
Citation: Shanaah, H.H.; Alzaimoor,

E.F.H.; Rashdan, S.; Abdalhafith,

A.A.; Kamel, A.H. Photocatalytic

Degradation and Adsorptive

Removal of Emerging Organic

Pesticides Using Metal Oxide and

Their Composites: Recent Trends and

Future Perspectives. Sustainability

2023, 15, 7336. https://doi.org/

10.3390/su15097336

Academic Editor: Claudia

Campanale

Received: 17 February 2023

Revised: 10 April 2023

Accepted: 21 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Photocatalytic Degradation and Adsorptive Removal of
Emerging Organic Pesticides Using Metal Oxide and Their
Composites: Recent Trends and Future Perspectives
Haneen H. Shanaah 1 , Eman F. H. Alzaimoor 1 , Suad Rashdan 1, Amina A. Abdalhafith 2

and Ayman H. Kamel 1,3,*

1 Chemistry Department, College of Science, Sakhir 32038, Bahrain
2 Chemistry Department, Faculty of Arts and Sciences, University of Benghazi, Koufra,

Benghazi P.O. Box 1308, Libya
3 Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
* Correspondence: ahkamel76@sci.asu.edu.eg or ahmohamed@uob.edu.bh

Abstract: For applications involving water cleanup, metal oxide nanoparticles are exceptionally
successful. They are useful for the adsorption and photocatalytic destruction of organic pollutants
due to their distinctive qualities, which include their wide surface/volume area, high number of
active sites, porous structure, stability, recovery, and low toxicity. Metal oxide nanomaterials have
drawn a lot of attention from researchers in the past ten years because of their various production
pathways, simplicity in surface modification, abundance, and inexpensive cost. A wide range of
metal oxides, such as iron oxides, MgO, TiO2, ZnO, WO3, CuO, Cu2O, metal oxides composites, and
graphene–metal oxides composites, with variable structural, crystalline, and morphological features,
are reviewed, emphasizing the recent development, challenges, and opportunities for adsorptive
removal and photocatalytic degradation of organic pollutants such as dyes, pesticides, phenolic
compounds, and so on. In-depth study of the photocatalytic mechanism of metal oxides, their
composites, and photocatalytically important characteristics is also covered in this paper. Metal
oxides are particularly effective photocatalysts for the degradation of organic pollutants due to
their high photodegradation efficiency, economically sound methods for producing photo-catalytic
materials, and precise band-gap engineering. Due to their detrimental effects on human health,
pesticides—one of the highly hazardous organic pollutants—play a significant part in environmental
contamination. Depending on where they come from and who they are targeting, they are categorized
in various ways. Researchers focusing on metal oxides and their composites for the adsorptive and
photocatalytic degradation of pesticides would find the review to be a beneficial resource. Detailed
information on many pesticides, difficulties associated with pesticides, environmental concentration,
and the necessity of degradation has been presented.

Keywords: metal oxide nanomaterials; organic pesticides; photocatalysis; remediation; surface
adsorption

1. Introduction

Persistent organic chemicals (POPs) are highly hazardous to the ecosystem and living
organisms [1]. Their non-biodegradability allows them to accumulate easily in the food
chain, affecting both humans and wildlife [2]. Pesticides are one class of POPs with
half-lives that can extend to years [3]. They have been used abundantly to control the
growth of the crops by exterminating pests including insects, fungi, and microorganisms in
agricultural farms [4]. However, the highly toxic nature of these material has become an
alarming concern to humans and the environment since they can readily contaminate soil,
air, and water through sewage water and industrial and domestic wastes [5]. Additionally,
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pesticides present in water can reach groundwater through leakages and leaching, surface
water, and drinkable water [6–8].

The adverse effect of different pesticides on human health have been extensively
reported and investigated [9]. For example, organochlorines (OCs) and organophosphates
(OPs) accumulate acetylcholine in the central nervous system of humans, leading to serious
brain disorder [10]. Carbamates are another class of pesticides that induce apoptosis for
human cells and raise the risk of cancer [11]. Other pesticides such as simazine affect
humans in trace amounts, leading to kidney failure and heart and lung diseases [12].
Accordingly, numerous attempts have been made to remediate these harmful toxicants
from the environmental matrices, utilizing various removal techniques including chemical
precipitation, membrane separation, electrocatalysis, advanced oxidation processes, and
adsorption [13,14].

The adsorption process has become one of the most researched practices due to its
ease of applicability and low cost, depending on the adsorbent [15]. Although adsorption is
an easily accessible method for remediation, it generates secondary products and requires
further treatment. Accordingly, photocatalytic degradation has attracted the attention of
researchers as an alternative technique for the mineralization of toxicants. Photocatalytic
degradation employs solar energy, UV, or/and visible light to irradiate a semiconducting
material resulting, in the generation of a series of radicals, including hydroxide and su-
peroxide radicals, which are responsible for photodegradation [16]. Studies have shown
that photocatalytic activity can be enhanced when the material is adsorbed on the surface
of the photocatalyst [17]. Photoactivity, photostability, chemical stability, and the band
gap of the photocatalyst should be considered when choosing an adequate material for
photocatalytic degradation [18,19]. Photocatalytic degradation can be regarded as a better
approach towards the disposing of toxicants; however, it is a more complex process and
requires the presence of oxygen as an oxidant [20]. Several studies have corroborated that
the higher adsorption capacity of the photocatalyst leads to higher efficiency in degradation,
where adsorption facilitates the contact between the pollutant and the photocatalyst. There-
fore, a high photodegradation rate requires an effective adsorption process at optimum
conditions [21].

Recently, various materials have been investigated for the effective removal of pesti-
cides using adsorption and photocatalytic degradation. Metal oxide nanoparticles, includ-
ing ferric oxides, cobalt oxides, copper oxides, zinc oxides, titanium oxides, magnesium
oxides, cerium oxide, aluminum oxides, and other metal oxides have shown promising
removal and degradation results with respect to pollutants such as heavy metals and
POPs [22–24]. Likewise, they have been widely implemented as nano-adsorbents and
photocatalysts for the remediation of pesticides [17]. Their exquisite physical and chemical
properties, influenced by their size (1–100 nm), permit them to differ from their correspond-
ing bulk material [25]. Their eminent properties, including large surface/volume area, high
number of active sites, porous structure, stability, recovery, and low toxicity, make them
valuable nano-adsorbents and photocatalysts [22,26,27].

Developing the structural properties of nano-adsorbents and photocatalysts has
become a demand. Therefore, different strategies have been applied to achieve supe-
rior performance in physisorption, in chemisorption, and in reducing the band gaps of
the photocatalysts to attain the slow recombination of the charge carriers and enhance
photo degradation [28,29]. Doping photocatalysts with different metals [30,31], the multi-
functionalization of the surface [32], developing heterostructures [33], developing nanocom-
posites such as metal oxides/metal-organic frameworks [34], metal oxides/polymers [35],
and metal/metal oxides [36], are the main strategies followed to manipulate the charac-
teristics of nano-adsorbents and photocatalysts. Many in vitro and in vivo studies have
been conducted recently to better understand the toxicological effects and potential risks of
various nanoparticle exposures on people and the environment. There is still a major gap
in knowledge about the toxic effects of nanoparticle exposure.
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Finding an effective remediation process for the harmful effects of pesticides requires
immediate. This review provides a detailed collection of recent references to demonstrate
the importance of metal oxides and their functionalized nanocomposites in the removal of
different types of pesticides using adsorption and photocatalytic degradation.

2. Nanoarchitectures of Metal Oxides and Oxide Perovskites
2.1. Cobalt Oxide

Cobalt oxides are a type of inorganic metal oxides that exists abundantly in nature.
Cobalt oxides have many properties that are favorable to environmental applications; they
are highly stable, exert no toxicity, exhibit a magnetic behavior, highly resistant to corrosion
and oxidation, and have high mechanical strength [37–39]. They are p-type semiconducting
materials at room temperature that show good conductivity [40]. Cobalt oxides have
differences in oxygen vacancies; thus, cobalt oxide exists in many oxidation states [41].
Some of the most used oxidation states include cobalt (II) oxide and cobalt (III) oxide [42].
The structure of Co3O4 NPs consists of a cubic spinel structure with Co (II) at the tetrahedral
sites and Co (III) at the octahedral sites [38,43]. Figure 1 shows the structure of Co3O4
spinel structure, with Co (II) surrounded by four oxygen atoms and Co (III), surrounded
by six oxygen atoms [44]. Several synthesis methods of cobalt oxide have been reported,
including sol–gel, hydrothermal, and microwave-assisted methods. The variable oxidation
states of cobalt have made the particles applicable to many fields [45]. Cobalt oxide plays
a vital role in many applications, including pollutants sensing, degradation of harmful
materials, drug delivery systems, supercapacitors, and storage devices [46–54].
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2.2. Copper Oxide

Copper oxides exert various properties that make them easily appliable. Numerous
structures of copper oxides can be synthesized, such as nanowires, nanorods, nanotubes,
and nanoparticles [55]. They are abundant, inexpensive, and highly stable, with high
catalytic and antibacterial activity [56]. Different oxidation states of copper oxides are
available; however, cuprous oxide (Cu2O) and cupric oxide (CuO) are the most stable,
while paramelaconite (Cu4O3) is metastable. Figure 2 shows the three crystal structures
for copper oxides [57]. Cuprous oxide (Cu2O) crystallizes in a cubic structure and is a
p-type semiconductor. On the other hand, cupric oxide (CuO) exists in a monoclinic crystal
structure and is believed to be both a p- and an n-type semiconductor [58,59]. Figure 3
illustrates the difference between a p-type and an n-type semiconductors.

