | 10 mg/L | - | 12 | - | 100 | [325] |
Fe/Ag@ZnO nanostructures | Nanoflowers. | 2,4-dichlorophenoxyacetic acid | UV/visible | 62 mg/L | 0.078 g/L | 63 | 5 | 80 | [326] |
ZnO/TiO2-Fe3O4 nanocomposite | Fe3O4 and TiO2 uniformly distributed on the porous nanostructure of ZnO. | chlorpyrifos | visible | 8 mg/L | 60 mg | 50 | 10 | 94.8 | [327] |
PANI/ZnO-CoMoO4 nanocomposite | Spherical CoMoO4 and ZnO NPs distributed on PANI. | imidacloprid | visible | 4.5 mg/L | 163.5 mg | 180 | 4 | 97 | [328] |
Ag@ZnO nano-stars | Star-like shape. | methyl parathion | visible | 0.01 mg/L | 25 mg | 200 | 7 | - | [329] |
Pd@ZnO nano-stars | Star-like shape. | methyl parathion | visible | 0.01 mg/L | 25 mg | 200 | 7 | - | [329] |
Cu-ZnO nano heterojunction particles | Cu NPs embedded onto ZnO surface. | chlorpyrifos | sunlight | 200 mg/L | 250 mg | 240 | 6 | 91 | [330] |
Li dope ZnO nanostructures | Aggregated spherical NPs. | triclopyr | UV | 100 mL aq. solution | 1 g/L | 120 | 7 | ~50 | [331] |
ZnO@CdS nanostructures | CdS aggregated spherical NPs and ZnO nanoflowers. | chlorpyrifos | sunlight | 2 mg/L | 25 mg/L | 360 | 7 | 91 | [300] |
ZnO@CdS nanostructures | CdS aggregated spherical NPs and ZnO nanoflowers. | atrazine | sunlight | 50 mg/L | 20 mg/L | 360 | 7 | 89 | [300] |
MgO NPs immobilized on concrete | MgO NPs immobilized on concrete surface. | diazinon | UV | 5 mg/L | - | 120 | 7 | 99.46 | [332] |
CeO2/TiO2/SiO2 nano-catalyst | Nearly spherical | chlorpyrifos | UV | 2 mg/L | 0.21 g/L | 90 | 5.4 | 81.1 | [333] |
CeO2-SiO2 NPs | - | chlorpyrifos | UV | 10 mL aq. solution | 7 mg | 150 | 9 | ~90 | [334] |
Fe doped CeO2-SiO2 nanocomposite | Spherical NPs | chlorpyrifos | UV | 20 mg/L | 7 mg | ~230 | - | 81.31 | [335] |
GO/Fe3O4/TiO2-NiO nanocomposite | Spherical Fe3O4, TiO2, NiO dispersed on GO nanosheets. | imidacloprid | visible | 5 mg/L | 0.08 g | 45 | 9 | 97.47 | [303] |
Au/Fe3O4 core/shell NPs | Spherical | malathion | UV | 10 mg/L | 10−4 mol/L | 90 | - | 76 | [336] |
S-doped Ni–Co LDH/Fe3O4 nanocomposite | A layered and flower-like structure with uniformly dispersed spherical Fe3O4 NPs. | chlorpyrifos | visible | 2.5 mg/L | 60 mg | 150 | 10 | 92.5 | [247] |
KIT-5/Bi2S3-Fe3O4 nanocomposite | Spherical Bi2S3 and Fe3O4 NPs uniformly distributed on 3-D mesoporous cubic KIT-5 surface. | parathion | visible | 4.5 mg/L | 55 mg | 55 | 8 | 98.7 | [337] |
GO- Fe3O4/TiO2 nanocomposite | Fe3O4 NPs and mesoporous TiO2 dispersed uniformly on GO nanosheets. | chlorpyrifos | visible | 5 mg/L | 100 mg | 60 | ~8 | 97 | [304] |
KIT-6/WS2-Fe3O4 nanocomposite | Spherical WS2 and Fe3O4 NPs uniformly distributed on 3-D mesoporous cubic KIT-6 surface. | chlorpyrifos | visible | 7.2 mg/L | 50 mg | 52 | 6 | 92.1 | [338] |
Fe3O4/CdS–ZnS nanocomposite | Spherical CdS, Fe3O4 and ZnS NPs. | chlorpyrifos | visible | 10 mg/L | 0.01 g | 60 | 7 | 94.55 | [339] |
Fe3O4@WO3/SBA-15 nanocomposite | Agglomerates of WO3 nanoplates on Fe3O4 NPs and uniform rods of hexagonal SBA-15. | 2,4-dichlorophenoxyacetic acid | UV | 10−6 mol/L | 40 mg | 240 | - | 90.73 | [340] |
TNP-Pd-Fe3O4/GO photocatalyst | Fe3O4 NPs, Pd, and TiO2 nanoplates were dispersed uniformly on GO sheets. | parathion | visible | 10 mg/L | 80 mg | 40 | 10 | 98.5 | [341] |
BiOBr/Fe3O4 photocatalyst | Agglomerated Fe3O4 NPs deposited on BiOBr microspheres. | glyphosate | visible | 100 mg/L | 0.08 g | 60 | - | 97 | [342] |
Ag2S doped nanostructures of Fe3O4 @Ag3PO4 ultrathin films | Ag2S and Fe3O4 NPs doped on Ag3PO4 ultrathin film. | imidacloprid | visible | 2 mg/L | 30 mg | 90 | 4.3–9 | 98.9 | [343] |
Ag2S doped nanostructures of Fe3O4 @Ag3PO4 ultrathin films | Ag2S and Fe3O4 NPs doped on Ag3PO4 ultrathin film. | thiacloprid | visible | 2 mg/L | 30 mg | 60 | - | 90 | [343] |
g-C3N4/Cu/TiO2 nanocomposite | Cu and TiO2 NPs dispersed on the irregular layered structure of graphitic-C3N4. | endosulfan | visible | 5 mg/L | 40 mg | 80 | 6.8 | 60 | [344] |
SBA-15/TiO2 nanocomposite | TiO2 NPs dispersed on the hexagonal array of SBA-15. | trifluralin | UV | 60 mg/L | 0.2 g/L | 30 | 10 | 90 | [345] |
SBA-15/TiO2 nanocomposite | TiO2 NPs dispersed on the hexagonal array of SBA-15. | pendimethalin | UV | 60 mg/L | 0.2 g/L | 30 | 10 | 82.5 | [345] |
TiO2 NPs | Irregular agglomerated NPs. | imidacloprid | UV | 5 mg/L | 0.6 g/L | 300 | 6.35 | 99 | [305] |
TiO2 nanostructures modified with Cu | Homogenous nano-porous structure of TiO2 with Cu dispersed on the surface. | imidacloprid | UV/vis | 25 mg/L | - | 60 | - | - | [306] |
TiO2/CNT/Pd photocatalyst | Heterostructure spherical Pd-doped TiO2 nanoparticles on carbon nanotubes. | neonicotinoids thiacloprid | sunlight | 5 mg/L | 0.1 g/L | 180 | 7 | 100 | [346] |
TiO2/CNT/Pd photocatalyst | Heterostructure spherical Pd-doped TiO2 nanoparticles on carbon nanotubes. | imidacloprid | sunlight | 5 mg/L | 0.1 g/L | 180 | 7 | 99.8 | [346] |
TiO2/CNT/Pd photocatalyst | Heterostructure spherical Pd-doped TiO2 nanoparticles on carbon nanotubes. | clothianidin | sunlight | 5 mg/L | 0.1 g/L | 180 | 7 | 100 | [346] |
TiO2 nanoparticles | Spherical with only a small quantity of hexagonal diameters. | dimethoate | UV | 5 mg/L | 300 mg/L | 320 | - | 100 | [347] |
TiO2 nanoparticles | Spherical with only a small quantity of hexagonal diameters. | methomyl | UV | 5 mg/L | 300 mg/L | 320 | - | 100 | [347] |
CuS/TiO2 (CuST) nanoparticles | Coalesced and form a textured/porous nanostructure. | 4-chlorophenol | UV | 20 mg/L | 100 mg | 150 | - | 87 | [348] |
Pt@TiO2/rGO nanocomposite | Monodisperse quasi-spherical Pt@TiO2 NPs deposited on the rGO nanosheets. | diuron | UV | 0.03 mmol/L | 7 mg | - | 7 | 100 | [349] |
(CMC/Tryp/TiO2). | Platelet-like crystallites. | 2,4-dichlorophenol | UV | 200 mg/L | 0.5 g/L | - | - | - | [350] |
SBA-16/TiO2 nanocomposites | Rutile phase. | commercial paraquat (PQ) herbicide | UV | 50 mg/L | 100 mg in 250 mL aq. Solution | 1440 | - | 70 | [351] |
Ce-TiO2@RGO nanocomposite | Non-uniform deposition of Ce-TiO2 with spherical crystalline TiO2 on a reduced graphene oxide sheet. | quinalphos | Visible | - | 20 mg/L | 240 | - | 92 | [352] |
Ce-TiO2@RGO nanocomposite | Non-uniform deposition of Ce-TiO2 with spherical crystalline TiO2 on a reduced graphene oxide sheet. | imidacloprid | Visible | - | 20 mg/L | 240 | - | 85 | [352] |
Ag3PO4/TiO2 NPs | Crystallized structure with cubed shape Ag3PO4 and anatase TiO2 | 2,4-dichlorophenoxyacetic acid | Visible | 10 mg/L | 1 g/L | 60 | 3 | 98.4 | [353] |
2D/2D TiO2/MIL88(Fe) (TCS@MOF) nanocomposite | Stacked layer thin MIL-88(Fe) nanosheet with micro-sized TiO2 nano-granular spherical shape. | monocrotophos | visible | 20 mg/L | 0.05 g/L | 30 | 5 | ~98.79% | [354] |
TiO2 nanotubes | Nanotubes | Simazine | UV | 1 mg/L | - | 54 | - | 48 | [355] |
TiO2 NPs | Agglomerated spherical shape. | Acetamiprid | UV | 4.5 mg/L | 2000 mg/L | 240 | - | 100 | [356] |
TiO2 NPs | - | Imidaclopride | UV | 25 mg/L | 200 mg/L | 48 | - | 90 | [357] |
TiO2 NPs | - | 1,2-dichloroethane | UV | 100–200 mg/L | 100 mg/L | 360 | 7 | 95 | [358] |
N-doped TiO2 nanoparticles | Agglomerated small particles. | dichlorodiphenyltrichloroethane | UV | 10,000 mg/L | 1000 | 48 | 7 | 70 | [359] |
lanthanide-doped TiO2 photocatalysts | Solely anatase. | metazachlor | UV | 10 mg/L | 1000 mg/L | 300 | - | 85 | [360] |
6. Challenges and Outlook
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
POPs | Persistent organic chemicals |
OCs | Organochlorines |
OPs | Organophosphates |
NPs | Nanoparticles |
MO | Metal oxides |
IONPs | Iron oxide nanoparticles |
RT | Room temperature |
ZnONPs-IPPs | Zinc oxide nanoparticles impregnated Pea peels |
MOM-Fe3O4 | Iron oxide nanoparticles with Moringa oleifera Lam. seeds |
ZnO-CP | Zinc oxide with cucumber peel. |
CTAB-ZnO | Cetyltrimethylammonium bromide functionalized Zinc oxide |
BMTF-IL-ZnO | 1-Butyl-3-methylimidazolium tetrafluoroborate functionalized Zinc oxide. |
Hr-MgO | Hierarchical magnesium oxide |
DDT | Dichloro-diphenyl-trichloroethane |
PSO | Pseudo Second Order |
PFO | Pseudo First Order |
L | Langmuir isotherm model. |
F | Freundlich isotherm model. |
S | Sips isotherm model. |
T | Temkin isotherm model. |
D-A | Dubinin–Astakhov isotherm model. |
e- | Electrostatic interaction |
h | Hydrophobic interaction |
π–π | π–π interaction |
π-CM | π-complex formation |
H | Hydrogen bond interaction |
C | Coordination or covalent bond |
References
- Adebusuyi, A.T.; Sojinu, S.O.; Aleshinloye, A.O. The prevalence of persistent organic pollutants (POPs) in West Africa—A review. Environ. Chall. 2022, 7, 100486. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Yap, P.-S.; Iwuozor, K.O.; Aniagor, C.O.; Liu, T.; Dulta, K.; Iwuchukwu, F.U.; Rangabhashiyam, S. Adsorption of persistent organic pollutants (POPs) from the aqueous environment by nano-adsorbents: A review. Environ. Res. 2022, 212, 113123. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Shanker, U.; Jassal, V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J. Environ. Manag. 2017, 190, 208–222. [Google Scholar] [CrossRef]
- Billet, L.S.; Belskis, A.; Hoverman, J.T. Temperature affects the toxicity of pesticides to cercariae of the trematode Echinostoma trivolvis. Aquat. Toxicol. 2022, 245, 106102. [Google Scholar] [CrossRef]
- Rasheed, T.; Rizwan, K.; Bilal, M.; Sher, F.; Iqbal, H.M.N. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices—A review. Chemosphere 2021, 282, 131056. [Google Scholar] [CrossRef]
- Parra-Arroyo, L.; González-González, R.B.; Castillo-Zacarías, C.; Melchor Martínez, E.M.; Sosa-Hernández, J.E.; Bilal, M.; Iqbal, H.M.N.; Barceló, D.; Parra-Saldívar, R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. Sci. Total Environ. 2022, 807, 151879. [Google Scholar] [CrossRef]
- Cosgrove, S.; Jefferson, B.; Jarvis, P. Application of activated carbon fabric for the removal of a recalcitrant pesticide from agricultural run-off. Sci. Total Environ. 2022, 815, 152626. [Google Scholar] [CrossRef]
- Tyagi, H.; Chawla, H.; Bhandari, H.; Garg, S. Recent-enhancements in visible-light photocatalytic degradation of organochlorines pesticides: A review. Mater. Today Proc. 2022, 49, 3289–3305. [Google Scholar] [CrossRef]
- Islam, M.A.; Amin, S.M.N.; Rahman, M.A.; Juraimi, A.S.; Uddin, M.K.; Brown, C.L.; Arshad, A. Chronic effects of organic pesticides on the aquatic environment and human health: A review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100740. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC Trends Anal. Chem. 2020, 132, 116041. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.-L.; Xie, T.; Cao, J. Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant. Bioresour. Technol. 2020, 316, 123929. [Google Scholar] [CrossRef]
- Boruah, P.K.; Darabdhara, G.; Das, M.R. Polydopamine functionalized graphene sheets decorated with magnetic metal oxide nanoparticles as efficient nanozyme for the detection and degradation of harmful triazine pesticides. Chemosphere 2021, 268, 129328. [Google Scholar] [CrossRef]
- Bano, K.; Kaushal, S.; Singh, P.P. A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron 2021, 209, 115465. [Google Scholar] [CrossRef]
- Huang, H.; Xia, C.; Liang, D.; Xie, Y.; Kong, F.; Fu, J.; Dou, Z.; Yang, Q.; Suo, W.; Zhang, Q.; et al. Removal and magnetic recovery of heavy metals and pesticides from soil by layered double hydroxides modified biotite. Chem. Eng. J. 2022, 431, 134113. [Google Scholar] [CrossRef]
- Yeganeh, M.; Charkhloo, E.; Sobhi, H.R.; Esrafili, A.; Gholami, M. Photocatalytic processes associated with degradation of pesticides in aqueous solutions: Systematic review and meta-analysis. Chem. Eng. J. 2022, 428, 130081. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef]
- Ni, J.; Lei, J.; Wang, Z.; Huang, L.; Zhu, H.; Liu, H.; Hu, F.; Qu, T.; Yang, H.; Yang, H.; et al. The Ultrahigh Adsorption Capacity and Excellent Photocatalytic Degradation Activity of Mesoporous CuO with Novel Architecture. Nanomaterials 2023, 13, 142. [Google Scholar] [CrossRef]