Copper oxide semiconductors are recognized for their role in the remediation of
environmental contaminants due to their strong oxidation and reduction ability and envi-
ronmental compatibility [60]. A difference between cobalt oxides and copper oxides is that
cobalt oxides have higher stability at high temperatures. However, the precursor salts of
cobalt oxides are more expensive than the precursor salts of copper oxide, making copper
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oxides more easily obtained and applied in many fields [61]. Copper oxides have many
prospective applications in the fields of sensors, antimicrobial activity, catalysis, coatings,
polymers, and electronics [62–66]. Moreover, cupric oxide shows promising results for the
decontamination of water since it is relatively cheap, with high catalytic activity [67,68].
Many routes for the preparation of copper oxides are available. Chemical precipitation,
the sonochemical method, hydrothermal synthesis, and synthesis via plant extracts and
micro-organisms, are all examples for chemical and biological methods for the synthesis of
copper oxide NPs [69,70].
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2.3. Zinc Oxide

Zinc oxide is the second most abundant metal with different morphological shapes
and sizes [71]. It is an inorganic multifunctional material that has favorable properties
and characteristics [72]. Zinc oxide exhibits optical and piezoelectric properties that are
attractive to important fields such as optoelectronics and transparent electronics [73]. It
also offers a high surface area with a wide band gap of 3.37 eV, making it appropriate for
photocatalysis [74]. Zinc oxides are widely used for medicinal applications since zinc is con-
sidered a dietary supplement, in addition to their antibacterial activity [75–77]. It has also
been reported that the antibacterial activity of zinc oxides depends on their size and shape,
which can be controlled through the synthesis route [78]. Zinc oxides can be synthesized by
chemical, physical, and biological methods. These methods include microemulsion, precip-
itation, plasma and ultrasonic techniques, the sol–gel method, combustion, hydrothermal
synthesis, and green synthesis from plants extracts [79–81]. Moreover, zinc oxides have
gained attention for water purification and the removal of hazardous materials since they
are biocompatible [82]. Polymorphs of zinc oxide consist of three phases shown in Figure 4:
hexagonal wurtzite, cubic zinc blende, and cubic rock salt [83]. The wurtzite phase is the
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most thermodynamically stable, with every zinc atom tetrahedrally coordinated with four
oxygen atoms. Zinc blende and rock salt are metastable [84,85]. More zinc oxides appli-
cations include solar cells [86–88], sensors [89,90], drug delivery [91,92], and the cosmetic
industry [93].
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2.4. Iron Oxide

Iron oxides have several forms which consist mainly of iron and oxygen. These forms
include iron (II) oxide (wüstite, FeO), iron (II,III) oxide (magnetite, Fe3O4), and iron (III)
oxide (ferric oxide, Fe2O3) [95], and are shown in Figure 5 [96]. Ferric oxide is the most
common form and it has four polymorphs [97]: alpha phase hematite (α-Fe2O3), beta phase
(β-Fe2O3), gamma phase maghemite (γ-Fe2O3), and epsilon phase (ε-Fe2O3) [98].
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The magnetic properties of iron oxide NPs are highly affected by their size, dispersion,
and surface [99]. Magnetite and maghemite are intrinsic ferrimagnetic materials, while
hematite’s magnetic properties are thermally induced [100]. The main properties that allow
IONPs to be of such interest in many fields is their superparamagnetic behavior, their
high surface/volume ratio, non-toxicity, reusability, biocompatibility, high stability, and
resistance to change [101,102].

IONPs are also widely utilized in biomedical applications such as drug delivery sys-
tems, where the particles can be carried to a specific site with high accuracy due to the use
of an external magnetic field to direct the particles [103,104]. Iron oxide NPs are usefully
applied in many fields including sensing [105–107], catalysis [108–110], photodegrada-
tion [111,112], and adsorption of pollutants [113–115]. The only disadvantage in IONPs
is the aggregation of particles in aqueous media, which is unfavorable in water remedi-
ation applications. Therefore, IONPs can be further stabilized by surface modification,
including coating with surfactants and polymers [116,117]. For example, a study coated



Sustainability 2023, 15, 7336 6 of 43

iron oxide NPs with chitosan (made from chitin), which stabilized the particles and fur-
ther functionalized them with amine groups, thus increasing the number of binding sites
available [104].

2.5. Titanium Oxide

Titania or titanium dioxide (TiO2) is abundant in nature and has favorable advantages
with respect to energy and environmental applications [118,119]. It has been shown to
be promising for these applications due to its chemical stability, biological and chemical
inertness, and non-toxicity [120]. TiO2 has long durability and transparency to visible
light. It is active under UV light and functions as a semiconductor with a band gap
around 3.2 eV [121]. Furthermore, titanium oxide exists in three crystalline forms, which
are tetragonal anatase, tetragonal rutile, and orthorhombic brookite, with rutile being
the most thermodynamically stable form [122]. Figure 6 shows the three polymorphs
of titania [123]. Even though rutile is the most stable, anatase is more efficient when it
comes to photocatalysis. However, some studies showed that rutile can possess good
photocatalytic activity [124,125]. Anatase and rutile have tetragonal symmetry, while
brookite has an orthorhombic crystalline structure [126]. The method of preparation for
TiO2 nanomaterials controls their morphology; therefore, their performance in applications
can be enhanced [127]. Tailoring particle size and crystal surfaces determines which facets
are exposed in TiO2, affecting its photocatalytic activity tremendously. One of the most
common methods for morphology control is the use of organic surfactants [128]. More-
over, a study synthesized different morphologies of titania by controlling the temperature
in the solvothermal method [129]. Rose-like, chrysanthemum-like, and sea-urchin-like
TiO2 nanostructures (shown in Figure 7) were successfully prepared and applied for the
photocatalytic degradation of Rhodamine B, where each nanostructure had a different
photocatalytic performance. The applications for titania are wide, including the removal of
organic pollutants [130], medical applications [131], energy storage, and sustainable energy
production [132,133].
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2.6. Magnesium Oxide

Magnesium oxide (MgO) is a multifunctional inorganic material that holds great
technological importance [134]. Magnesium oxide or magnesia exhibits a rock salt-type
structure similar to simple NaCl [135], which is shown in Figure 8. It is known for its excel-
lent optical, thermal, electrical, mechanical, and chemical properties [136]. Additionally,
MgO has high thermal stability, with a melting point around (2852 ◦C) [137], and low heat
capacity, making it a good insulator [138]. The particles are non-poisonous since MgO is
considered an essential nutrient for plants and humans [139]. Magnesium oxides are known
for their biocompatibility and stability; thus, they are frequently used in drug delivery
systems and biomedical applications [140–144]. The method of synthesis of MgO highly
influences the morphology and the physical structure of the nanoparticles, as in TiO2 [145].
A study synthesized MgO nanostructures with the microwave-assisted process using two
different capping agents [139]. The structures obtained were MgO nanospheres and MgO
nano-cubes. The nanostructures were then used for the remediation of ciprofloxacin from
aqueous solutions, and MgO nanospheres exhibited higher adsorption capacity. Moreover,
MgO NPs can be fabricated by several other methods such as biosynthesis [146], ultrasound-
assisted methods [147,148], sol–gel methods [149,150], pyrolysis [151], hydrothermal [152],
solution combustion [153], and the co-precipitation method [154,155]. Further properties
of MgO include a wide bandgap of 7.8 eV, along with high porosity and high surface
area, making MgO widely applicable in many technologies [156]. The technological fields
involve optoelectronics [157], enhancement of energy conversion efficiency in perovskite so-
lar cells [158], sensors [159], superconductors [160], and toxic waste remediation [161–163].
For remediation applications, MgO nanostructures are preferred due to their nano size,
which allows them to have high surface area and high surface charge [164]. Lastly, MgO
nanomaterials are broadly used in the field of catalysis [165–169].
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2.7. Cerium Oxide

Cerium oxide (ceria) is a lanthanide rare earth metal oxide that attracted tremendous
interest for its many applications [170]. Different types of cerium oxide nanomaterials are
applied in various fields, such as biomedical fields [171–175], sensors [176,177], superca-
pacitors [178], fuel cells [179,180], adsorbents [181,182], photoprotective coating [183], solar
cells [184], and the photodegradation of toxic pollutants [185–187]. Moreover, ceria differs
from alkaline earth metals and post-transition metals due to its shielded 4f orbital electrons
that affect its remarkable properties [188]. Cerium oxide has excellent chemical stability, is
inexpensive, and is environmentally friendly [189]. It is highly conductive, with a large
magnetic moment [190]. Cerium oxide has two oxidation states, Ce+3 and Ce+4, where
cerium (IV) is more thermally stable than the reduced version of cerium. However, cerium
can switch to its other oxidation state depending on its surrounding environment [191].
Ceria’s structure consists of a cubic fluorite-type oxide with many oxygen vacancies [192].
The cubic fluorite-type structure of ceria is shown in Figure 9. The surface of cerium oxide
has Ce+3 ions as well [193]. Consequently, when cerium oxide nanoparticles (nanoceria)



Sustainability 2023, 15, 7336 8 of 43

are synthesized, the reactivity of nanoceria increases with the increase of Ce+3 ions con-
centration, making the NPs good for catalysis applications [194,195]. Several methods are
available for the synthesis of nanoceria including the sol–gel [196], biosynthesis [197], hy-
drothermal [198], sonochemical [199], microwave-assisted [200], and co-precipitation [201]
methods.
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2.8. Aluminum Oxide

Aluminum oxide (Alumina) is a promising candidate for many applications, it is used
in catalysis [202,203], insulators [204], microelectronics [205–207], sensors [208], and remedi-
ation processes [209,210]. Alumina has unique acid/base characteristics, good mechanical
strength, chemical inertness towards oxidation and reduction, excellent electrical insulation,
sufficient thermal stability, high surface area, and a high melting point [211,212]. Although
alumina is a good insulator, F. Tzompantzi proposed that it might also be effective for photo-
catalytic degradation [213]. Yanet Pina-Perez proposed that the hydroxyl groups on Al2O3’s
surface might be the reason behind its photoactivity [214]. The photocatalytic activity of alu-
mina can be increased by doping the metal ions with other metal oxides [215]. Alumina can
be fabricated by various methods such as thermal decomposition [216], hydrothermal [217],
combustion [218], co-precipitation [219], and sol–gel methods [220]. However, unlike other
metal oxides, alumina needs high calcination temperatures (>1000 ◦C), which makes the
fabrication costly process [221]. Alumina has many crystal structures. The most common
one is α- Al2O3 since it is the most thermodynamically stable [222], and the structure is
shown in Figure 10 [223]. Alumina has other polymorphs, including η, δ, κ, θ, γ, and ρ
phases, which are metastable [224]. The type of phase produced depends highly on the
method of synthesis followed. Some factors that affect the phase of alumina include the
temperature, pH, pressure, and speed of stirring [225].
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2.9. Other Metal Oxides

Besides the former metal oxides discussed, several metal oxides, including MnO2,
WO3, and NiO, have been reported for application in the remediation of pesticides from wa-
ter. Manganese dioxide nanoparticles are prepared using various synthetic routes, including
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hydrothermal, sol–gel, homogeneous hydrolysis, and sono-chemical methods [11,226–228].
They exist in different crystalline structures, such α-MnO2 (hollandite), β-MnO2 (pyro-
lusite), δ-MnO2 (birnessite), ε-MnO2 (akhtenskite), γ-MnO2 (ramsdellite), λ-MnO2 (defect
spinels), and amorphous MnO2 [229–231]. The structures of MnO2 polymorphs are shown
in Figure 11 [232,233]. They are widely applied as adsorbents and photocatalyst for the
removal of different heavy metals and organic pollutants because they are cost effective,
their structures are flexible, and they exert no toxicity [234]. Few studies were reported for
the removal of pesticides using MnO2 NPs. A removal percentage of 66% within 2 h was
found for the photodegradation of 2,4-dichlorophenoxyacetic acid using manganese-doped
zinc oxide/graphene nanocomposite under LED light [235].
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Various publications were considered for the fabrication of semi-conductor tungsten
oxide nanoparticles using the hydrothermal method. For the remediation purposes, most
of the time, tungsten oxide nanoparticles are coupled with zinc oxide and used as photocat-
alyst for the removal of different contaminants. This is attributed to the fact that tungsten
oxide NPs have a narrow bandgap of 2.8 eV; therefore, they are weak as photocatalysts,
and enhancements can be conducted by doping the material with other metals for high
removal efficiency. The degradation efficiency increases with the increase in dopant per-
centage. At pH = 7, WO3-doped ZnO NPs immobilized on glass plates show 80% removal
of 2,4-dichlorophenoxyacetic acid pesticide using UV light within 2 h. Additionally, they
show 99% removal of diazinon within 3 h at pH = 7 [236,237]. Figure 12 represents the
effect of doping percentage on the degradation efficiency of diazinon [237].

Nickel oxide nanoparticles are hierarchical porous structures, thermally stable and
with large surface area [238]. Hence, they are efficient adsorbents for different pollu-
tants [239,240]. Nickel oxide nanoparticles are fabricated using different methods, includ-
ing sol–gel [241], thermal decomposition [242], biosynthesis [243], and laser ablation [244].
A study synthesized different nanostructures of NiO using the hydrothermal method,
varying the reaction temperature, time, and the molar ratios of the precursors [245]. SEM
images of the synthesized nanorods, nanoplates, and nanoparticles of NiO are shown in
Figure 13 [245]. Furthermore, they are p-type semiconductors with a band gap of 3.6–4.0 eV,
which is sufficient for photocatalytic degradation of pesticides [246]. A layered and flower-
like structure of S-doped Ni–Co LDH with uniformly dispersed spherical Fe3O4 NPs has
shown 92% degradation of chlorpyrifos using visible light at pH = 10 within 150 min [247].
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2.10. Effect of Metal Oxide’s Crystalline Structure on the Photocatalytic/Sorption Performance

Transition Metal oxide nanoparticles (NPs) displayed remarkable surface properties,
structural characteristics, and a significant specific surface area, which made them desirable
candidates for adsorption processes [22]. When the size of the molecules reduces from
bulk to nanoscale, it creates an exponential increment in surface-to-volume ratio. By
decreasing the size and adding active edges on organic molecules’ surfaces for interaction,
surface energy or adsorbent composites are improved. In contrast to their bulkier cousins,
nanoparticles are far better at adsorbing organic pollutants from water. Moreover, MO NPs
have lately shown a distinct potential as highly selective adsorbents intended for fast and
effective removal of organic pollutants, whether used alone or in nanocomposites.

The metal oxides-based nanocomposites serve as large bandgap energy (Eg) semi-
conductors and have beneficial properties such non-toxicity and stability in water for the
breakdown of organic contaminants. They also have correct structure, crystalline, and
surface features. The fundamental process for the photocatalytic destruction of impurities
from the surface of semiconducting materials is produced by oxygen. Oxygen vaccina-
tions can benefit from semiconducting nanoparticles absorbing photons. By transforming
organic pollutants into low/intermediate harmful yields, resulting in substances such as
carbon dioxide, water, and inorganic ions, it supports environmental restoration. Once
upon a time, photocatalytic treatment was thought to be the most environmentally friendly
method of removing organic contaminants from wastewater. Using a short-range solar
spectrum is thus a considerable obstacle to photocatalytic activity. The flaw could be fixed,
for instance, by fabricating nanomaterials, doping hetero-atoms, and designing metal oxide
nanocomposites through chemical and structural alterations. Worthwhile photocatalysts
effectively delay electron-hole (e—h+) pair recombination, efficiently absorb the solar spec-
trum in the visible range, and function well as photocatalysts [248]. As photocatalysts
and adsorbents, several metal oxide nanomaterials, such as Al2O3, CuO, CeO2, ZnO, and
TiO2, have attracted a lot of interest [248]. To increase effectiveness and selectivity, several
MO-based composites, including porous materials–reinforced metal oxides, magnetic metal
oxides, metal–metal oxides, graphene–metal oxides, etc., were being studied. Adsorption
events are controlled by these nanocomposites’ surface properties, size, and textural char-
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acteristics. Several NP morphologies provide flexible crystal defects, such as active edges
on material surfaces for photocatalysis and adsorption applications.

3. Classification of Pesticides

The demand for categorizing pesticides has been raised significantly because of the
increased number of pesticides, along with the variation in physical and chemical proper-
ties [249]. A considerable volume of literature has been published in this field. Recently,
scientists classified pesticides based on origin and on target. Pesticides generally originate
from organic, inorganic, and biological sources [250]. Table 1 elaborates on the organic
class of pesticides, while Table 2 shows the classification of pesticides based on target. The
pesticides’ chemical structures are shown in Figure 14.

Table 1. Classification of organic pesticides based on origin.

Origin Source Class Example Features Refs.

Organic

Natural Plants
Phytochemicals

Essential oil, plant
extracts, and leftover

oilseed cakes.

Low Toxicity, limited persistence in the
environment, and complicated

structures that prevent resistance
in pests.

[251,252]

Synthetic

Pyrethroids

Phenthion,
Diazinon,

Cypermethrin,
Deltamethrin, Cyfluthrin,

and Cypermethrin

Effect the sodium channel in insects,
resulting in paralysis of the organism;
highly toxic to insects and fish but less

to mammals; unstable upon the
exposure of light; and commonly used

in food.

[253–256]

Organophosphates
Aldrin, Dieldrin,
Glyphosate, and

Chlorpyrifos.

Cause paralysis, resulting in death, and
dominant for variety of pests. [257,258]

Carbamates
Fenvalerate, Permethrin,

Cyhalothrin, and
Carbofuran.

Effect the nerve system of the pests,
resulting in poisoning and death, and

low pollution is caused upon
degradation.

[259–262]

Organochlorine Chlorothalonil and Endrin
Aldehyde.

Used for insects, long persistent in
environment, affecting the nerve
system and causing paralysis and

death of the pests.

Table 2. Classification of pesticides based on target.

Class Target Pests Example Chemical Structures Ref.

Acaricides Mites Bifonazole
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Table 2. Cont.

Class Target Pests Example Chemical Structures Ref.
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4. Removal of Pesticides Using Functionalized Metal Oxide Nanomaterials
by Adsorption

The hazards and consequences resulting from the massive use of pesticides raised the
demand for efficient techniques to be employed for the removal of these contaminants. The
adsorption technique has gained popularity as a simple, effective, insensitive, and flexible
method [263]. It is a physiochemical method that occurs mostly in the solid–liquid form,
though liquid–liquid and liquid–gas forms are also known [264–266].

In adsorption, the molecules of liquid or gases are bound to the surface of the solid. The
material that provides the surface is called the adsorbent. The contaminants in the liquid or
the gaseous phase are called adsorbates. Among the adsorbents reported in the literature,
metal oxides have been proven as excellent adsorbents for the remediation of pesticides
because of the large surface area provided for the adsorption of the pollutant [267]. The
active sites and the functional groups, such as -OH, -COOH, and -C=OH, have a great
impact on the efficiency of the adsorption process [268,269]. Moreover, metal oxides, having
porous structures, thermal stability, low toxicity, and easy recovery, are all important for
a good adsorbent. Two types of interaction between the adsorbent and the adsorbate are
present: chemisorption and physisorption. Chemisorption is basically a chemical reaction
between the adsorbent and the adsorbate, and it is an irreversible process. It is controlled by
chemical bonds such as covalent, chelation, complex formation, proton displacement, and
redox-reactions. On the other hand, physisorption, which is more dominant, is a reversible
process controlled by Van der Wal’s bonds, dipole–dipole attraction, and London force,
etc. [270]. Table 3 provides a comparison between the types of adsorption process [271].