- Dhananjay, B.; Pangarkar, V.; Beenackers, A. Photocatalytic Degradation for Environmental Application-A Review. J. Chem. Technol. Biotechnol. 2001, 77, 102–116. [Google Scholar] [CrossRef]
- Jamshaid, M.; Nazir, M.A.; Najam, T.; Shah, S.S.A.; Khan, H.M.; Rehman, A.u. Facile synthesis of Yb3+-Zn2+ substituted M type hexaferrites: Structural, electric and photocatalytic properties under visible light for methylene blue removal. Chem. Phys. Lett. 2022, 805, 139939. [Google Scholar] [CrossRef]
- Ahmadi, A.; Hajilou, M.; Zavari, S.; Yaghmaei, S. A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: Synthesis, mechanism, and affecting parameters. J. Clean. Prod. 2023, 382, 134967. [Google Scholar] [CrossRef]
- Qumar, U.; Hassan, J.Z.; Bhatti, R.A.; Raza, A.; Nazir, G.; Nabgan, W.; Ikram, M. Photocatalysis vs adsorption by metal oxide nanoparticles. J. Mater. Sci. Technol. 2022, 131, 122–166. [Google Scholar] [CrossRef]
- Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 2019, 272, 102009. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Ahmad, T.; Naaz, F.; Islam, S.u. Review on Metals and Metal Oxides in Sustainable Energy Production: Progress and Perspectives. Energy Fuels 2023, 37, 1577–1632. [Google Scholar] [CrossRef]
- Selmani, A.; Kovačević, D.; Bohinc, K. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 2022, 303, 102640. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Ahmad, A.; Anjum, M.A.R.; Haleem, A.; Siddiq, M.; Shah, S.S.; Kahtani, A.A. Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105580. [Google Scholar] [CrossRef]
- Khandare, D.; Mukherjee, S. A Review of Metal oxide Nanomaterials for Fluoride decontamination from Water Environment. Mater. Today Proc. 2019, 18, 1146–1155. [Google Scholar] [CrossRef]
- Farooq, U.; Naz, F.; Phul, R.; Pandit, N.A.; Jain, S.K.; Ahmad, T. Development of Heterostructured Ferroelectric SrZrO3/CdS Photocatalysts with Enhanced Surface Area and Photocatalytic Activity. J. Nanosci. Nanotechnol. 2020, 20, 3770–3779. [Google Scholar] [CrossRef]
- Jamshaid, M.; Khan, M.I.; Fernandez, J.; Shanableh, A.; Hussain, T.; Rehman, A.u. Synthesis of Ti4+ doped Ca-BiFO3 for the enhanced photodegradation of moxifloxacin. New J. Chem. 2022, 46, 19848–19856. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Z.; Luo, F. N-doped graphene-based CuO/WO3/Cu composite material with performances of catalytic decomposition 4-nitrophenol and photocatalytic degradation of organic dyes. Inorg. Chem. Commun. 2020, 121, 108246. [Google Scholar] [CrossRef]
- Wolski, L.; Grzelak, K.; Muńko, M.; Frankowski, M.; Grzyb, T.; Nowaczyk, G. Insight into photocatalytic degradation of ciprofloxacin over CeO2/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathways. Appl. Surf. Sci. 2021, 563, 150338. [Google Scholar] [CrossRef]
- Wanjeri, V.W.O.; Sheppard, C.J.; Prinsloo, A.R.E.; Ngila, J.C.; Ndungu, P.G. Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J. Environ. Chem. Eng. 2018, 6, 1333–1346. [Google Scholar] [CrossRef]
- Singh, A.; Sikarwar, S.; Verma, A.; Chandra Yadav, B. The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: A review. Sens. Actuators A Phys. 2021, 332, 113127. [Google Scholar] [CrossRef]
- Wang, X.-L.; Sun, Y.-Y.; Xiao, Y.; Chen, X.-X.; Huang, X.-C.; Zhou, H.-L. Facile Solution-Refluxing Synthesis and Photocatalytic Dye Degradation of a Dynamic Covalent Organic Framework. Molecules 2022, 27, 8002. [Google Scholar] [CrossRef]
- Nekooie, R.; Shamspur, T.; Mostafavi, A. Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. J. Photochem. Photobiol. A Chem. 2021, 407, 113038. [Google Scholar] [CrossRef]
- Shirzad-Siboni, M.; Jonidi-Jafari, A.; Farzadkia, M.; Esrafili, A.; Gholami, M. Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: Kinetics and reaction pathways. J. Environ. Manag. 2017, 186, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Lee, J.M.; Iqbal, S.; Kim, H.S.; Jang, S.W.; Jung, J.Y.; An, H.J.; Lamiel, C.; Mohamed, S.G.; Lee, Y.R.; et al. Preserved crystal phase and morphology: Electrochemical influence of copper and iron co-doped cobalt oxide and its supercapacitor applications. Electrochim. Acta 2020, 340, 135953. [Google Scholar] [CrossRef]
- Gopinath, S.; Mayakannan, M.; Vetrivel, S. Structural, optical, morphological properties of silver doped cobalt oxide nanoparticles by microwave irradiation method. Ceram. Int. 2022, 48, 6103–6115. [Google Scholar] [CrossRef]
- Rasheed, T.; Nabeel, F.; Bilal, M.; Iqbal, H.M.N. Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal. Agric. Biotechnol. 2019, 19, 101154. [Google Scholar] [CrossRef]
- Letsholathebe, D.; Thema, F.T.; Mphale, K.; Mohamed, H.E.A.; Holonga, K.J.; Ketlhwaafetse, R.; Chimidza, S. Optical and structural stability of Co3O4 nanoparticles for photocatalytic applications. Mater. Today Proc. 2021, 36, 499–503. [Google Scholar] [CrossRef]
- Dharaskar, S.; Kodgire, P.; Bansod, P. Enhanced diesel properties with energy efficient nano-aluminium oxide and nano-cobalt oxide particles. Mater. Today Proc. 2021, 62, 6927–6933. [Google Scholar] [CrossRef]
- Dey, S.; Dhal, G.C. The catalytic activity of cobalt nanoparticles for low-temperature oxidation of carbon monoxide. Mater. Today Chem. 2019, 14, 100198. [Google Scholar] [CrossRef]
- Uddin, M.K.; Baig, U. Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: Characterisation, adsorption and response surface methodology. J. Clean. Prod. 2019, 211, 1141–1153. [Google Scholar] [CrossRef]
- Lima, A.F. Interpretation of the optical absorption spectrum of Co3O4 with normal spinel structure from first principles calculations. J. Phys. Chem. Solids 2014, 75, 148–152. [Google Scholar] [CrossRef]
- Asha, G.; Rajeshwari, V.; Stephen, G.; Gurusamy, S.; Carolin Jeniba Rachel, D. Eco-friendly synthesis and characterization of cobalt oxide nanoparticles by sativum species and its photo-catalytic activity. Mater. Today Proc. 2022, 48, 486–493. [Google Scholar] [CrossRef]
- Navarrete, È.; Bittencourt, C.; Noirfalise, X.; Umek, P.; González, E.; Güell, F.; Llobet, E. WO3 nanowires loaded with cobalt oxide nanoparticles, deposited by a two-step AACVD for gas sensing applications. Sens. Actuators B Chem. 2019, 298, 126868. [Google Scholar] [CrossRef]
- Jincy, C.S.; Meena, P. Evaluation of cytotoxic activity of Fe doped cobalt oxide nanoparticles. J. Trace Elem. Med. Biol. 2022, 70, 126916. [Google Scholar] [CrossRef]
- Gaikar, P.S.; Angre, A.P.; Wadhawa, G.; Ledade, P.V.; Mahmood, S.H.; Lambat, T.L. Green synthesis of cobalt oxide thin films as an electrode material for electrochemical capacitor application. Curr. Res. Green Sustain. Chem. 2022, 5, 100265. [Google Scholar] [CrossRef]
- Lakra, R.; Kumar, R.; Sahoo, P.K.; Sharma, D.; Thatoi, D.; Soam, A. Facile synthesis of cobalt oxide and graphene nanosheets nanocomposite for aqueous supercapacitor application. Carbon Trends 2022, 7, 100144. [Google Scholar] [CrossRef]
- Rakotonarivo, E.F.; Abouloula, C.N.; Narjis, A.; Nkhaili, L.; Brouillette, F.; Oueriagli, A. Optimization of the electrodeposition of the pure and cobalt doped copper oxide for solar cells and other applications. Phys. B Condens. Matter 2021, 609, 412783. [Google Scholar] [CrossRef]
- Jincy, C.S.; Meena, P. Synthesis, characterization, and NH3 gas sensing application of Zn doped cobalt oxide nanoparticles. Inorg. Chem. Commun. 2020, 120, 108145. [Google Scholar] [CrossRef]
- Ni, Q.; Ma, J.; Fan, C.; Kong, Y.; Peng, M.; Komarneni, S. Spinel-type cobalt-manganese oxide catalyst for degradation of Orange II using a novel heterogeneous photo-chemical catalysis system. Ceram. Int. 2018, 44, 19474–19480. [Google Scholar] [CrossRef]
- Feng, H.; Liang, L.; Ge, J.; Wu, W.; Huang, Z.; Liu, Y.; Li, L. Delicate manipulation of cobalt oxide nanodot clusterization on binder-free TiO2-nanorod photoanodes for efficient photoelectrochemical catalysis. J. Alloys Compd. 2020, 820, 153139. [Google Scholar] [CrossRef]
- Ullah, R.; Rasheed, M.A.; Abbas, S.; Rehman, K.-u.; Shah, A.; Ullah, K.; Khan, Y.; Bibi, M.; Ahmad, M.; Ali, G. Electrochemical sensing of H2O2 using cobalt oxide modified TiO2 nanotubes. Curr. Appl. Phys. 2022, 38, 40–48. [Google Scholar] [CrossRef]
- Wang, F.; Li, H.; Yuan, Z.; Sun, Y.; Chang, F.; Deng, H.; Xie, L.; Li, H. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC Adv. 2016, 6, 79343–79349. [Google Scholar] [CrossRef]
- Censabella, M.; Iacono, V.; Scandurra, A.; Moulaee, K.; Neri, G.; Ruffino, F.; Mirabella, S. Low temperature detection of nitric oxide by CuO nanoparticles synthesized by pulsed laser ablation. Sens. Actuators B Chem. 2022, 358, 131489. [Google Scholar] [CrossRef]
- Heinemann, M.; Eifert, B.; Heiliger, C. Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys. Rev. B 2013, 87, 115111. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Obstarczyk, A.; Mańkowska, E.; Mazur, M.; Kaczmarek, D.; Zakrzewska, K.; Mazur, P.; Domaradzki, J. Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Mater. Res. Bull. 2022, 147, 111646. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.; Park, Y.; Choi, D.; Yoo, B.; Lee, C.S. Fabrication of a semi-transparent flexible humidity sensor using kinetically sprayed cupric oxide film. Sens. Actuators B Chem. 2018, 274, 331–337. [Google Scholar] [CrossRef]
- Moghanlou, A.O.; Sadr, M.H.; Bezaatpour, A.; Salimi, F.; Yosefi, M. RGO/Cu2O-CuO nanocomposite as a visible-light assisted photocatalyst for reduction of organic nitro groups to amines. Mol. Catal. 2021, 516, 111997. [Google Scholar] [CrossRef]
- Vázquez-Vargas, D.A.; Amézaga-Madrid, P.; Jáuregui-Martínez, L.E.; Esquivel-Pereyra, O.; Antúnez-Flores, W.; Pizá-Ruiz, P.; Miki-Yoshida, M. Synthesis and microstructural characterization of cupric oxide and cobalt oxide nanostructures for their application as selective solar coatings. Thin Solid Film. 2020, 706, 138046. [Google Scholar] [CrossRef]
- Maruthupandy, M.; Zuo, Y.; Chen, J.-S.; Song, J.-M.; Niu, H.-L.; Mao, C.-J.; Zhang, S.-Y.; Shen, Y.-H. Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Appl. Surf. Sci. 2017, 397, 167–174. [Google Scholar] [CrossRef]
- Mohammed Ali, M.J.; Radhy, M.M.; mashkoor, S.J.; Ali, E.M. Synthesis and characterization of copper oxide nanoparticles and their application for solar cell. Mater. Today Proc. 2021, 60, 917–921. [Google Scholar] [CrossRef]
- Pourbeyram, S.; Abdollahpour, J.; Soltanpour, M. Green synthesis of copper oxide nanoparticles decorated reduced graphene oxide for high sensitive detection of glucose. Mater. Sci. Eng. C 2019, 94, 850–857. [Google Scholar] [CrossRef]
- Nabila, M.I.; Kannabiran, K. Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal. Agric. Biotechnol. 2018, 15, 56–62. [Google Scholar] [CrossRef]
- Kim, T.K.; VanSaders, B.; Moon, J.; Kim, T.; Liu, C.-H.; Khamwannah, J.; Chun, D.; Choi, D.; Kargar, A.; Chen, R.; et al. Tandem structured spectrally selective coating layer of copper oxide nanowires combined with cobalt oxide nanoparticles. Nano Energy 2015, 11, 247–259. [Google Scholar] [CrossRef]
- Nwanya, A.C.; Razanamahandry, L.C.; Bashir, A.K.H.; Ikpo, C.O.; Nwanya, S.C.; Botha, S.; Ntwampe, S.K.O.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles. J. Hazard. Mater. 2019, 375, 281–289. [Google Scholar] [CrossRef]
- McDonald, K.J.; Reynolds, B.; Reddy, K.J. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water. Sci. Rep. 2015, 5, 11110. [Google Scholar] [CrossRef]
- Srivastava, V.; Choubey, A.K. Investigation of adsorption of organic dyes present in wastewater using chitosan beads immobilized with biofabricated CuO nanoparticles. J. Mol. Struct. 2021, 1242, 130749. [Google Scholar] [CrossRef]
- Naaz, F.; Sharma, A.; Shahazad, M.; Ahmad, T. Hydrothermally Derived Hierarchical CuO Nanoflowers as an Efficient Photocatalyst and Electrocatalyst for Hydrogen Evolution. ChemistrySelect 2022, 7, e202201800. [Google Scholar] [CrossRef]