The adsorption process depends on various parameters that need to be optimized,
including pH, temperature, time, concentration of contaminant, and sorbent dosage. Table 4
represents the adsorption capacity Qmax (mg/g) and the percentage removal of targeted
pesticides using metal oxide nanoparticles at different parameters. The adsorption capacity
is calculated in (mg/g) using the formula in Equation (1):

Qmax =
C◦ − Ce

m
×V (1)
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where Co is the initial concentration of the pesticide (mg/L), Ce is the pesticide concen-
tration at equilibrium (mg/L), m is the mass of adsorbent (g), and V is the volume of the
solution (L).

Table 3. The advantages and disadvantages of chemisorption and physisorption.

Physisorption Chemisorption

Advantages

• Reversible in nature
• Low adsorption enthalpy
• Favors low temperature
• Low activation energy

• Strong interaction between the
adsorbent and the adsorbate by
chemical bonds

• Higher selectivity

Disadvantages

• Weak interaction between the adsorbate and the adsorbent
• The extent of adsorption is inversely proportional to

temperature.
• Low selectivity

• Irreversible in nature
• High adsorption enthalpy
• Favors high temperatures
• High activation energy

The adsorption isotherm and the adsorption kinetics are used to elucidate the adsorp-
tion process and to indicate the type of mechanism. The adsorption isotherm is expressed by
Langmuir, Freundlich, Sips, Temkin, Redlich Peterson, Henry, and Dubinin–Astakhov (DA)
models. Langmuir, Freundlich, and Dubinin–Astakhov models are most frequently used.
Langmuir isotherm investigates a monolayer adsorption onto a homogeneous adsorbent,
whereas Freundlich illustrates a multilayer adsorption onto a heterogeneous adsorbent. The
Dubinin–Astakhov model is used to calculate the mean free adsorption energy E (J/mol).
The physisorption mechanism gives an E value smaller than 8 J/mol. However, values of E
from 16 J/mol to 40 J/mol indicate a chemisorption mechanism. The adsorption kinetics
are equations that indicate the type of interactions between the adsorbent and the adsorbate
(contaminant). Chemisorption interaction is described by a pseudo-second-order equation.
The pseudo-first-order equation is applied for the physisorption interaction [272,273].

Despite the advantages of adsorption, there is one certain drawback associated with
the use of this technique: it produces secondary pollutants which require highly advanced
procedures for recycling and decomposing for them to be used in the industrial field [22].
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Table 4. Adsorptive remediation of pesticides using metal oxides NPs.

Adsorbent a Targeted Pesticides b

Target Operation Parameters Adsorption Modelling

Ref.
Pesticide Conc.

Adsorbent
Dosage (g) or

g/L
pH Temp.

(K)
Time
(min) Kinetics c Isotherm d Mechanism e

Qmax (mg/g) or
Percentage Removal

(%)/Percentage
Recovery

Co3O4/G-MCM-41 Methyl parathion - - - - - PFO, PSO L, F, DA - 175.2 [274]

NiO/Co@C

Chlorothalonil 0.045 g/L 0.01 g - - 15 PSO L π-CM, H 62.2

[275]

Tebuconazole 0.045 g/L 0.01 g - - 15 PSO L π-CM, H 40.5

Chlorpyrifos 0.045 g/L 0.01 g - - 15 PSO L π-CM, H 60.3

Butralin 0.045 g/L 0.01 g - - 15 PSO L π-CM, H 50.2

Deltamethrin 0.045 g/L 0.01 g - - 15 PSO L π-CM, H 54.1

Pyridaben 0.045 g/L 0.01 g - - 15 PSO L π-CM, H 51.3

CeO2

2,4-
Dichlorophenoxyacetic

acid
0.01 g/L 0.025 g - 308 120 PSO L, F, S π–π, e− 95.78 [276]

Fe3O4@ZnAl-
LDH@MIL-53(Al) Triadimefon 5.0–600 mg kg−1 30 g/L 6 308.15 5 PSO L π–π, H, C,

(π-CM), P 46.08 [277]

MgFe2O4 Chlorpyrifos 20 mg/L 0.01 g/L 10 295 360 PSO L - 4461 [278]

Fe3O4
Atrazine 50 mg/L 0.1 g 2 298 55 PFO L - 77.5

[279]
Methoxychlor 50 mg/L 0.1 g 2 298 55 PFO L - 163.9

ZnO Naphthalene 25 mg/L 0.012 g 4 298 40 PSO L, F, T - 66.8

[280]CTAB-ZnO Naphthalene 25 mg/L 0.08 g 4 298 40 PSO L, F, T - 89.96

BMTF-IL-ZnO Naphthalene 25 mg/L 0.06 g 4 298 40 PSO L, F, T - 148.3

ZnO/ZnFe2O4 Atrazine 50 mL aq. solution 0.4 g/L 7 298 4320 - D.A π–π, H, h, e- - [281]

Fe3O4@SiO2@GO-2-
phenylethylamine

Chlorpyrifos 10 mL aq. Solution 0.015 g 7 298 15 PSO S π–π, H 88%

[32]Malathion 10 mL aq. Solution 0.015 g 7 298 15 PSO S H 76%

Parathion 10 mL aq. Solution 0.015 g 7 298 15 PSO S π–π, H 85%

Fe3O4/MOF-99
Dinotefuran 0.3–1.5 ng/mL 0.015 g - - 20 - - π–π 88–107%

[282]
Thiamethoxam 0.3–1.5 ng/mL 0.015 g - - 20 - - π–π 88–107%
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Table 4. Cont.

Adsorbent a Targeted Pesticides b

Target Operation Parameters Adsorption Modelling

Ref.
Pesticide Conc.

Adsorbent
Dosage (g) or

g/L
pH Temp.

(K)
Time
(min) Kinetics c Isotherm d Mechanism e

Qmax (mg/g) or
Percentage Removal

(%)/Percentage
Recovery

Fe3O4@SiO2@MOF/TiO2

Triadimenol 0.001 g/L 0.04 g 7 298–313.15 1–60 PSO - π–π 90.2–104%

[283]Hexaconazole 0.001 g/L 0.04 g 7 298–313.15 1–60 PSO - π–π 90.2–104%

Diniconazole 0.001 g/L 0.04 g 7 298–313.15 1–60 PSO - π–π 90.2–104%

Fe3O4-GO@MOF-199.

Flusilazole 0.002 g/L 0.02 g - - 15 - - h, π–π, H, e− 0.0356

[284]Fenbuconazole 0.002 g/L 0.02 g - - 15 - - h, π–π, H, e− 0.0342

Myclobutanil 0.002 g/L 0.02 g - - 15 - - h, π–π, H, e− 0.0324

Fe3O4–MWCNTs-ZIF-8

Triazophos 0.015 g 0.002–0.08 g/L 4 RT 15 - F - 3.12

[285]

Diazinon 0.015 g 0.002–0.08 g/L 4 RT 15 - F - 2.59

Phosalone 0.015 g 0.002–0.08 g/L 4 RT 15 - F - 3.80

Profenofos 0.015 g 0.002–0.08 g/L 4 RT 15 - F - 3.89

Methidathion 0.015 g 0.002–0.08 g/L 4 RT 15 - F - 2.34

Ethoprop 0.015 g 0.002–0.08 g/L 4 RT 15 - F - 2.18

Sulfotep 0.015 g 0.002–0.08 g/L 4 RT 15 - F - 2.84

Isazofos 0.015 g 0.002–0.08 g/L 4 RT 15 - F - 3

Chitosan–CuO

Thiophanate-methyl 0.1 g/L 0.1 g 7 RT 25 - L, F h 250

[286]
Methomyl 0.1 g/L 0.1 g 7 RT 25 - L.F - 20

Malathion 0.02 g/L 1 g/L 2 303 960 PSO L, F - 322.6

Chitosan-ZnO

Thiophanate-methyl 0.1 g/L 0.1 g 7 RT 25 - L, F h 100

Methomyl 0.1 g/L 0.1 g 7 RT 25 - L, F - 10

Permethrin 0.0001 g/L 0.5 g 7 298 90 - - - 99% [287]

Fe3O4/CuO/Activa-ted
carbon Imidacloprid 0.01 g/L 0.02 g 7 298 10 PSO F C 99% [288]

ZnO-IPPs Chlorpyrifos 0.01–0.6 g/L 0.03 g 2 303–323 30 PSO L, F, T, D. A - 47.846 [289]

ZnO-CP Metribuzin 0.033–0.155 0.08 g 3 303–363 80 PSO F - 200 [290]
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Table 4. Cont.

Adsorbent a Targeted Pesticides b

Target Operation Parameters Adsorption Modelling

Ref.
Pesticide Conc.

Adsorbent
Dosage (g) or

g/L
pH Temp.

(K)
Time
(min) Kinetics c Isotherm d Mechanism e

Qmax (mg/g) or
Percentage Removal

(%)/Percentage
Recovery

MOM-Fe3O4 Triclosan 0.005–0.2 g/L 0.01–0.05 g/L 4, 7,
10 293, 303, 313 600 PFO L - 103.45 [291]

N-NiO@N-Fe3O4@N-
ZnO Atrazine 0.04 g/L 0.1 g 5 - 80 PSO L - 92% [292]

MgAl2O4 Dimethomorph - 0.5–2 g 5.5 - 10 - - - % Recovery =
90–94% [293]

Fe3O4 @PS

Lindane 2, 10, 50, 200 µg/L 0.02 g/L - RT <20 PSO L - 10.2

[294]
Aldrin 2, 10, 50, 200 µg/L 0.02 g/L - RT <20 PSO L - 24.7

Dieldrin 2, 10, 50, 200 µg/L 2 × 10−5 g/L - RT <20 PSO L - 21.3

Endrin 2, 10, 50, 200 µg/L 2 × 10−5 g/L - RT <20 PSO L - 33.5

MgO
Diazinon 0.30 g/L 0.05 or 0.10 g - - <5 - - - 21–37% [295]

Fenitrothion 0.28 g/L 0.05 or 0.10 g - - 5–60 - - 27–47%

Fe3O4@nSiO2@mSiO2 DDT 0.0015 g/L 0.05 g - - 15 PSO - - 94% [296]

RT = room temperature; a Adsorbent: ZnONPs-IPPs = zinc oxide nanoparticles-impregnated pea peels; MOM-Fe3O4 = functionalized iron oxide nanoparticles with Moringa oleifera Lam.
seeds; Fe3O4 @PS = magnetic nanosphere coated by polystyrene; ZnO-CP = zinc oxide with cucumber peel; CTAB-ZnO = cetyltrimethylammonium bromide functionalized zinc oxide;
BMTF-IL-ZnO = 1-Butyl-3-methylimidazolium tetrafluoroborate functionalized zinc oxide; Hr-MgO = hierarchical magnesium oxide; b targeted pesticides fenitrothion = dimethoxy-(3-
methyl-4-nitrophenoxy)-thioxophosphorane; DDT = dichloro-diphenyl-trichloroethane; Diazinone = diethoxy-[(2-isopropyl-6- methyl-4-pyrimidinyl)oxy]-thioxophosphorane; c Kinetic
equation; PSO = pseudo-second order; PFO = pseudo-first order; d Isotherm equation; L = Langmuir; F = Freundlich; S = Sips; T = Temkin; DA = Dubinin–Astakhov; e Mechanisms:
electrostatic interaction (e−), hydrophobic interaction (h), π–π interaction (π–π), π-complex formation with cations (including metal or positive ion charge groups) (π-CM), hydrogen
bond interaction (H), coordination or covalent bond (C).
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5. Removal of Pesticides Using Functionalized Metal Oxide Nanomaterials by
Photocatalytic Degradation

Photocatalytic degradation is an advanced oxidation process that destroys toxic sub-
stances into other harmless products. Unlike other remediation techniques, photocatalytic
degradation completely mineralizes the toxicant, without the production of secondary
waste [36]. The mechanism of photocatalytic degradation starts when the photocatalyst
is irradiated under UV or visible light that has energy equal to or greater than its band
gap [297]. The detailed mechanism of the reaction is shown in Equation (2) to Equation (8).
Notably, photocatalytic degradation of organic molecules is carried out in a similar man-
ner [21]. When the photocatalyst is irradiated, electrons are excited from the valence band
of the photocatalyst to the conduction band generating electron/hole pairs (e−/h+), as seen
in Equation (2).

Oxygen in water becomes attracted to the positive holes generated by the radiation,
and a proton leaves the water molecule, leaving hydroxyl ions adsorbed on the surface,
which is shown in Equation (3). It is noted that *X resembles a species absorbed into the
hole. Electrons act as reducing agents while positive holes act as oxidizing agents. Electrons
reduce the oxygen adsorbed on the surface of the photocatalyst, generating a superoxide
radical in Equation (4). Then, a superoxide and a proton react to produce a peroxide radical
that is still adsorbed on the surface, and a hydrogen transfer from two peroxides occurs
to produce hydrogen peroxide and oxygen (Equations (5) and (6)). Finally, hydrogen
peroxide is irradiated to produce hydroxyl radicals in Equation (7), and hydroxyl radicals
degrade the organic pesticide to water, carbon dioxide, and other products, depending on
the type of pesticide (Equation (8)). Figure 15 illustrates a schematic mechanism for the
photodegradation of a pesticide [298].

photocatalyst + hv→ h+ + e− (2)

h+ + H2O→ *OH + H+ (3)

*O2 + e− → *O2
− (4)

*O2
− + H+ → *OOH (5)

2*OOH→ *O2 + H2O2 (6)

H2O2 + hv→ 2 .OH (7)

Pesticide + .OH→ intermediates→ H2O + CO2 (8)

Finding the optimum conditions for photocatalysis is extremely important to achieve
maximum efficiency of degradation. The recent studies reporting on the photodegradation
of different types of pesticides by metal oxide nanomaterials and their composites under UV
or visible light have been cited in Table 5. The conditions that correspond to the maximum
efficiency of degradation in the studies have been reported.

Several parameters should be considered when carrying out photocatalytic degrada-
tion [248]. The nature and type of the photocatalyst, concentration of the photocatalyst,
concentration of the pesticide, pH, and irradiation time. Surface morphology, agglomera-
tion, and size affect the behavior of the photocatalyst during the process. Moreover, the
higher the concentration of the photocatalyst, the more efficient the degradation [299]. This
is a result of having more active sites on the surface of the photocatalyst, thus generating
more electron/hole pairs and, consequently, more hydroxyl radicals. However, it is worth
mentioning that after very high dosages of the photocatalyst, the efficiency of the reaction
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decreases due to the blockage of light penetration [300]. Concerning the concentration
of the pesticide, at high dosages of the pollutant, most studies reported a decrease in the
efficiency of degradation, as reported in Table 4. Increasing the dosage of the pesticide
allows for the adsorption of the pesticide on the active sites of the catalyst, preventing
the generation of hydroxyl radicals [301]. Depending on the structure of both pesticide
and the nano-photocatalyst, the pH can affect the reaction behavior between them. The
reaction will be favorable in the pH that allows for the attraction of the photocatalyst and
the pesticide, as well as the accelerated production of hydroxyl radicals [302]. The effect
of irradiation time is directly proportional to the efficiency of degradation. The increase
of irradiation time permits more excitation to occur, and consequently, more radicals are
formed [303].
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Metal oxide semiconductors, such as ZnO and TiO2 nanomaterials, are the most appro-
priate for photocatalytic degradation (Table 4) [298]. This is attributed to the fact that they
can produce electron/hole pairs (e−/h+) more when irradiated with light. Most photo-
catalysis research focuses on TiO2 nanomaterials [304–306]. The problem with ZnO NPs is
the fast recombination of the generated electron/holes [301]. However, recently, it has been
discovered that doping the semiconductors with other metals, or further functionalizing
them, leads to better separation of charges [307].
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Table 5. Reported studies for the photodegradation of pesticides by metal oxide nanomaterials and their composites.

Photocatalyst Structure Target Pesticide Light
Source

Conc. of
Pollutant

Conc. of
Photocatalyst

Irradiation
Time (min) pH Degradation

Efficiency (%) Ref.

Co3O4/MCM-41 NPs MCM-41 nanospheres
decorated Co3O4. methyl parathion visible 100 mg/L 0.25 g 90 8 100 [274]

MCM-41/Co3O4
nanocomposite Spherical shape. acephate visible 100 mg/L 0.25 g 70 8 100 [308]

Co3O4/MCM-41
nanocomposite

MCM-41 spherical grains
decorated by Co3O4 NPs. omethoate visible 50 mg/L 0.25 g 30 >6.5 100 [309]

Cu/ZnO nanocomposite Spherical and elliptical. monocrotophos visible 0.5 L 0.5 g 180 7 ~90 [310]

CuO/TiO2/PANI
nanocomposite

CuO/TiO2 spherical NPs
embedded in tubular PANI. chlorpyrifos visible 5 mg/L 45 mg 90 7 95 [35]

ZnO/CuO
nanocomposites

Shape depends on the
synthesis conditions. triclopyr UV 10 mg/L 0.10 g/150 mL 100 4 100 [311]

CuO NPs Spherical and
flower-like shape. lambda-cyhalothrin UV 10 mg/L 3 mg/L 180 7 99 [312]

NiO NPs Spherical and
flower-like shape. lambda-cyhalothrin UV 10 mg/L 4 mg/L 180 7 89 [312]

Cu2O/BiVO4 composites Shape depends on the
synthesis conditions. 4-chlorophenol visible 50 mg/L 5 g/L 240 - 44 [313]

Mn-doped zinc
oxide/graphene
nanocomposite

Spherical particles
distributed onto graphene

sheets.

2,4-
dichlorophenoxyacetic

acid
LED 25 mg/L 2 g/L 120 5 66.2 [235]

WO3 doped ZnO NPs
immobilized on glass

plates
Heterogenous surface.

2,4-
dichlorophenoxyacetic

acid
UV 25 mg/L - 120 7 80 [236]

Nano hydroxyapatite
modified CFGO/ZnO

nanorod composite
A complex porous surface. chlorpyrifos visible 5 mg/L 0.1 g 30 3 100 [302]
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Table 5. Cont.

Photocatalyst Structure Target Pesticide Light
Source

Conc. of
Pollutant

Conc. of
Photocatalyst

Irradiation
Time (min) pH Degradation

Efficiency (%) Ref.