- Gupta, K.; Chundawat, T.S. Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass Bioenergy 2020, 143, 105840. [Google Scholar] [CrossRef]
- Bandeira, M.; Possan, A.L.; Pavin, S.S.; Raota, C.S.; Vebber, M.C.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; Crespo, J.S. Mechanism of formation, characterization and cytotoxicity of green synthesized zinc oxide nanoparticles obtained from Ilex paraguariensis leaves extract. Nano-Struct. Nano-Objects 2020, 24, 100532. [Google Scholar] [CrossRef]
- Darvishi, E.; Kahrizi, D.; Arkan, E. Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. J. Mol. Liq. 2019, 286, 110831. [Google Scholar] [CrossRef]
- Sultana, K.A.; Islam, M.T.; Silva, J.A.; Turley, R.S.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L.; Noveron, J.C. Sustainable synthesis of zinc oxide nanoparticles for photocatalytic degradation of organic pollutant and generation of hydroxyl radical. J. Mol. Liq. 2020, 307, 112931. [Google Scholar] [CrossRef]
- Dkhil, M.A.; Diab, M.S.M.; Aljawdah, H.M.A.; Murshed, M.; Hafiz, T.A.; Al-Quraishy, S.; Bauomy, A.A. Neuro-biochemical changes induced by zinc oxide nanoparticles. Saudi J. Biol. Sci. 2020, 27, 2863–2867. [Google Scholar] [CrossRef] [PubMed]
- Brindhadevi, K.; Samuel, M.S.; Verma, T.N.; Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Pugazhendhi, A.; Duc, P.A. Zinc oxide nanoparticles (ZnONPs) -induced antioxidants and photocatalytic degradation activity from hybrid grape pulp extract (HGPE). Biocatal. Agric. Biotechnol. 2020, 28, 101730. [Google Scholar] [CrossRef]
- Dang, Z.; Sun, J.; Fan, J.; Li, J.; Li, X.; Chen, T. Zinc oxide spiky nanoparticles: A promising nanomaterial for killing tumor cells. Mater. Sci. Eng. C 2021, 124, 112071. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.-W. Effect of types of zinc oxide nanoparticles on structural, mechanical and antibacterial properties of poly(lactide)/poly(butylene adipate-co-terephthalate) composite films. Food Packag. Shelf Life 2019, 21, 100327. [Google Scholar] [CrossRef]
- Jayachandran, A.; Aswathy, T.R.; Nair, A.S. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem. Biophys. Rep. 2021, 26, 100995. [Google Scholar] [CrossRef]
- Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharm. 2020, 15, 100223. [Google Scholar] [CrossRef]
- Ranjithkumar, B.; Ramalingam, H.B.; Kumar, E.R.; Srinivas, C.; Magesh, G.; Rahale, C.S.; El-Metwaly, N.M.; Shekar, B.C. Natural fuels (Honey and Cow urine) assisted combustion synthesis of zinc oxide nanoparticles for antimicrobial activities. Ceram. Int. 2021, 47, 14475–14481. [Google Scholar] [CrossRef]
- Archana, P.; Janarthanan, B.; Bhuvana, S.; Rajiv, P.; Sharmila, S. Concert of zinc oxide nanoparticles synthesized using Cucumis melo by green synthesis and the antibacterial activity on pathogenic bacteria. Inorg. Chem. Commun. 2022, 137, 109255. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.d.F.F.; Coimbra, J.S.d.R.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Rajbongshi, B.M.; Samdarshi, S.K. Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum. Appl. Catal. B Environ. 2014, 144, 435–441. [Google Scholar] [CrossRef]
- Doan Thi, T.U.; Nguyen, T.T.; Thi, Y.D.; Ta Thi, K.H.; Phan, B.T.; Pham, K.N. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 2020, 10, 23899–23907. [Google Scholar] [CrossRef]
- Kanimozhi, S.; Prabu, K.M.; Thambidurai, S.; Suresh, S. Dye-sensitized solar cell performance and photocatalytic activity enhancement using binary zinc oxide-copper oxide nanocomposites prepared via co-precipitation route. Ceram. Int. 2021, 47, 30234–30246. [Google Scholar] [CrossRef]
- Rakha, A.A.; Shahzad, M.; Ghaffar, A.; Javed, K.; Pervez, A.; Sarwar, N.; Munam, M. Power conversion efficiency of hybrid solar cells based on Camellia sinensis doped polyvinyl alcohol and ZnO nanoparticles. Opt. Mater. 2021, 120, 111434. [Google Scholar] [CrossRef]
- Abood, M.K.; Fayad, M.A.; Al Salihi, H.A.; Salbi, H.A.A. Effect of ZnO nanoparticles deposition on porous silicon solar cell. Mater. Today Proc. 2021, 42, 2935–2940. [Google Scholar] [CrossRef]
- Hanabaratti, R.M.; Tuwar, S.M.; Nandibewoor, S.T.; Gowda, J.I. Fabrication and characterization of zinc oxide nanoparticles modified glassy carbon electrode for sensitive determination of paracetamol. Chem. Data Collect. 2020, 30, 100540. [Google Scholar] [CrossRef]
- Hussein, H.T.; Kareem, M.H.; Abdul Hussein, A.M. Synthesis and characterization of carbon nanotube doped with zinc oxide nanoparticles CNTs-ZnO/PS as ethanol gas sensor. Optik 2021, 248, 168107. [Google Scholar] [CrossRef]
- Chelladurai, M.; Margavelu, G.; Vijayakumar, S.; González-Sánchez, Z.I.; Vijayan, K.; Sahadevan, R. Preparation and characterization of amine-functionalized mupirocin-loaded zinc oxide nanoparticles: A potent drug delivery agent in targeting human epidermoid carcinoma (A431) cells. J. Drug Deliv. Sci. Technol. 2022, 70, 103244. [Google Scholar] [CrossRef]
- Singh, T.A.; Das, J.; Sil, P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci. 2020, 286, 102317. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Herdade, A.M.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Paranhos, A.; Veiga, F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int. J. Pharm. 2021, 597, 120311. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Shuaib, D.T.; Ajala, A.O.; Mohammed, A.K. Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: A review. Appl. Water Sci. 2020, 10, 49. [Google Scholar] [CrossRef]
- Aksu Demirezen, D.; Yıldız, Y.Ş.; Yılmaz, Ş.; Demirezen Yılmaz, D. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J. Biosci. Bioeng. 2019, 127, 241–245. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J. Grain boundary in oxide scale during high-temperature metal processing. Study Grain Bound. Character 2017, 59–77. [Google Scholar] [CrossRef]
- Machala, L.; Tuček, J.; Zbořil, R. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chem. Mater. 2011, 23, 3255–3272. [Google Scholar] [CrossRef]
- Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, S.; Gadri, A. Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: Effect of varying the nature of precursor. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 97, 328–334. [Google Scholar] [CrossRef]
- Ong, H.T.; Suppiah, D.D.; Muhd Julkapli, N. Fatty acid coated iron oxide nanoparticle: Effect on stability, particle size and magnetic properties. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125371. [Google Scholar] [CrossRef]
- Borges, R.; Mendonça-Ferreira, L.; Rettori, C.; Pereira, I.S.O.; Baino, F.; Marchi, J. New sol-gel-derived magnetic bioactive glass-ceramics containing superparamagnetic hematite nanocrystals for hyperthermia application. Mater. Sci. Eng. C 2021, 120, 111692. [Google Scholar] [CrossRef]
- Karaagac, O.; Köçkar, H. Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 2022, 551, 169140. [Google Scholar] [CrossRef]
- Al-Jabari, M.H.; Sulaiman, S.; Ali, S.; Barakat, R.; Mubarak, A.; Khan, S.A. Adsorption study of levofloxacin on reusable magnetic nanoparticles: Kinetics and antibacterial activity. J. Mol. Liq. 2019, 291, 111249. [Google Scholar] [CrossRef]
- Shi, S.-F.; Jia, J.-F.; Guo, X.-K.; Zhao, Y.-P.; Chen, D.-S.; Guo, Y.-Y.; Cheng, T.; Zhang, X.-L. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells. Int. J. Nanomed. 2012, 7, 5593. [Google Scholar]
- Unsoy, G.; Yalcin, S.; Khodadust, R.; Gündüz, G.; Gunduz, U. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res. 2012, 14, 964. [Google Scholar] [CrossRef]
- Lopez, J.D.; Keley, M.; Dante, A.; Werneck, M.M. Optical fiber sensor coated with copper and iron oxide nanoparticles for hydrogen sulfide sensing. Opt. Fiber Technol. 2021, 67, 102731. [Google Scholar] [CrossRef]
- Pakapongpan, S.; Poo-arporn, Y.; Tuantranont, A.; Poo-arporn, R.P. A facile one-pot synthesis of magnetic iron oxide nanoparticles embed N-doped graphene modified magnetic screen printed electrode for electrochemical sensing of chloramphenicol and diethylstilbestrol. Talanta 2022, 241, 123184. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.T.; Chien, N.V.; Van Duy, N.; Van Hieu, N.; Nine, M.J.; Coghlan, C.J.; Tran, D.N.H.; Losic, D. Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: The particle size effects. J. Colloid Interface Sci. 2019, 539, 315–325. [Google Scholar] [CrossRef]
- Roy, S.D.; Das, K.C.; Dhar, S.S. Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short review. Inorg. Chem. Commun. 2021, 134, 109050. [Google Scholar] [CrossRef]
- Moodley, P.; Scheijen, F.J.E.; Niemantsverdriet, J.W.; Thüne, P.C. Iron oxide nanoparticles on flat oxidic surfaces—Introducing a new model catalyst for Fischer–Tropsch catalysis. Catal. Today 2010, 154, 142–148. [Google Scholar] [CrossRef]
- Carrillo, A.I.; Serrano, E.; Luque, R.; García-Martínez, J. Microwave-assisted catalysis by iron oxide nanoparticles on MCM-41: Effect of the support morphology. Appl. Catal. A Gen. 2013, 453, 383–390. [Google Scholar] [CrossRef]
- Fatimah, I.; Amaliah, S.N.; Andrian, M.F.; Handayani, T.P.; Nurillahi, R.; Prakoso, N.I.; Wicaksono, W.P.; Chuenchom, L. Iron oxide nanoparticles supported on biogenic silica derived from bamboo leaf ash for rhodamine B photodegradation. Sustain. Chem. Pharm. 2019, 13, 100149. [Google Scholar] [CrossRef]
- Algarín, M.; Amaya, M.; Solano, R.; Patiño-Ruiz, D.; Herrera, A. Synthesis of a magnetic iron oxide/zinc oxide engineered nanocatalyst for enhanced visible-light photodegradation of Cartasol brilliant violet 5BFN in aqueous solution. Nano-Struct. Nano-Objects 2021, 26, 100730. [Google Scholar] [CrossRef]
- Alves, F.H.d.O.; Araújo, O.A.; de Oliveira, A.C.; Garg, V.K. Preparation and characterization of PAni(CA)/Magnetic iron oxide hybrids and evaluation in adsorption/photodegradation of blue methylene dye. Surf. Interfaces 2021, 23, 100954. [Google Scholar] [CrossRef]
- Xu, H.; Yuan, H.; Yu, J.; Lin, S. Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents. Appl. Surf. Sci. 2019, 473, 960–966. [Google Scholar] [CrossRef]
- Lin, S.; Liu, L.; Yang, Y.; Lin, K. Study on preferential adsorption of cationic-style heavy metals using amine-functionalized magnetic iron oxide nanoparticles (MIONPs-NH2) as efficient adsorbents. Appl. Surf. Sci. 2017, 407, 29–35. [Google Scholar] [CrossRef]
- Javid, A.; Ahmadian, S.; Saboury, A.; Kalantar, M.; Rezaei-Zarchi, S. Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles for Doxorubicin Delivery: Synthesis and Anticancer Effect Against Human Ovarian Cancer Cells. Chem. Biol. Drug Des. 2013, 82, 296–306. [Google Scholar] [CrossRef]
- Jain, M.; Yadav, M.; Kohout, T.; Lahtinen, M.; Garg, V.K.; Sillanpää, M. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour. Ind. 2018, 20, 54–74. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, J.; Gan, Y.; Cheng, G. Titanium glycolate-derived TiO2 nanomaterials: Synthesis and applications. Adv. Powder Technol. 2018, 29, 2289–2311. [Google Scholar] [CrossRef]
- Bortamuly, R.; Naresh, V.; Das, M.R.; Kumar, V.K.; Muduli, S.; Martha, S.K.; Saikia, P. Titania supported bio-derived activated carbon as an electrode material for high-performance supercapacitors. J. Energy Storage 2021, 42, 103144. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.M.; Park, S.-J. Synthesis and characterization of nitrogen-doped TiO2 coatings on reduced graphene oxide for enhancing the visible light photocatalytic activity. Curr. Appl. Phys. 2018, 18, 163–169. [Google Scholar] [CrossRef]
- Pérez-Jiménez, L.E.; Solis-Cortazar, J.C.; Rojas-Blanco, L.; Perez-Hernandez, G.; Martinez, O.S.; Palomera, R.C.; Paraguay-Delgado, F.; Zamudio-Torres, I.; Morales, E.R. Enhancement of optoelectronic properties of TiO2 films containing Pt nanoparticles. Results Phys. 2019, 12, 1680–1685. [Google Scholar] [CrossRef]