WO3 doped ZnO NPs
immobilized on glass

plates
Heterogenous surface. diazinon UV 10 mg/L 10 mg/cm2 180 7 99 [237]

ZnO/rGO
nanocomposite

rGO film with
agglomerations of ZnO

nanosheets.
dimethoate UV 5 mg/L 50 mg 180 - ~99 [301]

ZnO NPs Spherical. monocrotophos UV 500 mL aq.
solution 2 g 120 4 88 [314]

ZnO NPs - methyl parathion UV - 85 mg/L 100 >9 ~70 [315]

ZnO NPs - parathion UV - 85 mg/L 100 >9 ~65 [315]

Cu-doped ZnO nanorods Nanorods. diazinon UV 20 mg/L 0.2 g/L 120 7 96.97 [36]

ZnO nanorods nanorod
incorporated carboxylic

GR/PANI composite
A complex porous surface. diuron visible 5 mg/L 0.1 g 40 3.0 100 [316]

Fe-ZnO nanocomposite Rough surface due to Fe ions
doped in ZnO. chlorpyrifos UV 10 mg/L 25 mg/L 60 - 93.5 [317]

Ag-ZnO nanocomposite Uniform distribution of Ag
onto ZnO surfaces. chlorpyrifos Sunlight 50 mg/L 20 mg 40 - ~90 [318]

TiO2 NPs Aggregated semi-spherical. imidacloprid UV 100 mg 100 mg/L 20 7.5 88.15 [319]

ZnO NPs Aggregated semi-spherical. imidacloprid UV 100 mg 100 mg/L 20 7.5 ~80 [319]

rGO/Fe3O4/ZnO ternary
nanohybrid A complex layered surface. metalaxyl visible 10 mg/L 0.5 g/L 120 7 92.11 [320]

La-ZnO-PAN fibers La and ZnO embedded on
PAN nanofibers. methyl parathion UV 10 mg/L 50 mg/L 150 <3 100 [321]

La-ZnO-PAN fibers La and ZnO embedded on
PAN nanofibers. atrazine UV 10 mg/L 30 mg/L 60 7 98 [299]
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Table 5. Cont.

Photocatalyst Structure Target Pesticide Light
Source

Conc. of
Pollutant

Conc. of
Photocatalyst

Irradiation
Time (min) pH Degradation

Efficiency (%) Ref.

rGO/ZnO nanocatalyst
ZnO NPs uniformly
distributed on rGO

nanosheets.
metalaxyl UV 10 mg/L 0.75 g/L 120 7 90.25 [322]

Cu-ZnO nanocomposite Cu loaded on ZnO nanorods. methyl parathion UV 500 mg/L 20 mg/L 80 - 99 [323]

ZnO/CeO2
nanocomposite

CeO2 NPs loaded onto ZnO
hexagonal

nano-carrots.
triclopyr UV 150 mL aq.

solution 100 mg 70 7 83.24 [324]

ZnO nanofilms Nanoflowers. temephos Sunlight
simulator 10 mg/L - 12 - 100 [325]

Fe/Ag@ZnO
nanostructures Nanoflowers.

2,4-
dichlorophenoxyacetic

acid
UV/visible 62 mg/L 0.078 g/L 63 5 80 [326]

ZnO/TiO2-Fe3O4
nanocomposite

Fe3O4 and TiO2 uniformly
distributed on the porous

nanostructure of ZnO.
chlorpyrifos visible 8 mg/L 60 mg 50 10 94.8 [327]

PANI/ZnO-CoMoO4
nanocomposite

Spherical CoMoO4 and ZnO
NPs distributed on PANI. imidacloprid visible 4.5 mg/L 163.5 mg 180 4 97 [328]

Ag@ZnO nano-stars Star-like shape. methyl parathion visible 0.01 mg/L 25 mg 200 7 - [329]

Pd@ZnO nano-stars Star-like shape. methyl parathion visible 0.01 mg/L 25 mg 200 7 - [329]

Cu-ZnO nano
heterojunction particles

Cu NPs embedded onto ZnO
surface. chlorpyrifos sunlight 200 mg/L 250 mg 240 6 91 [330]

Li dope ZnO
nanostructures Aggregated spherical NPs. triclopyr UV 100 mL aq.

solution 1 g/L 120 7 ~50 [331]

ZnO@CdS nanostructures CdS aggregated spherical
NPs and ZnO nanoflowers. chlorpyrifos sunlight 2 mg/L 25 mg/L 360 7 91 [300]
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Table 5. Cont.

Photocatalyst Structure Target Pesticide Light
Source

Conc. of
Pollutant

Conc. of
Photocatalyst

Irradiation
Time (min) pH Degradation

Efficiency (%) Ref.

ZnO@CdS nanostructures CdS aggregated spherical
NPs and ZnO nanoflowers. atrazine sunlight 50 mg/L 20 mg/L 360 7 89 [300]

MgO NPs immobilized
on concrete

MgO NPs immobilized on
concrete surface. diazinon UV 5 mg/L - 120 7 99.46 [332]

CeO2/TiO2/SiO2
nano-catalyst Nearly spherical chlorpyrifos UV 2 mg/L 0.21 g/L 90 5.4 81.1 [333]

CeO2-SiO2 NPs - chlorpyrifos UV 10 mL aq.
solution 7 mg 150 9 ~90 [334]

Fe doped CeO2-SiO2
nanocomposite Spherical NPs chlorpyrifos UV 20 mg/L 7 mg ~230 - 81.31 [335]

GO/Fe3O4/TiO2-NiO
nanocomposite

Spherical Fe3O4, TiO2, NiO
dispersed on GO nanosheets. imidacloprid visible 5 mg/L 0.08 g 45 9 97.47 [303]

Au/Fe3O4 core/shell
NPs Spherical malathion UV 10 mg/L 10−4 mol/L 90 - 76 [336]

S-doped Ni–Co
LDH/Fe3O4

nanocomposite

A layered and flower-like
structure with uniformly

dispersed spherical Fe3O4
NPs.

chlorpyrifos visible 2.5 mg/L 60 mg 150 10 92.5 [247]

KIT-5/Bi2S3-Fe3O4
nanocomposite

Spherical Bi2S3 and Fe3O4
NPs uniformly distributed on
3-D mesoporous cubic KIT-5

surface.

parathion visible 4.5 mg/L 55 mg 55 8 98.7 [337]

GO- Fe3O4/TiO2
nanocomposite

Fe3O4 NPs and mesoporous
TiO2 dispersed uniformly on

GO nanosheets.
chlorpyrifos visible 5 mg/L 100 mg 60 ~8 97 [304]
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Table 5. Cont.

Photocatalyst Structure Target Pesticide Light
Source

Conc. of
Pollutant

Conc. of
Photocatalyst

Irradiation
Time (min) pH Degradation

Efficiency (%) Ref.

KIT-6/WS2-Fe3O4
nanocomposite

Spherical WS2 and Fe3O4
NPs uniformly distributed on
3-D mesoporous cubic KIT-6

surface.

chlorpyrifos visible 7.2 mg/L 50 mg 52 6 92.1 [338]

Fe3O4/CdS–ZnS
nanocomposite

Spherical CdS, Fe3O4 and
ZnS NPs. chlorpyrifos visible 10 mg/L 0.01 g 60 7 94.55 [339]

Fe3O4@WO3/SBA-15
nanocomposite

Agglomerates of WO3
nanoplates on Fe3O4 NPs

and uniform rods of
hexagonal SBA-15.

2,4-
dichlorophenoxyacetic

acid
UV 10−6 mol/L 40 mg 240 - 90.73 [340]

TNP-Pd-Fe3O4/GO
photocatalyst

Fe3O4 NPs, Pd, and TiO2
nanoplates were dispersed

uniformly on
GO sheets.

parathion visible 10 mg/L 80 mg 40 10 98.5 [341]

BiOBr/Fe3O4
photocatalyst

Agglomerated Fe3O4 NPs
deposited on BiOBr

microspheres.
glyphosate visible 100 mg/L 0.08 g 60 - 97 [342]

Ag2S doped
nanostructures of Fe3O4
@Ag3PO4 ultrathin films

Ag2S and Fe3O4 NPs doped
on Ag3PO4 ultrathin film. imidacloprid visible 2 mg/L 30 mg 90 4.3–9 98.9 [343]

Ag2S doped
nanostructures of Fe3O4
@Ag3PO4 ultrathin films

Ag2S and Fe3O4 NPs doped
on Ag3PO4 ultrathin film. thiacloprid visible 2 mg/L 30 mg 60 - 90 [343]

g-C3N4/Cu/TiO2
nanocomposite

Cu and TiO2 NPs dispersed
on the irregular layered

structure of graphitic-C3N4.
endosulfan visible 5 mg/L 40 mg 80 6.8 60 [344]

SBA-15/TiO2
nanocomposite

TiO2 NPs dispersed on the
hexagonal array of SBA-15. trifluralin UV 60 mg/L 0.2 g/L 30 10 90 [345]
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Table 5. Cont.

Photocatalyst Structure Target Pesticide Light
Source

Conc. of
Pollutant

Conc. of
Photocatalyst

Irradiation
Time (min) pH Degradation

Efficiency (%) Ref.

SBA-15/TiO2
nanocomposite

TiO2 NPs dispersed on the
hexagonal array of SBA-15. pendimethalin UV 60 mg/L 0.2 g/L 30 10 82.5 [345]

TiO2 NPs Irregular agglomerated NPs. imidacloprid UV 5 mg/L 0.6 g/L 300 6.35 99 [305]

TiO2 nanostructures
modified with Cu

Homogenous nano-porous
structure of TiO2 with Cu
dispersed on the surface.

imidacloprid UV/vis 25 mg/L - 60 - - [306]

TiO2/CNT/Pd
photocatalyst

Heterostructure spherical
Pd-doped TiO2 nanoparticles

on carbon nanotubes.

neonicotinoids
thiacloprid sunlight 5 mg/L 0.1 g/L 180 7 100 [346]

TiO2/CNT/Pd
photocatalyst

Heterostructure spherical
Pd-doped TiO2 nanoparticles

on carbon nanotubes.
imidacloprid sunlight 5 mg/L 0.1 g/L 180 7 99.8 [346]

TiO2/CNT/Pd
photocatalyst

Heterostructure spherical
Pd-doped TiO2 nanoparticles

on carbon nanotubes.
clothianidin sunlight 5 mg/L 0.1 g/L 180 7 100 [346]

TiO2 nanoparticles
Spherical with only a small

quantity of hexagonal
diameters.

dimethoate UV 5 mg/L 300 mg/L 320 - 100 [347]

TiO2 nanoparticles
Spherical with only a small

quantity of hexagonal
diameters.

methomyl UV 5 mg/L 300 mg/L 320 - 100 [347]

CuS/TiO2 (CuST)
nanoparticles

Coalesced and form a
textured/porous
nanostructure.