- Bayan, E.M.; Lupeiko, T.G.; Pustovaya, L.E.; Volkova, M.G.; Butova, V.V.; Guda, A.A. Zn–F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. J. Alloys Compd. 2020, 822, 153662. [Google Scholar] [CrossRef]
- Haggerty, J.E.; Schelhas, L.T.; Kitchaev, D.A.; Mangum, J.S.; Garten, L.M.; Sun, W.; Stone, K.H.; Perkins, J.D.; Toney, M.F.; Ceder, G. High-fraction brookite films from amorphous precursors. Sci. Rep. 2017, 7, 15232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yan, S.; Fu, L.; Wang, F.; Yuan, M.; Luo, G.; Xu, Q.; Wang, X.; Li, C. Photocatalytic Degradation of Rhodamine B on Anatase, Rutile, and Brookite TiO2. Chin. J. Catal. 2011, 32, 983–991. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148. [Google Scholar] [CrossRef]
- Harlapur, S.F.; Rashmi, B.N.; Nagaswarupa, H.P.; Prashantha, S.C.; Shashishekar, T.R.; Anil Kumar, M.R. Photocatalytic studies of TiO2 nanomaterials prepared via facile wet chemical route. Mater. Today Proc. 2017, 4, 11713–11719. [Google Scholar] [CrossRef]
- Umar, A.A.; Rahman, M.Y.A.; Saad, S.K.M.; Salleh, M.M.; Oyama, M. Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature. Appl. Surf. Sci. 2013, 270, 109–114. [Google Scholar] [CrossRef]
- D’Arienzo, M.; Scotti, R.; Di Credico, B.; Redaelli, M. Chapter 13—Synthesis and Characterization of Morphology-Controlled TiO2 Nanocrystals: Opportunities and Challenges for their Application in Photocatalytic Materials. In Studies in Surface Science and Catalysis; Fornasiero, P., Cargnello, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 177, pp. 477–540. [Google Scholar]
- Fan, Z.; Meng, F.; Zhang, M.; Wu, Z.; Sun, Z.; Li, A. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Appl. Surf. Sci. 2016, 360, 298–305. [Google Scholar] [CrossRef]
- Narzary, S.; Alamelu, K.; Raja, V.; Jaffar Ali, B.M. Visible light active, magnetically retrievable Fe3O4@SiO2@g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants. J. Environ. Chem. Eng. 2020, 8, 104373. [Google Scholar] [CrossRef]
- Qiao, H.; Xiao, H.; Huang, Y.; Yuan, C.; Zhang, X.; Bu, X.; Wang, Z.; Han, S.; Zhang, L.; Su, Z.; et al. SiO2 loading into polydopamine-functionalized TiO2 nanotubes for biomedical applications. Surf. Coat. Technol. 2019, 364, 170–179. [Google Scholar] [CrossRef]
- Malevu, T.D. Ball Milling synthesis and characterization of highly crystalline TiO2-ZnO hybrids for photovoltaic applications. Phys. B Condens. Matter 2021, 621, 413291. [Google Scholar] [CrossRef]
- Ullah, F.; Qureshi, M.T.; Sultana, K.; Saleem, M.; Al Elaimi, M.; Abdel Hameed, R.; Haq, S.u.; Ismail, H.S.; Anwar, M.S. Structural and dielectric studies of MgAl2O4–TiO2 composites for energy storage applications. Ceram. Int. 2021, 47, 30665–30670. [Google Scholar] [CrossRef]
- Abinaya, S.; Kavitha, H.P.; Prakash, M.; Muthukrishnaraj, A. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustain. Chem. Pharm. 2021, 19, 100368. [Google Scholar] [CrossRef]
- Nagappa, B.; Chandrappa, G.T. Mesoporous nanocrystalline magnesium oxide for environmental remediation. Microporous Mesoporous Mater. 2007, 106, 212–218. [Google Scholar] [CrossRef]
- Mehta, M.; Mukhopadhyay, M.; Christian, R.; Mistry, N. Synthesis and characterization of MgO nanocrystals using strong and weak bases. Powder Technol. 2012, 226, 213–221. [Google Scholar] [CrossRef]
- Abdulkhaleq, N.A.; Nayef, U.M.; Albarazanchi, A.K.H. MgO nanoparticles synthesis via laser ablation stationed on porous silicon for photoconversion application. Optik 2020, 212, 164793. [Google Scholar] [CrossRef]
- Saito, A.; Obata, S.; Nishina, Y. Uniform coating of magnesium oxide crystal with reduced graphene oxide achieves moisture barrier performance. Appl. Surf. Sci. 2022, 573, 151483. [Google Scholar] [CrossRef]
- Sivaselvam, S.; Premasudha, P.; Viswanathan, C.; Ponpandian, N. Enhanced removal of emerging pharmaceutical contaminant ciprofloxacin and pathogen inactivation using morphologically tuned MgO nanostructures. J. Environ. Chem. Eng. 2020, 8, 104256. [Google Scholar] [CrossRef]
- Alkhudhayri, A.; Thagfan, F.A.; Al-Quraishy, S.; Abdel-Gaber, R.; Dkhil, M.A. Assessment of the oxidative status and goblet cell response during eimeriosis and after treatment of mice with magnesium oxide nanoparticles. Saudi J. Biol. Sci. 2022, 29, 1234–1238. [Google Scholar] [CrossRef]
- El-Sawy, N.M.; Raafat, A.I.; Badawy, N.A.; Mohamed, A.M. Radiation development of pH-responsive (xanthan-acrylic acid)/MgO nanocomposite hydrogels for controlled delivery of methotrexate anticancer drug. Int. J. Biol. Macromol. 2020, 142, 254–264. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, S.; Wang, X.; Shi, Z.; Mao, Y.; Zhao, Q.; Wang, S. MSNCs and MgO-MSNCs as drug delivery systems to control the adsorption kinetics and release rate of indometacin. Asian J. Pharm. Sci. 2019, 14, 275–286. [Google Scholar] [CrossRef]
- Yang, S.; Liang, L.; Liu, L.; Yin, Y.; Liu, Y.; Lei, G.; Zhou, K.; Huang, Q.; Wu, H. Using MgO nanoparticles as a potential platform to precisely load and steadily release Ag ions for enhanced osteogenesis and bacterial killing. Mater. Sci. Eng. C 2021, 119, 111399. [Google Scholar] [CrossRef]
- Nigam, A.; Saini, S.; Rai, A.K.; Pawar, S.J. Structural, optical, cytotoxicity, and antimicrobial properties of MgO, ZnO and MgO/ZnO nanocomposite for biomedical applications. Ceram. Int. 2021, 47, 19515–19525. [Google Scholar] [CrossRef]
- Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B Biol. 2019, 190, 8–20. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Dang, H.H.; Vo, D.-V.N.; Bach, L.G.; Nguyen, T.D.; Tran, T.V. Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. J. Hazard. Mater. 2021, 404, 124146. [Google Scholar] [CrossRef]
- Štengl, V.; Bakardjieva, S.; Maříková, M.; Bezdička, P.; Šubrt, J. Magnesium oxide nanoparticles prepared by ultrasound enhanced hydrolysis of Mg-alkoxides. Mater. Lett. 2003, 57, 3998–4003. [Google Scholar] [CrossRef]
- Karuppusamy, I.; Samuel, M.S.; Selvarajan, E.; Shanmugam, S.; Sahaya Murphin Kumar, P.; Brindhadevi, K.; Pugazhendhi, A. Ultrasound-assisted synthesis of mixed calcium magnesium oxide (CaMgO2) nanoflakes for photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 2021, 584, 770–778. [Google Scholar] [CrossRef]
- Possato, L.G.; Gonçalves, R.G.L.; Santos, R.M.M.; Chaves, T.F.; Briois, V.; Pulcinelli, S.H.; Martins, L.; Santilli, C.V. Sol-gel synthesis of nanocrystalline MgO and its application as support in Ni/MgO catalysts for ethanol steam reforming. Appl. Surf. Sci. 2021, 542, 148744. [Google Scholar] [CrossRef]
- Possato, L.G.; Pereira, E.; Gonçalves, R.G.L.; Pulcinelli, S.H.; Martins, L.; Santilli, C.V. Controlling the porosity and crystallinity of MgO catalysts by addition of surfactant in the sol-gel synthesis. Catal. Today 2020, 344, 52–58. [Google Scholar] [CrossRef]
- Dong, B.; Qin, W.; Su, Y.; Wang, X. Magnetic properties of FeSiCr@MgO soft magnetic composites prepared by magnesium acetate pyrolysis for high-frequency applications. J. Magn. Magn. Mater. 2021, 539, 168350. [Google Scholar] [CrossRef]
- Barati Dalenjan, M.; Rashidi, A.; Khorasheh, F.; Ardjmand, M. Effect of Ni ratio on mesoporous Ni/MgO nanocatalyst synthesized by one-step hydrothermal method for thermal catalytic decomposition of CH4 to H2. Int. J. Hydrogen Energy 2022, 47, 11539–11551. [Google Scholar] [CrossRef]
- Sherikar, B.N.; Sahoo, B.; Umarji, A.M. Effect of fuel and fuel to oxidizer ratio in solution combustion synthesis of nanoceramic powders: MgO, CaO and ZnO. Solid State Sci. 2020, 109, 106426. [Google Scholar] [CrossRef]
- Rao, L.S.; Rao, T.V.; Naheed, S.; Rao, P.V. Structural and optical properties of zinc magnesium oxide nanoparticles synthesized by chemical co-precipitation. Mater. Chem. Phys. 2018, 203, 133–140. [Google Scholar] [CrossRef]
- Rajendran, V.; Deepa, B.; Mekala, R. Studies on structural, morphological, optical and antibacterial activity of Pure and Cu-doped MgO nanoparticles synthesized by co-precipitation method. Mater. Today Proc. 2018, 5, 8796–8803. [Google Scholar] [CrossRef]
- Borgohain, X.; Boruah, A.; Sarma, G.K.; Rashid, M.H. Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. J. Mol. Liq. 2020, 305, 112799. [Google Scholar] [CrossRef]
- Lei, P.; Ding, X.; Bai, Y.; Yu, X.; Jiang, G.; Li, T.; Sun, B.; Zhang, X.; Li, X.; Wu, L.; et al. 1.8-μm MgO: PPLN optical parametric oscillator pumped by Nd: YVO4/YVO4 2nd-Stokes Raman laser. Results Phys. 2021, 29, 104703. [Google Scholar] [CrossRef]
- Huang, S.; Kang, B.; Duan, L.; Zhang, D. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers. J. Colloid Interface Sci. 2021, 583, 178–187. [Google Scholar] [CrossRef]
- Chetankumar, K.; Swamy, B.E.K.; Naik, H.S.B. MgO and MWCNTs amplified electrochemical sensor for guanine, adenine and epinephrine. Mater. Chem. Phys. 2021, 267, 124610. [Google Scholar] [CrossRef]
- Sakoda, M.; Aibara, M.; Mede, K.; Kikuchi, M.; Naito, M. Superconducting tunnel junctions on MgB2 using MgO and CaF2 as a barrier. Phys. C Supercond. Its Appl. 2016, 530, 82–86. [Google Scholar] [CrossRef]
- Guo, T.; Bulin, C. Facile fabrication of MgO/graphene oxide composite as an efficient adsorbent for rapid removal of aqueous organic dyes: Performance evaluation and mechanistic investigation. J. Phys. Chem. Solids 2021, 158, 110251. [Google Scholar] [CrossRef]
- Nga, N.K.; Thuy Chau, N.T.; Viet, P.H. Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution. J. Sci. Adv. Mater. Devices 2020, 5, 65–72. [Google Scholar] [CrossRef]
- Cai, Y.; Li, C.; Wu, D.; Wang, W.; Tan, F.; Wang, X.; Wong, P.K.; Qiao, X. Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chem. Eng. J. 2017, 312, 158–166. [Google Scholar] [CrossRef]
- Prado, D.C.; Fernández, I.; Rodríguez-Páez, J.E. MgO nanostructures: Synthesis, characterization and tentative mechanisms of nanoparticles formation. Nano-Struct. Nano-Objects 2020, 23, 100482. [Google Scholar] [CrossRef]
- Yang, D.; Xu, P.; Guan, E.; Browning, N.D.; Gates, B.C. Rhodium pair-sites on magnesium oxide: Synthesis, characterization, and catalysis of ethylene hydrogenation. J. Catal. 2016, 338, 12–20. [Google Scholar] [CrossRef]
- Maruthai, J.; Ramachandran, K.; Muthukumarasamy, A.; Chidambaram, S.; Gaidi, M.; Dauodi, K. Bio fabrication of 2D MgO/Ag nanocomposite for effective environmental utilization in antibacterial, anti-oxidant and catalytic applications. Surf. Interfaces 2022, 30, 101921. [Google Scholar] [CrossRef]
- Dong, H.; Liu, M.; Yan, X.; Liu, M.; Qian, Z.; Xie, Y.; Luo, W.; Lei, C.; Zhou, Z. Pyrolysis gas from biomass and plastics over X-Mo@MgO (X = Ni, Fe, Co) catalysts into functional carbon nanocomposite: Gas reforming reaction and proper process mechanisms. Sci. Total Environ. 2022, 831, 154751. [Google Scholar] [CrossRef]
- Sharmin, F.; Chandra Roy, D.; Basith, M.A. Photocatalytic water splitting ability of Fe/MgO-rGO nanocomposites towards hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 38232–38246. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, D.-Y.; Lu, W.; Long, Y.; Zheng, W.; Zhao, J.; Hu, Z.-T. MgO/Carbon nanocomposites synthesized in molten salts for catalytic isomerization of glucose to fructose in aqueous media. Green Chem. Eng. 2021, 3, 359–366. [Google Scholar] [CrossRef]
- Hamidian, K.; Saberian, M.R.; Miri, A.; Sharifi, F.; Sarani, M. Doped and un-doped cerium oxide nanoparticles: Biosynthesis, characterization, and cytotoxic study. Ceram. Int. 2021, 47, 13895–13902. [Google Scholar] [CrossRef]
- Sebastiammal, S.; Bezy, N.A.; Somaprabha, A.; Henry, J.; Biju, C.S.; Fathima, A.L. Chemical and sweet basil leaf mediated synthesis of cerium oxide (CeO2) nanoparticles: Antibacterial action toward human pathogens. Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 237–243. [Google Scholar] [CrossRef]
- He, L.; Su, Y.; Lanhong, J.; Shi, S. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: A review. J. Rare Earths 2015, 33, 791–799. [Google Scholar] [CrossRef]