4-chlorophenol UV 20 mg/L 100 mg 150 - 87 [348]

Pt@TiO2/rGO
nanocomposite

Monodisperse
quasi-spherical Pt@TiO2 NPs

deposited on the rGO
nanosheets.

diuron UV 0.03
mmol/L 7 mg - 7 100 [349]
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Table 5. Cont.

Photocatalyst Structure Target Pesticide Light
Source

Conc. of
Pollutant

Conc. of
Photocatalyst

Irradiation
Time (min) pH Degradation

Efficiency (%) Ref.

(CMC/Tryp/TiO2). Platelet-like crystallites. 2,4-dichlorophenol UV 200 mg/L 0.5 g/L - - - [350]

SBA-16/TiO2
nanocomposites Rutile phase. commercial paraquat

(PQ) herbicide UV 50 mg/L 100 mg in 250
mL aq. Solution 1440 - 70 [351]

Ce-TiO2@RGO
nanocomposite

Non-uniform deposition of
Ce-TiO2 with spherical

crystalline TiO2 on a reduced
graphene oxide sheet.

quinalphos Visible - 20 mg/L 240 - 92 [352]

Ce-TiO2@RGO
nanocomposite

Non-uniform deposition of
Ce-TiO2 with spherical

crystalline TiO2 on a reduced
graphene oxide sheet.

imidacloprid Visible - 20 mg/L 240 - 85 [352]

Ag3PO4/TiO2 NPs
Crystallized structure with
cubed shape Ag3PO4 and

anatase TiO2

2,4-
dichlorophenoxyacetic

acid
Visible 10 mg/L 1 g/L 60 3 98.4 [353]

2D/2D TiO2/MIL88(Fe)
(TCS@MOF)

nanocomposite

Stacked layer thin MIL-88(Fe)
nanosheet with micro-sized

TiO2 nano-granular spherical
shape.

monocrotophos visible 20 mg/L 0.05 g/L 30 5 ~98.79% [354]

TiO2 nanotubes Nanotubes Simazine UV 1 mg/L - 54 - 48 [355]

TiO2 NPs Agglomerated spherical
shape. Acetamiprid UV 4.5 mg/L 2000 mg/L 240 - 100 [356]

TiO2 NPs - Imidaclopride UV 25 mg/L 200 mg/L 48 - 90 [357]

TiO2 NPs - 1,2-dichloroethane UV 100–200
mg/L 100 mg/L 360 7 95 [358]

N-doped TiO2
nanoparticles

Agglomerated small
particles.

dichlorodipheny
ltrichloroethane UV 10,000 mg/L 1000 48 7 70 [359]

lanthanide-doped TiO2
photocatalysts Solely anatase. metazachlor UV 10 mg/L 1000 mg/L 300 - 85 [360]
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6. Challenges and Outlook

Despite the exquisite properties and the versatile applications of metal oxide nano-
materials and their composites, there are still inadequacies that cannot be ignored as the
prepared material should be cost-effective, eco-friendly, and non-toxic. Recently, the use of
functionalized metal oxides as adsorbents for the removal of pesticides has been riddled
with many challenges. One challenge is the secondary waste produced from the adsorption
process, which has not yet been addressed for the use of these materials as recycled materi-
als in industries. Therefore, further studies on the implementation of the recycled metal
oxides in the industrial field should be considered. Additionally, most of the published
research neglects the fact that the water bodies are contaminated with multi-contaminants.
Therefore, investigations should be conducted to assess the efficiency of metal oxides in the
presence of multi-pollutants and a real representative matrix. Although the synthesized
metal oxides have wide application, much of the research published does not include
assessment on the toxicity of the material itself. It is very important to address and ex-
amine the toxicity of these materials and their composites, and to employ metal oxides as
adsorbents and photocatalytic materials in commercial applications for the treatment of
real samples.

7. Conclusions

Metal oxide nanomaterials and their composites have received considerable attention
in recent years owing to their wide applications and eminent properties. Their porous
structure, thermal stability, low toxicity, easy recovery, and large surface area make them
extensively efficient for remediation applications as adsorbents and photocatalytic mate-
rials. Many publications have been collected on the removal of organic pesticides such
as algaecides, fungicides, herbicides, insecticides, etc., using metal oxide nanomaterials
and their nanocomposites, including metal oxides/metal-organic frameworks, metal ox-
ides/polymers, metal/metal oxides other hybridized composites.

From the research reviewed, it can clearly be concluded that the prominent adsorptive
interaction between metal oxides and pesticides is chemisorption. This finding is further
supported by the type of mechanism and the type of kinetics, as the pseudo-second-
order kinetic equation is used to express the chemisorption interaction. Additionally, the
π–π interaction, π-complex interaction, and coordination or covalent bond are all types
of chemical bonds. The adsorptive removal of pesticides using metal oxides has gained
prominence due to its simplicity, effectivity, insensitivity, and flexibility. It has one limitation,
in that it produces secondary products which need further recycling, decomposing, and
management to be utilized in industries. Accordingly, photocatalytic degradation has
emerged alternatively, which results in the complete mineralization of the pollutant to
intermediates and H2O and CO2. Assessment of material toxicity should be focused on
more, along with the by-products of adsorption. To scale up the material on an industrial
scale, the investigated materials should be tested in real representative matrices that
resemble the contaminated water.
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Abbreviations

POPs Persistent organic chemicals
OCs Organochlorines
OPs Organophosphates
NPs Nanoparticles
MO Metal oxides
IONPs Iron oxide nanoparticles
RT Room temperature
ZnONPs-IPPs Zinc oxide nanoparticles impregnated Pea peels
MOM-Fe3O4 Iron oxide nanoparticles with Moringa oleifera Lam. seeds
ZnO-CP Zinc oxide with cucumber peel.
CTAB-ZnO Cetyltrimethylammonium bromide functionalized Zinc oxide
BMTF-IL-ZnO 1-Butyl-3-methylimidazolium tetrafluoroborate functionalized Zinc oxide.
Hr-MgO Hierarchical magnesium oxide
DDT Dichloro-diphenyl-trichloroethane
PSO Pseudo Second Order
PFO Pseudo First Order
L Langmuir isotherm model.
F Freundlich isotherm model.
S Sips isotherm model.
T Temkin isotherm model.
D-A Dubinin–Astakhov isotherm model.
e- Electrostatic interaction
h Hydrophobic interaction
π–π π–π interaction
π-CM π-complex formation
H Hydrogen bond interaction
C Coordination or covalent bond
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97. Machala, L.; Tuček, J.; Zbořil, R. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chem. Mater. 2011, 23,
3255–3272. [CrossRef]

98. Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, S.; Gadri, A. Synthesis, structural, morphological, optical and magnetic
characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: Effect of varying the nature of precursor. Phys. E
Low-Dimens. Syst. Nanostruct. 2018, 97, 328–334. [CrossRef]

99. Ong, H.T.; Suppiah, D.D.; Muhd Julkapli, N. Fatty acid coated iron oxide nanoparticle: Effect on stability, particle size and
magnetic properties. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125371. [CrossRef]

100. Borges, R.; Mendonça-Ferreira, L.; Rettori, C.; Pereira, I.S.O.; Baino, F.; Marchi, J. New sol-gel-derived magnetic bioactive
glass-ceramics containing superparamagnetic hematite nanocrystals for hyperthermia application. Mater. Sci. Eng. C 2021, 120,
111692. [CrossRef]

101. Karaagac, O.; Köçkar, H. Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles.
J. Magn. Magn. Mater. 2022, 551, 169140. [CrossRef]

102. Al-Jabari, M.H.; Sulaiman, S.; Ali, S.; Barakat, R.; Mubarak, A.; Khan, S.A. Adsorption study of levofloxacin on reusable magnetic
nanoparticles: Kinetics and antibacterial activity. J. Mol. Liq. 2019, 291, 111249. [CrossRef]

103. Shi, S.-F.; Jia, J.-F.; Guo, X.-K.; Zhao, Y.-P.; Chen, D.-S.; Guo, Y.-Y.; Cheng, T.; Zhang, X.-L. Biocompatibility of chitosan-coated iron
oxide nanoparticles with osteoblast cells. Int. J. Nanomed. 2012, 7, 5593.