- Niemiec, S.M.; Hilton, S.A.; Wallbank, A.; Azeltine, M.; Louiselle, A.E.; Elajaili, H.; Allawzi, A.; Xu, J.; Mattson, C.; Dewberry, L.C.; et al. Cerium oxide nanoparticle delivery of microRNA-146a for local treatment of acute lung injury. Nanomed. Nanotechnol. Biol. Med. 2021, 34, 102388. [Google Scholar] [CrossRef]
- Asgharzadeh, F.; Hashemzadeh, A.; Rahmani, F.; Yaghoubi, A.; Nazari, S.E.; Avan, A.; Mehr, S.M.H.; Soleimanpour, S.; Khazaei, M. Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism. Life Sci. 2021, 278, 119500. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, L.; Darroudi, M.; Ramezanian, N.; Zamani, P.; Aghaee-Bakhtiari, S.H.; Nourmohammadi, E.; Kazemi Oskuee, R. Polyethylenimine-associated cerium oxide nanoparticles: A novel promising gene delivery vector. Life Sci. 2019, 232, 116661. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.X.; Feng, Y.; Zhang, F.F.; Sun, X.W.; Li, Y.X.; Xue, R.J. Hydrothermal synthesis of Ag doped ZnO/CeO2 nanocomposites and its application in ethanol sensing. Mater. Lett. 2022, 318, 132191. [Google Scholar] [CrossRef]
- Negi, K.; Kumar, M.; Singh, G.; Chauhan, S.; Chauhan, M.S. Nanostructured CeO2 for selective-sensing and smart photocatalytic applications. Ceram. Int. 2018, 44, 15281–15289. [Google Scholar] [CrossRef]
- Veeresha, G.; Krishnamurthy, G.; Shivakumar, M.S. Cobalt nanocrystals doped on CeO2/RGO nanocomposite for supercapacitor applications. Inorg. Chem. Commun. 2022, 138, 109232. [Google Scholar] [CrossRef]
- Miller, H.A.; Bellini, M.; Dekel, D.R.; Vizza, F. Recent developments in Pd-CeO2 nano-composite electrocatalysts for anodic reactions in anion exchange membrane fuel cells. Electrochem. Commun. 2022, 135, 107219. [Google Scholar] [CrossRef]
- Wang, P.; Cai, C.; Tan, J.; Pan, M. Effect of the CeO2 nanoparticles in microporous layers on the durability of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2021, 46, 34867–34873. [Google Scholar] [CrossRef]
- Li, C.-M.; Zhang, Y.-S.; Wang, X.-P.; Yin, X.-B.; Luo, N.-N.; Khayambashi, A.; Wei, Y.-Z. The synthesis and characterization of hydrous cerium oxide nanoparticles loaded on porous silica micro-sphere as novel and efficient adsorbents to remove phosphate radicals from water. Microporous Mesoporous Mater. 2019, 279, 73–81. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, C.; Yang, L.; Paul Chen, J. Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms. Chem. Eng. J. 2017, 315, 630–638. [Google Scholar] [CrossRef]
- Bansal, R.; Nair, S.; Pandey, K.K. UV resistant wood coating based on zinc oxide and cerium oxide dispersed linseed oil nano-emulsion. Mater. Today Commun. 2022, 30, 103177. [Google Scholar] [CrossRef]
- Gayathri, R.; Raja, G.; Rajeswaran, P. A simple and one step low cost microwave induced low cost grapheme modified CeO2 photo electrodes for high-efficiency dye-sensitized solar cells. Inorg. Chem. Commun. 2020, 120, 108132. [Google Scholar] [CrossRef]
- Latha, P.; Prakash, K.; Karuthapandian, S. Effective Photodegradation of CR & MO dyes by morphologically controlled Cerium oxide nanocubes under visible light Illumination. Optik 2018, 154, 242–250. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Amin, K.M.; Ali, M.; Ali, Z.; Atif, M.; Ensinger, W.; Khalid, W. Synergetic effect of adsorption-photocatalysis by GO−CeO2nanocomposites for photodegradation of doxorubicin. J. Environ. Chem. Eng. 2022, 10, 107078. [Google Scholar] [CrossRef]
- Iqbal, A.; Ahmed, A.S.; Ahmad, N.; Shafi, A.; Ahamad, T.; Khan, M.Z.; Srivastava, S. Biogenic synthesis of CeO2 nanoparticles and its potential application as an efficient photocatalyst for the degradation of toxic amido black dye. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100505. [Google Scholar] [CrossRef]
- Fang, X.; Song, H. Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative ability and biocompatibility for the spinal cord injury repair. J. Photochem. Photobiol. B Biol. 2019, 191, 83–87. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Mohammadian-Sarcheshmeh, H.; Naderi, H.; Farbod, F.; Sabaghian, F. Fabrication of a high-performance hybrid supercapacitor using a modified graphene aerogel/cerium oxide nanoparticle composite. J. Energy Storage 2019, 26, 100998. [Google Scholar] [CrossRef]
- Sridharan, M.; Kamaraj, P.; Vennilaraj; Arockiaselvi, J.; Pushpamalini, T.; Vivekanand, P.A.; Hari Kumar, S. Synthesis, characterization and evaluation of biosynthesized Cerium oxide nanoparticle for its anticancer activity on breast cancer cell (MCF 7). Mater. Today Proc. 2021, 36, 914–919. [Google Scholar] [CrossRef]
- Shekunova, T.O.; Lapkina, L.A.; Shcherbakov, A.B.; Meshkov, I.N.; Ivanov, V.K.; Tsivadze, A.Y.; Gorbunova, Y.G. Deactivation of singlet oxygen by cerium oxide nanoparticles. J. Photochem. Photobiol. A Chem. 2019, 382, 111925. [Google Scholar] [CrossRef]
- Selvaraj Janaki, N.J.; Ivan Jebakumar, D.S.; Sumithraj Premkumar, P. Studies on the physical properties of green synthesized cerium oxide nanoparticles using Melia dubia leaf extract. Mater. Today Proc. 2021, 58, 850–854. [Google Scholar] [CrossRef]
- Hancock, M.L.; Yokel, R.A.; Beck, M.J.; Calahan, J.L.; Jarrells, T.W.; Munson, E.J.; Olaniyan, G.A.; Grulke, E.A. The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis. Appl. Surf. Sci. 2021, 535, 147681. [Google Scholar] [CrossRef]
- Celardo, I.; Traversa, E.; Ghibelli, L. Cerium oxide nanoparticles: A promise for applications in therapy. J. Exp. Ther. Oncol. 2011, 9, 47–51. [Google Scholar] [PubMed]
- Orge, C.A.; Órfão, J.J.M.; Pereira, M.F.R.; Duarte de Farias, A.M.; Neto, R.C.R.; Fraga, M.A. Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Appl. Catal. B Environ. 2011, 103, 190–199. [Google Scholar] [CrossRef]
- Akbari, A.; Khammar, M.; Taherzadeh, D.; Rajabian, A.; Khorsand Zak, A.; Darroudi, M. Zinc-doped cerium oxide nanoparticles: Sol-gel synthesis, characterization, and investigation of their in vitro cytotoxicity effects. J. Mol. Struct. 2017, 1149, 771–776. [Google Scholar] [CrossRef]
- Muthuvel, A.; Jothibas, M.; Mohana, V.; Manoharan, C. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg. Chem. Commun. 2020, 119, 108086. [Google Scholar] [CrossRef]
- Syed Khadar, Y.A.; Balamurugan, A.; Devarajan, V.P.; Subramanian, R.; Dinesh Kumar, S. Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2:Co) nanoparticles by using hydrothermal method. J. Mater. Res. Technol. 2019, 8, 267–274. [Google Scholar] [CrossRef]
- Kishor Kumar, M.J.; Kalathi, J.T. Low-temperature sonochemical synthesis of high dielectric Lanthanum doped Cerium oxide nanopowder. J. Alloys Compd. 2018, 748, 348–354. [Google Scholar] [CrossRef]
- Soren, S.; Bessoi, M.; Parhi, P. A rapid microwave initiated polyol synthesis of cerium oxide nanoparticle using different cerium precursors. Ceram. Int. 2015, 41, 8114–8118. [Google Scholar] [CrossRef]
- Ahmed, S.H.; Bakiro, M.; Aljasmi, F.I.A.; Albreiki, A.M.O.; Bayane, S.; Alzamly, A. Investigation of the band gap and photocatalytic properties of CeO2/rGO composites. Mol. Catal. 2020, 486, 110874. [Google Scholar] [CrossRef]
- Faghihinezhad, M.; Baghdadi, M.; Shahin, M.S.; Torabian, A. Catalytic ozonation of real textile wastewater by magnetic oxidized g-C3N4 modified with Al2O3 nanoparticles as a novel catalyst. Sep. Purif. Technol. 2022, 283, 120208. [Google Scholar] [CrossRef]
- Bahari, M.B.; Mamat, C.R.; Jalil, A.A.; Hassan, N.S.; Nabgan, W.; Setiabudi, H.D.; Vo, D.-V.N.; Phuong Thuy, B.T. Mesoporous alumina: A comprehensive review on synthesis strategies, structure, and applications as support for enhanced H2 generation via CO2-CH4 reforming. Int. J. Hydrogen Energy 2022, 47, 41507–41526. [Google Scholar] [CrossRef]
- Contreras, J.E.; Taha-Tijerina, J.; López-Perales, J.F.; Banda-Muñoz, F.; Díaz-Tato, L.; Rodríguez, E.A. Enhancing the quartz-clay-feldspar system by nano-Al2O3 addition for electrical insulators: From laboratory to prototype scale. Mater. Chem. Phys. 2021, 263, 124389. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Xie, G.-H.; Zhou, Y.-M.; Wang, J.-X.; Wang, Z.-X.; Guo, H.-J.; You, B.-Z.; Yan, G.-C. Enhancing storage performance of P2-type Na2/3Fe1/2Mn1/2O2 cathode materials by Al2O3 coating. Trans. Nonferrous Met. Soc. China 2022, 32, 262–272. [Google Scholar] [CrossRef]
- Khaleduzzaman, S.S.; Sohel, M.R.; Saidur, R.; Selvaraj, J. Stability of Al2O3-water Nanofluid for Electronics Cooling System. Procedia Eng. 2015, 105, 406–411. [Google Scholar] [CrossRef]
- Goyal, R.K.; Tiwari, A.N.; Mulik, U.P.; Negi, Y.S. Novel high performance Al2O3/poly(ether ether ketone) nanocomposites for electronics applications. Compos. Sci. Technol. 2007, 67, 1802–1812. [Google Scholar] [CrossRef]
- Moutcine, A.; Ifguis, O.; Amine Samaini, M.; Ennachete, M.; Sâadane, H.; Laghlimi, C.; Chtaini, A. Simultaneous electrochemical determination of heavy metals by an electrode modified CPE-NP-Al2O3. Mater. Today Proc. 2022, 53, 404–407. [Google Scholar] [CrossRef]
- Saadi, Z.; Saadi, R.; Fazaeli, R. Fixed-bed adsorption dynamics of Pb (II) adsorption from aqueous solution using nanostructured γ-alumina. J. Nanostruct. Chem. 2013, 3, 48. [Google Scholar] [CrossRef]
- Liu, X.; Niu, C.; Zhen, X.; Wang, J.; Su, X. Novel approach for synthesis of boehmite nanostructures and their conversion to aluminum oxide nanostructures for remove Congo red. J. Colloid Interface Sci. 2015, 452, 116–125. [Google Scholar] [CrossRef]
- Hossain, A.M.S.; Balbín, A.; Erami, R.S.; Prashar, S.; Fajardo, M.; Gómez-Ruiz, S. Synthesis and study of the catalytic applications in C–C coupling reactions of hybrid nanosystems based on alumina and palladium nanoparticles. Inorg. Chim. Acta 2017, 455, 645–652. [Google Scholar] [CrossRef]
- Tan, H.-b.; Guo, C.-s. Preparation of long alumina fibers by sol-gel method using malic acid. Trans. Nonferrous Met. Soc. China 2011, 21, 1563–1567. [Google Scholar] [CrossRef]
- Tzompantzi, F.; Piña, Y.; Mantilla, A.; Aguilar-Martínez, O.; Galindo-Hernández, F.; Bokhimi, X.; Barrera, A. Hydroxylated sol–gel Al2O3 as photocatalyst for the degradation of phenolic compounds in presence of UV light. Catal. Today 2014, 220–222, 49–55. [Google Scholar] [CrossRef]
- Piña-Pérez, Y.; Tzompantzi-Morales, F.; Pérez-Hernández, R.; Arroyo-Murillo, R.; Acevedo-Peña, P.; Gómez-Romero, R. Photocatalytic activity of Al2O3 improved by the addition of Ce3+/Ce4+ synthesized by the sol-gel method. Photodegradation of phenolic compounds using UV light. Fuel 2017, 198, 11–21. [Google Scholar] [CrossRef]
- Polat Gonullu, M. Design and characterization of single bilayer ZnO/Al2O3 film by ultrasonically spray pyrolysis and its application in photocatalysis. Superlattices Microstruct. 2021, 164, 107113. [Google Scholar] [CrossRef]
- Tan, L.; Dong, W.; Liu, K.; Luo, T.; Gu, X. Thermal decomposition in-situ preparation of gray rutile TiO2−x/Al2O3 composite and its enhanced visible-light-driven photocatalytic properties. Opt. Mater. 2021, 111, 110716. [Google Scholar] [CrossRef]
- Veksha, A.; Bin Mohamed Amrad, M.Z.; Chen, W.Q.; Binte Mohamed, D.K.; Tiwari, S.B.; Lim, T.-T.; Lisak, G. Tailoring Fe2O3–Al2O3 catalyst structure and activity via hydrothermal synthesis for carbon nanotubes and hydrogen production from polyolefin plastics. Chemosphere 2022, 297, 134148. [Google Scholar] [CrossRef] [PubMed]
- Chong, X.; Xiao, G.; Ding, D.; Luo, J.; Zheng, X. Combustion synthesis of SiC/Al2O3 composite powders with SiC nanowires and their growth mechanism. Ceram. Int. 2022, 48, 1778–1788. [Google Scholar] [CrossRef]
- Rahbar Shamskar, F.; Meshkani, F.; Rezaei, M. Ultrasound assisted co-precipitation synthesis and catalytic performance of mesoporous nanocrystalline NiO-Al2O3 powders. Ultrason. Sonochem. 2017, 34, 436–447. [Google Scholar] [CrossRef]
- Grishina, E.P.; Kudryakova, N.O.; Ramenskaya, L.M. Thin-film Al2O3 coating on low carbon steel obtained by the sol–gel method with different peptizing acids: Corrosion investigation. Thin Solid Film. 2022, 746, 139125. [Google Scholar] [CrossRef]
- Mirjalili, F.; Mohamad, H.; Luqman Chuah, A. Preparation of nano-scale alpha-Al2O3 powder by the sol-gel method. Ceram. Silik. 2011, 55, 378–383. [Google Scholar]
- Mavrič, A.; Valant, M.; Cui, C.; Wang, Z.M. Advanced applications of amorphous alumina: From nano to bulk. J. Non-Cryst. Solids 2019, 521, 119493. [Google Scholar] [CrossRef]
- Peintinger, M.F.; Kratz, M.J.; Bredow, T. Quantum-chemical study of stable, meta-stable and high-pressure alumina polymorphs and aluminum hydroxides. J. Mater. Chem. A 2014, 2, 13143–13158. [Google Scholar] [CrossRef]
- Mallakpour, S.; Khadem, E. Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog. Polym. Sci. 2015, 51, 74–93. [Google Scholar] [CrossRef]
- Niero, D.F.; Montedo, O.R.K.; Bernardin, A.M. Synthesis and characterization of nano α-alumina by an inorganic sol–gel method. Mater. Sci. Eng. B 2022, 280, 115690. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, D.; Lou, X.W. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction. J. Phys. Chem. C 2010, 114, 1694–1700. [Google Scholar] [CrossRef]
- Yan, D.; Yan, P.X.; Yue, G.H.; Liu, J.Z.; Chang, J.B.; Yang, Q.; Qu, D.M.; Geng, Z.R.; Chen, J.T.; Zhang, G.A.; et al. Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them. Chem. Phys. Lett. 2007, 440, 134–138. [Google Scholar] [CrossRef]
- Rao, B.C.N.R.; Govindaraj, A.; Vivekchand, S.R.C. Inorganic nanomaterials: Current status and future prospects. Annu. Rep. Sect. A (Inorg. Chem.) 2006, 102, 20–45. [Google Scholar] [CrossRef]
- McKenzie, R.M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral. Mag. 2018, 38, 493–502. [Google Scholar] [CrossRef]
- Shih, Y.-J.; Huang, R.; Huang, Y.H. Adsorptive removal of arsenic using a novel akhtenskite coated waste Goethite. J. Clean. Prod. 2015, 87, 897–905. [Google Scholar] [CrossRef]
- Indra, A.; Menezes, P.W.; Schuster, F.; Driess, M. Significant role of Mn(III) sites in eg1 configuration in manganese oxide catalysts for efficient artificial water oxidation. J. Photochem. Photobiol. B Biol. 2015, 152, 156–161. [Google Scholar] [CrossRef]
- Shin, J.; Seo, J.K.; Yaylian, R.; Huang, A.; Meng, Y.S. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int. Mater. Rev. 2020, 65, 356–387. [Google Scholar] [CrossRef]
- Juran, T.R.; Young, J.; Smeu, M. Density Functional Theory Modeling of MnO2 Polymorphs as Cathodes for Multivalent Ion Batteries. J. Phys. Chem. C 2018, 122, 8788–8795. [Google Scholar] [CrossRef]
- Šťastný, M.; Stengl, V.; Henych, J.; Tolasz, J.; Vomáčka, P.; Ederer, J. Mesoporous manganese oxide for the degradation of organophosphates pesticides. J. Mater. Sci. 2016, 51, 2634–2642. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Mohammadi, M.; Maleki, A.; Jafari, A.; Shahmoradi, B.; Rezaee, R.; Safari, M.; Daraei, H.; Giahi, O.; Yetilmezsoy, K.; et al. Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid in Aqueous Solution Using Mn-doped ZnO/Graphene Nanocomposite Under LED Radiation. J. Inorg. Organomet. Polym. Mater. 2020, 30, 923–934. [Google Scholar] [CrossRef]
- Zandsalimi, Y.; Maleki, A.; Shahmoradi, B.; Dehestani, S.; Rezaee, R.; McKay, G. Photocatalytic removal of 2,4-Dichlorophenoxyacetic acid from aqueous solution using tungsten oxide doped zinc oxide nanoparticles immobilised on glass beads. Environ. Technol. 2022, 43, 631–645. [Google Scholar] [CrossRef]
- Maleki, A.; Moradi, F.; Shahmoradi, B.; Rezaee, R.; Lee, S.-M. The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate. J. Mol. Liq. 2020, 297, 111918. [Google Scholar] [CrossRef]
- Nagpal, M.; Kakkar, R. Use of metal oxides for the adsorptive removal of toxic organic pollutants. Sep. Purif. Technol. 2019, 211, 522–539. [Google Scholar] [CrossRef]
- Sheela, T.; Nayaka, Y.A. Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem. Eng. J. 2012, 191, 123–131. [Google Scholar] [CrossRef]
- Ahmad Bhat, S.; Zafar, F.; Ullah Mirza, A.; Hossain Mondal, A.; Kareem, A.; Haq, Q.M.R.; Nishat, N. NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity. Arab. J. Chem. 2020, 13, 5724–5739. [Google Scholar] [CrossRef]
- Pooyandeh, S.; Shahidi, S.; Khajehnezhad, A.; Mongkholrattanasit, R. In situ deposition of NiO nano particles on cotton fabric using sol–gel method- photocatalytic activation properties. J. Mater. Res. Technol. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Ibrahim, E.M.M.; Abdel-Rahman, L.H.; Abu-Dief, A.M.; Elshafaie, A.; Hamdan, S.K.; Ahmed, A.M. The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic Properties. Mater. Res. Bull. 2018, 107, 492–497. [Google Scholar] [CrossRef]
- Mohandesi, M.; Tavakolian, M.; Rahimpour, M.R. Eggplant as an appreciable bio-template for green synthesis of NiO nanoparticles: Study of physical and photocatalytic properties. Ceram. Int. 2022, 48, 22820–22826. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Mwafy, E.A. The effect of laser fluence for enhancing the antibacterial activity of NiO nanoparticles by pulsed laser ablation in liquid media. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100382. [Google Scholar] [CrossRef]
- Kumar, J.P.; Giri, S.D.; Sarkar, A. Mesoporous NiO with different morphology: Synthesis, characterization and their evaluation for oxygen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 15639–15649. [Google Scholar] [CrossRef]
- Hosny, N.M. Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 2011, 30, 470–476. [Google Scholar] [CrossRef]
- Rashidimoghaddam, M.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Constructing S-doped Ni–Co LDH intercalated with Fe3O4 heterostructure photocatalysts for enhanced pesticide degradation. New J. Chem. 2020, 44, 15584–15592. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Abubakar, Y.; Tijjani, H.; Egbuna, C.; Adetunji, C.O.; Kala, S.; Kryeziu, T.L.; Ifemeje, J.C.; Patrick-Iwuanyanwu, K.C. Chapter 3—Pesticides, History, and Classification. In Natural Remedies for Pest, Disease and Weed Control; Egbuna, C., Sawicka, B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 29–42. [Google Scholar] [CrossRef]
- Sousa, R.M.O.F.; Cunha, A.C.; Fernandes-Ferreira, M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry 2021, 187, 112714. [Google Scholar] [CrossRef]
- George, D.; Finn, R.; Graham, K.; Sparagano, O. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasites Vectors 2014, 7, 28. [Google Scholar] [CrossRef]
- Quijano, L.; Yusà, V.; Font, G.; Pardo, O. Chronic cumulative risk assessment of the exposure to organophosphorus, carbamate and pyrethroid and pyrethrin pesticides through fruit and vegetables consumption in the region of Valencia (Spain). Food Chem. Toxicol. 2016, 89, 39–46. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Fattahi, N.; Rahimi, R.; Sharafi, K.; Ghaffari, H.R. Evaluation of abamectin, diazinon and chlorpyrifos pesticide residues in apple product of Mahabad region gardens: Iran in 2014. Food Chem. 2017, 231, 148–155. [Google Scholar] [CrossRef]
- Blankson, G.K.; Osei-Fosu, P.; Adeendze, E.A.; Ashie, D. Contamination levels of organophosphorus and synthetic pyrethroid pesticides in vegetables marketed in Accra, Ghana. Food Control 2016, 68, 174–180. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, C.; Zheng, C.; Wang, X.; Yang, G.; Wang, Q.; Zhang, Z. Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control 2014, 36, 63–68. [Google Scholar] [CrossRef]
- Ciasca, B.; Pecorelli, I.; Lepore, L.; Paoloni, A.; Catucci, L.; Pascale, M.; Lattanzio, V.M.T. Rapid and reliable detection of glyphosate in pome fruits, berries, pulses and cereals by flow injection—Mass spectrometry. Food Chem. 2020, 310, 125813. [Google Scholar] [CrossRef] [PubMed]
- Mojsak, P.; Łozowicka, B.; Kaczyński, P. Estimating acute and chronic exposure of children and adults to chlorpyrifos in fruit and vegetables based on the new, lower toxicology data. Ecotoxicol. Environ. Saf. 2018, 159, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Zhao, Q.; Wang, C.; Cui, Y.; Li, J.; Chen, A.; Liang, G.; Jiao, B. Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China. Chemosphere 2020, 258, 127381. [Google Scholar] [CrossRef]
- Hirano, T.; Suzuki, N.; Ikenaka, Y.; Hoshi, N.; Tabuchi, Y. Neurotoxicity of a pyrethroid pesticide deltamethrin is associated with the imbalance in proteolytic systems caused by mitophagy activation and proteasome inhibition. Toxicol. Appl. Pharmacol. 2021, 430, 115723. [Google Scholar] [CrossRef]
- Nurdin, M.; Maulidiyah, M.; Salim, L.O.A.; Muzakkar, M.Z.; Umar, A.A. High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode. Microchem. J. 2019, 145, 756–761. [Google Scholar] [CrossRef]
- Xia, Y.; Bian, Q.; Xu, L.; Cheng, S.; Song, L.; Liu, J.; Wu, W.; Wang, S.; Wang, X. Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate. Toxicology 2004, 203, 49–60. [Google Scholar] [CrossRef]
- Gupta, D.; Jamwal, D.; Rana, D.; Katoch, A. 26—Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. In Applications of Nanocomposite Materials in Drug Delivery; Inamuddin, A.M.A., Mohammad, A., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 619–632. [Google Scholar] [CrossRef]
- Dabrowski, A. Adsorption--from theory to practice. Adv Colloid Interface Sci 2001, 93, 135–224. [Google Scholar] [CrossRef]
- del Mar Orta, M.; Martín, J.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Adsorption of propranolol onto montmorillonite: Kinetic, isotherm and pH studies. Appl. Clay Sci. 2019, 173, 107–114. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Swiatkowski, A.; Buczek, B. Adsorption of chlorophenoxy pesticides on activated carbon with gradually removed external particle layers. Chem. Eng. J. 2017, 308, 408–418. [Google Scholar] [CrossRef]
- Sharma, L.; Kakkar, R. Hierarchically structured magnesium based oxides: Synthesis strategies and applications in organic pollutant remediation. CrystEngComm 2017, 19, 6913–6926. [Google Scholar] [CrossRef]
- Batzill, M. Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ. Sci. 2011, 4, 3275–3286. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Ibrahim, F.A.; Shaban, S.A.; Youssef, N.A. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egypt. J. Pet. 2015, 24, 27–35. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. In Green Adsorbents for Pollutant Removal: Fundamentals and Design; Crini, G., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 23–71. [Google Scholar] [CrossRef]
- Králik, M. Adsorption, chemisorption, and catalysis. Chem. Pap. 2014, 68, 1625–1638. [Google Scholar] [CrossRef]
- Edet, U.A.; Ifelebuegu, A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H. Insights into the isotherm and kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions: A review. J. Environ. Manag. 2019, 252, 109617. [Google Scholar] [CrossRef]
- Adeola, A.O.; Abiodun, B.A.; Adenuga, D.O.; Nomngongo, P.N. Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review. J. Contam. Hydrol. 2022, 248, 104019. [Google Scholar] [CrossRef]
- Salam, M.A.; AbuKhadra, M.R.; Mohamed, A.S. Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles. Environ. Pollut. 2020, 259, 113874. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, P.; Wang, X.; Yang, J.; Zhou, Z.; Du, X.; Lu, X. Efficient adsorption removal of organic nitrogen pesticides: Insight into a new hollow NiO/Co@C magnetic nanocomposites derived from metal-organic framework. Sep. Purif. Technol. 2022, 287, 120608. [Google Scholar] [CrossRef]
- Abdelillah Ali Elhussein, E.; Şahin, S.; Bayazit, Ş.S. Preparation of CeO2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption. J. Mol. Liq. 2018, 255, 10–17. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Lu, Z.-H.; Chen, M.; Zhuang, L.-Y.; Cao, Y.-W.; Liu, X.; Senosy, I.A.; Yang, Z.-H. A novel magnetic double MOF composite is synthesized for removing azole fungicides economically and efficiently. Appl. Surf. Sci. 2022, 594, 153441. [Google Scholar] [CrossRef]
- Sharma, L.; Kakkar, R. Magnetically retrievable one-pot fabrication of mesoporous magnesium ferrite (MgFe2O4) for the remediation of chlorpyrifos and real pesticide wastewater. J. Environ. Chem. Eng. 2018, 6, 6891–6903. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Sharma, P.K.; Gupta, V. Development of Magnetic Nanoparticles from Poplar Sawdust for Removal of Pesticides from Aqueous Solution. J. Graph. Era Univ. 2018, 6, 55–70. [Google Scholar]
- Kaur, Y.; Bhatia, Y.; Chaudhary, S.; Chaudhary, G.R. Comparative performance of bare and functionalize ZnO nanoadsorbents for pesticide removal from aqueous solution. J. Mol. Liq. 2017, 234, 94–103. [Google Scholar] [CrossRef]
- Chen, D.; Chen, C.; Shen, W.; Quan, H.; Chen, S.; Xie, S.; Luo, X.; Guo, L. MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 2017, 28, 1769–1779. [Google Scholar] [CrossRef]
- Cao, X.; Liu, G.; She, Y.; Jiang, Z.; Jin, F.; Jin, M.; Du, P.; Zhao, F.; Zhang, Y.; Wang, J. Preparation of magnetic metal organic framework composites for the extraction of neonicotinoid insecticides from environmental water samples. RSC Adv. 2016, 6, 113144–113151. [Google Scholar] [CrossRef]
- Su, H.; Lin, Y.; Wang, Z.; Wong, Y.L.; Chen, X.; Chan, T.W. Magnetic metal-organic framework-titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples. J. Chromatogr. A 2016, 1466, 21–28. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, D.; Xu, X.; Zhang, Y.; Lin, H. Determination of triazole pesticides in aqueous solution based on magnetic graphene oxide functionalized MOF-199 as solid phase extraction sorbents. Microporous Mesoporous Mater. 2018, 270, 258–264. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, X.; Liu, Z.; Zhang, Y.; Wang, J.; Lin, H.; Xu, D. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. J. Mater. Sci. 2018, 53, 10772–10783. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Marei, A.E.-S.M. Development of a Solid-Phase Extraction (SPE) Cartridge Based on Chitosan-Metal Oxide Nanoparticles (Ch-MO NPs) for Extraction of Pesticides from Water and Determination by HPLC. Int. J. Anal. Chem. 2018, 2018, 3640691. [Google Scholar] [CrossRef] [PubMed]
- Moradi Dehaghi, S.; Rahmanifar, B.; Moradi, A.M.; Azar, P.A. Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J. Saudi Chem. Soc. 2014, 18, 348–355. [Google Scholar] [CrossRef]
- Parsaie, A.; Rahbar, N.; Baezat, M. A New Fe3O4/CuO/AC Nanocomposite for Imidacloprid Removal: Characterization, Optimization, and Adsorption Modeling. Res. Sq. 2021. [Google Scholar] [CrossRef]
- ul Haq, A.; Saeed, M.; Usman, M.; Naqvi, S.A.R.; Bokhari, T.H.; Maqbool, T.; Ghaus, H.; Tahir, T.; Khalid, H. Sorption of chlorpyrifos onto zinc oxide nanoparticles impregnated Pea peels (Pisum sativum L): Equilibrium, kinetic and thermodynamic studies. Environ. Technol. Innov. 2020, 17, 100516. [Google Scholar] [CrossRef]
- Haq, A.; Saeed, M.; Muneer, M.; Jamal, M.; Maqbool, T.; Tahir, T. Biosorption of metribuzin pesticide by Cucumber (Cucumis sativus) peels-zinc oxide nanoparticles composite. Sci. Rep. 2022, 12, 5840. [Google Scholar] [CrossRef]
- Cusioli, L.F.; Quesada, H.B.; Barbosa de Andrade, M.; Gomes, R.G.; Bergamasco, R. Application of a novel low-cost adsorbent functioned with iron oxide nanoparticles for the removal of triclosan present in contaminated water. Microporous Mesoporous Mater. 2021, 325, 111328. [Google Scholar] [CrossRef]
- Allam, E.A.; Ali, A.S.M.; Elsharkawy, R.M.; Mahmoud, M.E. Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: Kinetic and adsorption studies. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100481. [Google Scholar] [CrossRef]
- Rao, T.N.; Balaji, A.P.B.; Panagal, M.; Parvatamma, B.; Selvaraj, B.; Panneerselvam, S.; Aruni, W.; Subramanian, K.; Sampath Renuga, P.; Pandian, S. Nanoremediation of dimethomorph in water samples using magnesium aluminate nanoparticles. Environ. Technol. Innov. 2020, 20, 101176. [Google Scholar] [CrossRef]
- Lan, J.; Cheng, Y.; Zhao, Z. Effective organochlorine pesticides removal from aqueous systems by magnetic nanospheres coated with polystyrene. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2014, 29, 168–173. [Google Scholar] [CrossRef]
- Armaghan, M.; Amini, M.M. Adsorption of diazinon and fenitrothion on nanocrystalline magnesium oxides. Arab. J. Chem. 2017, 10, 91–99. [Google Scholar] [CrossRef]
- Liu, F.; Tian, H.; He, J. Adsorptive performance and catalytic activity of superparamagnetic Fe3O4@nSiO2@mSiO2 core–shell microspheres towards DDT. J. Colloid Interface Sci. 2014, 419, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Vaya, D.; Surolia, P.K. Semiconductor based photocatalytic degradation of pesticides: An overview. Environ. Technol. Innov. 2020, 20, 101128. [Google Scholar] [CrossRef]
- Krishnasamy, L.; Krishna, K.; Subpiramaniyam, S. Photocatalytic Degradation of Atrazine in Aqueous Solution Using La-Doped ZnO/PAN Nanofibers. Environ. Sci. Pollut. Res. 2022, 29, 54282–54291. [Google Scholar] [CrossRef]
- Rani, M.; Yadav, J.; Keshu; Shanker, U. Green synthesis of sunlight responsive zinc oxide coupled cadmium sulfide nanostructures for efficient photodegradation of pesticides. J. Colloid Interface Sci. 2021, 601, 689–703. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, F.; Xu, Z.; Di, X.; Zhang, Q. Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite. RSC Adv. 2020, 10, 11929–11938. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Shainy, F.; Sekhar, V.C.; Athira, V.S. Highly efficient photocatalytic degradation of chlorpyrifos in aqueous solutions by nano hydroxyapatite modified CFGO/ZnO nanorod composite. J. Photochem. Photobiol. A Chem. 2021, 418, 113333. [Google Scholar] [CrossRef]
- Soltani-nezhad, F.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Photocatalytic degradation of imidacloprid using GO/Fe3O4/TiO2-NiO under visible radiation: Optimization by response level method. Polyhedron 2019, 165, 188–196. [Google Scholar] [CrossRef]
- Zangiabadi, M.; Shamspur, T.; Saljooqi, A.; Mostafavi, A. Evaluating the efficiency of the GO-Fe3O4/TiO2 mesoporous photocatalyst for degradation of chlorpyrifos pesticide under visible light irradiation. Appl. Organomet. Chem. 2019, 33, e4813. [Google Scholar] [CrossRef]
- Andronic, L.; Vladescu, A.; Enesca, A. Synthesis, Characterisation, Photocatalytic Activity, and Aquatic Toxicity Evaluation of TiO2 Nanoparticles. Nanomaterials 2021, 11, 3197. [Google Scholar] [CrossRef] [PubMed]
- Čižmar, T.; Panžić, I.; Capan, I.; Gajović, A. Nanostructured TiO2 photocatalyst modified with Cu for improved imidacloprid degradation. Appl. Surf. Sci. 2021, 569, 151026. [Google Scholar] [CrossRef]
- Khan, S.H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100290. [Google Scholar] [CrossRef]
- AbuKhadra, M.R.; Mohamed, A.S.; El-Sherbeeny, A.M.; Elmeligy, M.A. Enhanced photocatalytic degradation of acephate pesticide over MCM-41/Co3O4 nanocomposite synthesized from rice husk silica gel and Peach leaves. J. Hazard. Mater. 2020, 389, 122129. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Abukkhadra, M.R.; Abdallah, E.A.; El-Sherbeeny, A.M.; Mahmoud, R.K. The photocatalytic performance of silica fume based Co3O4/MCM-41 green nanocomposite for instantaneous degradation of Omethoate pesticide under visible light. J. Photochem. Photobiol. A Chem. 2020, 392, 112434. [Google Scholar] [CrossRef]
- Hanh, N.T.; Le Minh Tri, N.; Van Thuan, D.; Thanh Tung, M.H.; Pham, T.-D.; Minh, T.D.; Trang, H.T.; Binh, M.T.; Nguyen, M.V. Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst. J. Photochem. Photobiol. A Chem. 2019, 382, 111923. [Google Scholar] [CrossRef]
- Kumari, V.; Sharma, S.; Sharma, A.; Kumari, K.; Kumar, N. Hydrothermal synthesis conditions effect on hierarchical ZnO/CuO hybrid materials and their photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32, 9596–9610. [Google Scholar] [CrossRef]
- Iqbal, A.; Haq, A.u.; Cerrón-Calle, G.A.; Naqvi, S.A.R.; Westerhoff, P.; Garcia-Segura, S. Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides. Catalysts 2021, 11, 806. [Google Scholar] [CrossRef]
- Aguilera-Ruiz, E.; De La Garza-Galván, M.; Zambrano-Robledo, P.; Ballesteros-Pacheco, J.C.; Vazquez-Arenas, J.; Peral, J.; García-Pérez, U.M. Facile synthesis of visible-light-driven Cu2O/BiVO4 composites for the photomineralization of recalcitrant pesticides. RSC Adv. 2017, 7, 45885–45895. [Google Scholar] [CrossRef]
- Bharti; Jangwan, J.S.; Kumar, G.; Kumar, V.; Kumar, A. Abatement of organic and inorganic pollutants from drinking water by using commercial and laboratory-synthesized zinc oxide nanoparticles. SN Appl. Sci. 2021, 3, 311. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, R.K.; Gaur, M.S. Nanophotocatalytic UV degradation system for organophosphorus pesticides in water samples and analysis by Kubista model. Arab. J. Chem. 2016, 9, S1755–S1764. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Shainy, F.; Manasa Mohan, A. Fabrication of zinc oxide nanorod incorporated carboxylic graphene/polyaniline composite and its photocatalytic activity for the effective degradation of diuron from aqueous solutions. Sol. Energy 2018, 171, 534–546. [Google Scholar] [CrossRef]
- Khan, S.H.; Pathak, B.; Fulekar, M.H. Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material. Nanotechnol. Environ. Eng. 2018, 3, 13. [Google Scholar] [CrossRef]
- Choudhary, M.K.; Kataria, J.; Bhardwaj, V.K.; Sharma, S. Green biomimetic preparation of efficient Ag–ZnO heterojunctions with excellent photocatalytic performance under solar light irradiation: A novel biogenic-deposition-precipitation approach. Nanoscale Adv. 2019, 1, 1035–1044. [Google Scholar] [CrossRef]
- Yari, K.; Seidmohammadi, A.; Khazaei, M.; Bhatnagar, A.; Leili, M. A comparative study for the removal of imidacloprid insecticide from water by chemical-less UVC, UVC/TiO2 and UVC/ZnO processes. J. Environ. Health Sci. Eng. 2019, 17, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, S.; Jafari, A.J.; FarzadKia, M.; Esrafili, A.; Kalantary, R.R. Visible-light-driven photocatalytic degradation of Metalaxyl by reduced graphene oxide/Fe3O4/ZnO ternary nanohybrid: Influential factors, mechanism and toxicity bioassay. J. Photochem. Photobiol. A Chem. 2019, 375, 280–292. [Google Scholar] [CrossRef]
- Lakshmi, K.; Kadirvelu, K.; Mohan, P.S. Chemically modified electrospun nanofiber for high adsorption and effective photocatalytic decontamination of organophosphorus compounds. J. Chem. Technol. Biotechnol. 2019, 94, 3190–3200. [Google Scholar] [CrossRef]
- Dehghan, S.; Tahergorabi, M.; Norzaee, S.; Boorboor Azimi, E.; Hasham Firooz, M.; Dadban Shahamat, Y. Preparation and photocatalytic performance of reduced graphene oxide/ZnO nanocatalyst for degradation of metalaxyl from aqueous solution: Effect of operational parameters, mineralisation and toxicity bioassay. Int. J. Environ. Anal. Chem. 2022, 102, 7112–7134. [Google Scholar] [CrossRef]
- Aulakh, M.K.; Kaur, S.; Pal, B.; Singh, S. Morphological influence of ZnO nanostructures and their Cu loaded composites for effective photodegradation of methyl parathion. Solid State Sci. 2020, 99, 106045. [Google Scholar] [CrossRef]
- Kumari, V.; Yadav, S.; Mittal, A.; Sharma, S.; Kumari, K.; Kumar, N. Hydrothermally synthesized nano-carrots ZnO with CeO2 heterojunctions and their photocatalytic activity towards different organic pollutants. J. Mater. Sci. Mater. Electron. 2020, 31, 5227–5240. [Google Scholar] [CrossRef]
- Serrano-Lázaro, A.; Verdín-Betancourt, F.A.; Jayaraman, V.K.; López-González, M.d.L.; Hernández-Gordillo, A.; Sierra-Santoyo, A.; Bizarro, M. Efficient photocatalytic elimination of Temephos pesticide using ZnO nanoflowers. J. Photochem. Photobiol. A Chem. 2020, 393, 112414. [Google Scholar] [CrossRef]
- Javadimanesh, L.; Khazaei, M.; Leili, M.; Samarghandi, M.R. Using Fe/Ag nanostructures covered by Zn for the degradation of 2, 4 dichlorophenoxyacetic acid assisting with light irradiation and ozonation; optimisation and kinetic studies. Int. J. Environ. Anal. Chem. 2021, 1–14. [Google Scholar] [CrossRef]
- Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis and photocatalytic activity of porous ZnO stabilized by TiO2 and Fe3O4 nanoparticles: Investigation of pesticide degradation reaction in water treatment. Environ. Sci. Pollut. Res. 2021, 28, 9146–9156. [Google Scholar] [CrossRef] [PubMed]
- Adabavazeh, H.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis of polyaniline decorated with ZnO and CoMoO4 nanoparticles for enhanced photocatalytic degradation of imidacloprid pesticide under visible light. Polyhedron 2021, 198, 115058. [Google Scholar] [CrossRef]
- Veerakumar, P.; Sangili, A.; Saranya, K.; Pandikumar, A.; Lin, K.-C. Palladium and silver nanoparticles embedded on zinc oxide nanostars for photocatalytic degradation of pesticides and herbicides. Chem. Eng. J. 2021, 410, 128434. [Google Scholar] [CrossRef]
- Pathania, D.; Sharma, A.; Kumar, S.; Srivastava, A.K.; Kumar, A.; Singh, L. Bio-synthesized Cu–ZnO hetro-nanostructure for catalytic degradation of organophosphate chlorpyrifos under solar illumination. Chemosphere 2021, 277, 130315. [Google Scholar] [CrossRef]
- Yadav, S.; Jindal, J.; Mittal, A.; Sharma, S.; Kumari, K.; Kumar, N. Facile solution combustion synthesized, Li doped ZnO nanostructures for removal of abiotic contaminants. J. Phys. Chem. Solids 2021, 157, 110217. [Google Scholar] [CrossRef]
- Ahmadifard, T.; Heydari, R.; Tarrahi, M.J.; Khorramabadi, G.S. Photocatalytic degradation of diazinon in aqueous solutions using immobilized MgO nanoparticles on concrete. Int. J. Chem. React. Eng. 2019, 17, 20180154. [Google Scholar] [CrossRef]
- Mansourian, R.; Mousavi, S.M.; Alizadeh, S.; Sabbaghi, S. CeO2/TiO2/SiO2 nanocatalyst for the photocatalytic and sonophotocatalytic degradation of chlorpyrifos. Can. J. Chem. Eng. 2022, 100, 451–464. [Google Scholar] [CrossRef]
- Farrukh, M.A.; Butt, K.M.; Altaf, A. Influence of pH and temperature on structural, optical and catalytical investigations of CeO2-SiO2 nanoparticles. Silicon 2019, 11, 2591–2598. [Google Scholar] [CrossRef]
- Farrukh, M.A.; Butt, K.M.; Chong, K.-K.; Chang, W.S. Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties. J. Saudi Chem. Soc. 2019, 23, 561–575. [Google Scholar] [CrossRef]
- Fouad, D.M.; El-Said, W.A.; Mohamed, M.B. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 140, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Adabavazeh, H.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis of KIT-5 decorated by Bi2S3-Fe3O4 photocatalyst for degradation of parathion pesticide in aqueous media: Offering a degradation model and optimization using response surface methodology (RSM). Appl. Organomet. Chem. 2020, 34, e5345. [Google Scholar] [CrossRef]
- Merci, S.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Investigation of photocatalytic chlorpyrifos degradation by a new silica mesoporous material immobilized by WS2 and Fe3O4 nanoparticles: Application of response surface methodology. Appl. Organomet. Chem. 2020, 34, e5343. [Google Scholar] [CrossRef]
- Soltani-Nezhad, F.; Saljooqi, A.; Mostafavi, A.; Shamspur, T. Synthesis of Fe3O4/CdS–ZnS nanostructure and its application for photocatalytic degradation of chlorpyrifos pesticide and brilliant green dye from aqueous solutions. Ecotoxicol. Environ. Saf. 2020, 189, 109886. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.S.; Cruz-Filho, J.F.; Noleto, L.F.; Silva, L.J.; Costa, T.M.; Luz, G.E., Jr. Synthesis, characterization and catalytic activity of Fe3O4@ WO3/SBA-15 on photodegradation of the acid dichlorophenoxyacetic (2, 4-D) under UV irradiation. J. Environ. Chem. Eng. 2020, 8, 104145. [Google Scholar] [CrossRef]
- Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis of titanium nanoplate decorated by Pd and Fe3O4 nanoparticles immobilized on graphene oxide as a novel photocatalyst for degradation of parathion pesticide. Polyhedron 2020, 179, 114371. [Google Scholar] [CrossRef]
- Cao, L.; Ma, D.; Zhou, Z.; Xu, C.; Cao, C.; Zhao, P.; Huang, Q. Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chem. Eng. J. 2019, 368, 212–222. [Google Scholar] [CrossRef]
- Shi, E.; Xu, Z.; Wang, W.; Xu, Y.; Zhang, Y.; Yang, X.; Liu, Q.; Zeng, T.; Song, S.; Jiang, Y.; et al. Ag2S-doped core-shell nanostructures of Fe3O4@Ag3PO4 ultrathin film: Major role of hole in rapid degradation of pollutants under visible light irradiation. Chem. Eng. J. 2019, 366, 123–132. [Google Scholar] [CrossRef]
- Nekooie, R.; Ghasemi, J.B.; Badiei, A.; Shamspur, T.; Mostafavi, A.; Moradian, S. Design and synthesis of g-C3N4/(Cu/TiO2) nanocomposite for the visible light photocatalytic degradation of endosulfan in aqueous solutions. J. Mol. Struct. 2022, 1258, 132650. [Google Scholar] [CrossRef]
- Ebrahimpour, M.; Hassaninejad-Darzi, S.K.; Mousavi, H.Z.; Samadi-Maybodi, A. Simultaneous monitoring of the photocatalytic degradation process of trifluralin and pendimethalin herbicides by SBA-15/TiO2 nanocomposite. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100678. [Google Scholar] [CrossRef]
- de la Flor, M.P.; Camarillo, R.; Martínez, F.; Jiménez, C.; Quiles, R.; Rincón, J. Synthesis and characterization of TiO2/CNT/Pd: An effective sunlight photocatalyst for neonicotinoids degradation. J. Environ. Chem. Eng. 2021, 9, 106278. [Google Scholar] [CrossRef]
- Massoud, A.; Derbalah, A.; El-Mehasseb, I.; Allah, M.S.; Ahmed, M.S.; Albrakati, A.; Elmahallawy, E.K. Photocatalytic Detoxification of Some Insecticides in Aqueous Media Using TiO2 Nanocatalyst. Int. J. Environ. Res. Public Health 2021, 18, 9278. [Google Scholar] [CrossRef]
- Valadez-Renteria, E.; Barrera-Rendon, E.; Oliva, J.; Rodriguez-Gonzalez, V. Flexible CuS/TiO2 based composites made with recycled bags and polystyrene for the efficient removal of the 4-CP pesticide from drinking water. Sep. Purif. Technol. 2021, 270, 118821. [Google Scholar] [CrossRef]
- Ben Saber, N.; Mezni, A.; Alrooqi, A.; Altalhi, T. Ternary Pt@TiO2/rGO Nanocomposite to Boost Photocatalytic Activity for Environmental and Energy Use. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3802–3809. [Google Scholar] [CrossRef]
- Hasanin, M.; Abdelhameed, R.M.; Dacrory, S.; Abou-Yousef, H.; Kamel, S. Photocatalytic degradation of pesticide intermediate using green eco-friendly amino functionalized cellulose nanocomposites. Mater. Sci. Eng. B 2021, 270, 115231. [Google Scholar] [CrossRef]
- Vanichvattanadecha, C.; Jaroenworaluck, A.; Henpraserttae, P.; Wimuktiwan, P.; Manpetch, P.; Singhapong, W. Ordered mesoporous silica (SBA-16) supporting titania (TiO2) nanoparticles for photodegradation of paraquat (PQ) herbicide. J. Porous Mater. 2021, 28, 1137–1153. [Google Scholar] [CrossRef]
- Behera, L.; Barik, B.; Mohapatra, S. Improved photodegradation and antimicrobial activity of hydrothermally synthesized 0.2Ce-TiO2/RGO under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2021, 620, 126553. [Google Scholar] [CrossRef]
- Amiri, F.; Dehghani, M.; Amiri, Z.; Yousefinejad, S.; Azhdarpoor, A. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid from aqueous solutions by Ag3PO4/TiO2 nanoparticles under visible light: Kinetic and thermodynamic studies. Water Sci. Technol. 2021, 83, 3110–3122. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sirajudheen, P.; Karthikeyan, P.; Nikitha, M.; Ramkumar, K.; Meenakshi, S. Immobilization of MIL-88(Fe) anchored TiO2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates. J. Hazard. Mater. 2021, 406, 124728. [Google Scholar] [CrossRef]
- Meriam Suhaimy, S.H.; Lai, C.W.; Tajuddin, H.A.; Samsudin, E.M.; Johan, M.R. Impact of TiO2 Nanotubes’ Morphology on the Photocatalytic Degradation of Simazine Pollutant. Materials 2018, 11, 2066. [Google Scholar] [CrossRef] [PubMed]
- Joice, J.A.I.; Aishwarya, S.; Sivakumar, T. Nano Structured Ni and Ru Impregnated TiO2 Photocatalysts: Synthesis, Characterization and Photocatalytic Degradation of Neonicotinoid Insecticides. J. Nanosci. Nanotechnol. 2019, 19, 2575–2589. [Google Scholar] [CrossRef] [PubMed]
- Ahmari, H.; Heris, S.Z.; Khayyat, M.H. The effect of titanium dioxide nanoparticles and UV irradiation on photocatalytic degradation of Imidaclopride. Environ. Technol. 2018, 39, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Eydivand, S.; Nikazar, M. Degradation of 1,2-Dichloroethane in Simulated Wastewater Solution: A Comprehensive Study by Photocatalysis Using TiO2 and ZnO Nanoparticles. Chem. Eng. Commun. 2015, 202, 102–111. [Google Scholar] [CrossRef]
- Ananpattarachai, J.; Kajitvichyanukul, P. Photocatalytic degradation of p,p′-DDT under UV and visible light using interstitial N-doped TiO2. J. Environ. Sci. Health Part B 2015, 50, 247–260. [Google Scholar] [CrossRef]
- Lopes Colpani, G.; Zanetti, M.; Zeferino, R.; Silva, L.; Mello, J.; Riella, H.; Padoin, N.; Fiori, M.; Soares, C. Lanthanides Effects on TiO2 Photocatalysts; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
Origin | Source | Class | Example | Features | Refs. |
---|---|---|---|---|---|
Organic | Natural | Plants Phytochemicals | Essential oil, plant extracts, and leftover oilseed cakes. | Low Toxicity, limited persistence in the environment, and complicated structures that prevent resistance in pests. | [251,252] |
Synthetic | Pyrethroids | Phenthion, Diazinon, Cypermethrin, Deltamethrin, Cyfluthrin, and Cypermethrin | Effect the sodium channel in insects, resulting in paralysis of the organism; highly toxic to insects and fish but less to mammals; unstable upon the exposure of light; and commonly used in food. | [253,254,255,256] | |
Organophosphates | Aldrin, Dieldrin, Glyphosate, and Chlorpyrifos. | Cause paralysis, resulting in death, and dominant for variety of pests. | [257,258] | ||
Carbamates | Fenvalerate, Permethrin, Cyhalothrin, and Carbofuran. | Effect the nerve system of the pests, resulting in poisoning and death, and low pollution is caused upon degradation. | [259,260,261,262] | ||
Organochlorine | Chlorothalonil and Endrin Aldehyde. | Used for insects, long persistent in environment, affecting the nerve system and causing paralysis and death of the pests. |
Class | Target Pests | Example | Chemical Structures | Ref. |
---|---|---|---|---|
Acaricides | Mites | Bifonazole | [250] | |
Avicides | Birds | Avitrol | ||
Fungicides | Fungi | Azoxystrobin | ||
Herbicides | Weeds | Atrazine | ||
Insecticides | Insects | Aldicarb | ||
Larvicides | Larvae | Methoprene | ||
Molluscicides | Snail | Metaldehyde | ||
Nematicides | Nematodes | Aldicarb | ||
Ovicides | Egg (prevents hatching of eggs in insects and mites) | Benzoxazine | ||
Piscicides | Fishes | Rotenone | ||
Repellents | Insects | Methiocarb | ||
Rodenticides | Rodents | Warfarin | ||
Termiticides | Kills termites | Fipronil | ||
Viricides | Viruses | Scytovirin |
Physisorption | Chemisorption | |
---|---|---|
Advantages |
|
|
Disadvantages |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanaah, H.H.; Alzaimoor, E.F.H.; Rashdan, S.; Abdalhafith, A.A.; Kamel, A.H. Photocatalytic Degradation and Adsorptive Removal of Emerging Organic Pesticides Using Metal Oxide and Their Composites: Recent Trends and Future Perspectives. Sustainability 2023, 15, 7336. https://doi.org/10.3390/su15097336
Shanaah HH, Alzaimoor EFH, Rashdan S, Abdalhafith AA, Kamel AH. Photocatalytic Degradation and Adsorptive Removal of Emerging Organic Pesticides Using Metal Oxide and Their Composites: Recent Trends and Future Perspectives. Sustainability. 2023; 15(9):7336. https://doi.org/10.3390/su15097336
Chicago/Turabian StyleShanaah, Haneen H., Eman F. H. Alzaimoor, Suad Rashdan, Amina A. Abdalhafith, and Ayman H. Kamel. 2023. "Photocatalytic Degradation and Adsorptive Removal of Emerging Organic Pesticides Using Metal Oxide and Their Composites: Recent Trends and Future Perspectives" Sustainability 15, no. 9: 7336. https://doi.org/10.3390/su15097336