104. Unsoy, G.; Yalcin, S.; Khodadust, R.; Gündüz, G.; Gunduz, U. Synthesis optimization and characterization of chitosan-coated iron
oxide nanoparticles produced for biomedical applications. J. Nanopart. Res. 2012, 14, 964. [CrossRef]

105. Lopez, J.D.; Keley, M.; Dante, A.; Werneck, M.M. Optical fiber sensor coated with copper and iron oxide nanoparticles for
hydrogen sulfide sensing. Opt. Fiber Technol. 2021, 67, 102731. [CrossRef]

106. Pakapongpan, S.; Poo-arporn, Y.; Tuantranont, A.; Poo-arporn, R.P. A facile one-pot synthesis of magnetic iron oxide nanoparticles
embed N-doped graphene modified magnetic screen printed electrode for electrochemical sensing of chloramphenicol and
diethylstilbestrol. Talanta 2022, 241, 123184. [CrossRef] [PubMed]

107. Tung, T.T.; Chien, N.V.; Van Duy, N.; Van Hieu, N.; Nine, M.J.; Coghlan, C.J.; Tran, D.N.H.; Losic, D. Magnetic iron oxide
nanoparticles decorated graphene for chemoresistive gas sensing: The particle size effects. J. Colloid Interface Sci. 2019, 539,
315–325. [CrossRef]

108. Roy, S.D.; Das, K.C.; Dhar, S.S. Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst,
photocatalyst and toxicity: A short review. Inorg. Chem. Commun. 2021, 134, 109050. [CrossRef]

109. Moodley, P.; Scheijen, F.J.E.; Niemantsverdriet, J.W.; Thüne, P.C. Iron oxide nanoparticles on flat oxidic surfaces—Introducing a
new model catalyst for Fischer–Tropsch catalysis. Catal. Today 2010, 154, 142–148. [CrossRef]

110. Carrillo, A.I.; Serrano, E.; Luque, R.; García-Martínez, J. Microwave-assisted catalysis by iron oxide nanoparticles on MCM-41:
Effect of the support morphology. Appl. Catal. A Gen. 2013, 453, 383–390. [CrossRef]

111. Fatimah, I.; Amaliah, S.N.; Andrian, M.F.; Handayani, T.P.; Nurillahi, R.; Prakoso, N.I.; Wicaksono, W.P.; Chuenchom, L. Iron
oxide nanoparticles supported on biogenic silica derived from bamboo leaf ash for rhodamine B photodegradation. Sustain.
Chem. Pharm. 2019, 13, 100149. [CrossRef]

112. Algarín, M.; Amaya, M.; Solano, R.; Patiño-Ruiz, D.; Herrera, A. Synthesis of a magnetic iron oxide/zinc oxide engineered
nanocatalyst for enhanced visible-light photodegradation of Cartasol brilliant violet 5BFN in aqueous solution. Nano-Struct.
Nano-Objects 2021, 26, 100730. [CrossRef]

113. Alves, F.H.d.O.; Araújo, O.A.; de Oliveira, A.C.; Garg, V.K. Preparation and characterization of PAni(CA)/Magnetic iron oxide
hybrids and evaluation in adsorption/photodegradation of blue methylene dye. Surf. Interfaces 2021, 23, 100954. [CrossRef]

114. Xu, H.; Yuan, H.; Yu, J.; Lin, S. Study on the competitive adsorption and correlational mechanism for heavy metal ions using
the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents. Appl. Surf. Sci. 2019, 473, 960–966.
[CrossRef]

https://doi.org/10.1016/j.ijleo.2021.168107
https://doi.org/10.1016/j.jddst.2022.103244
https://doi.org/10.1016/j.cis.2020.102317
https://doi.org/10.1016/j.ijpharm.2021.120311
https://www.ncbi.nlm.nih.gov/pubmed/33539998
https://doi.org/10.1007/s13201-019-1138-y
https://doi.org/10.1016/j.jbiosc.2018.07.024
https://doi.org/10.5772/66211
https://doi.org/10.1021/cm200397g
https://doi.org/10.1016/j.physe.2017.12.004
https://doi.org/10.1016/j.colsurfa.2020.125371
https://doi.org/10.1016/j.msec.2020.111692
https://doi.org/10.1016/j.jmmm.2022.169140
https://doi.org/10.1016/j.molliq.2019.111249
https://doi.org/10.1007/s11051-012-0964-8
https://doi.org/10.1016/j.yofte.2021.102731
https://doi.org/10.1016/j.talanta.2021.123184
https://www.ncbi.nlm.nih.gov/pubmed/35032900
https://doi.org/10.1016/j.jcis.2018.12.077
https://doi.org/10.1016/j.inoche.2021.109050
https://doi.org/10.1016/j.cattod.2010.03.020
https://doi.org/10.1016/j.apcata.2012.12.041
https://doi.org/10.1016/j.scp.2019.100149
https://doi.org/10.1016/j.nanoso.2021.100730
https://doi.org/10.1016/j.surfin.2021.100954
https://doi.org/10.1016/j.apsusc.2018.12.006


Sustainability 2023, 15, 7336 34 of 43

115. Lin, S.; Liu, L.; Yang, Y.; Lin, K. Study on preferential adsorption of cationic-style heavy metals using amine-functionalized
magnetic iron oxide nanoparticles (MIONPs-NH2) as efficient adsorbents. Appl. Surf. Sci. 2017, 407, 29–35. [CrossRef]

116. Javid, A.; Ahmadian, S.; Saboury, A.; Kalantar, M.; Rezaei-Zarchi, S. Chitosan-Coated Superparamagnetic Iron Oxide Nanoparti-
cles for Doxorubicin Delivery: Synthesis and Anticancer Effect Against Human Ovarian Cancer Cells. Chem. Biol. Drug Des. 2013,
82, 296–306. [CrossRef]

117. Jain, M.; Yadav, M.; Kohout, T.; Lahtinen, M.; Garg, V.K.; Sillanpää, M. Development of iron oxide/activated carbon nanoparticle
composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour. Ind. 2018, 20, 54–74. [CrossRef]

118. Wei, Y.; Zhu, J.; Gan, Y.; Cheng, G. Titanium glycolate-derived TiO2 nanomaterials: Synthesis and applications. Adv. Powder
Technol. 2018, 29, 2289–2311. [CrossRef]

119. Bortamuly, R.; Naresh, V.; Das, M.R.; Kumar, V.K.; Muduli, S.; Martha, S.K.; Saikia, P. Titania supported bio-derived activated
carbon as an electrode material for high-performance supercapacitors. J. Energy Storage 2021, 42, 103144. [CrossRef]

120. Zhang, Y.; Yang, H.M.; Park, S.-J. Synthesis and characterization of nitrogen-doped TiO2 coatings on reduced graphene oxide for
enhancing the visible light photocatalytic activity. Curr. Appl. Phys. 2018, 18, 163–169. [CrossRef]

121. Pérez-Jiménez, L.E.; Solis-Cortazar, J.C.; Rojas-Blanco, L.; Perez-Hernandez, G.; Martinez, O.S.; Palomera, R.C.; Paraguay-Delgado,
F.; Zamudio-Torres, I.; Morales, E.R. Enhancement of optoelectronic properties of TiO2 films containing Pt nanoparticles. Results
Phys. 2019, 12, 1680–1685. [CrossRef]

122. Bayan, E.M.; Lupeiko, T.G.; Pustovaya, L.E.; Volkova, M.G.; Butova, V.V.; Guda, A.A. Zn–F co-doped TiO2 nanomaterials:
Synthesis, structure and photocatalytic activity. J. Alloys Compd. 2020, 822, 153662. [CrossRef]

123. Haggerty, J.E.; Schelhas, L.T.; Kitchaev, D.A.; Mangum, J.S.; Garten, L.M.; Sun, W.; Stone, K.H.; Perkins, J.D.; Toney, M.F.; Ceder, G.
High-fraction brookite films from amorphous precursors. Sci. Rep. 2017, 7, 15232. [CrossRef] [PubMed]

124. Zhang, J.; Yan, S.; Fu, L.; Wang, F.; Yuan, M.; Luo, G.; Xu, Q.; Wang, X.; Li, C. Photocatalytic Degradation of Rhodamine B on
Anatase, Rutile, and Brookite TiO2. Chin. J. Catal. 2011, 32, 983–991. [CrossRef]

125. Kumar, S.G.; Rao, K.S.R.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic
degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148. [CrossRef]

126. Harlapur, S.F.; Rashmi, B.N.; Nagaswarupa, H.P.; Prashantha, S.C.; Shashishekar, T.R.; Anil Kumar, M.R. Photocatalytic studies of
TiO2 nanomaterials prepared via facile wet chemical route. Mater. Today Proc. 2017, 4, 11713–11719. [CrossRef]

127. Umar, A.A.; Rahman, M.Y.A.; Saad, S.K.M.; Salleh, M.M.; Oyama, M. Preparation of grass-like TiO2 nanostructure thin films:
Effect of growth temperature. Appl. Surf. Sci. 2013, 270, 109–114. [CrossRef]

128. D’Arienzo, M.; Scotti, R.; Di Credico, B.; Redaelli, M. Chapter 13—Synthesis and Characterization of Morphology-Controlled
TiO2 Nanocrystals: Opportunities and Challenges for their Application in Photocatalytic Materials. In Studies in Surface Science
and Catalysis; Fornasiero, P., Cargnello, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 177, pp. 477–540.

129. Fan, Z.; Meng, F.; Zhang, M.; Wu, Z.; Sun, Z.; Li, A. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable
morphology and enhanced photocatalytic activity. Appl. Surf. Sci. 2016, 360, 298–305. [CrossRef]

130. Narzary, S.; Alamelu, K.; Raja, V.; Jaffar Ali, B.M. Visible light active, magnetically retrievable Fe3O4@SiO2@g-C3N4/TiO2
nanocomposite as efficient photocatalyst for removal of dye pollutants. J. Environ. Chem. Eng. 2020, 8, 104373. [CrossRef]

131. Qiao, H.; Xiao, H.; Huang, Y.; Yuan, C.; Zhang, X.; Bu, X.; Wang, Z.; Han, S.; Zhang, L.; Su, Z.; et al. SiO2 loading into
polydopamine-functionalized TiO2 nanotubes for biomedical applications. Surf. Coat. Technol. 2019, 364, 170–179. [CrossRef]

132. Malevu, T.D. Ball Milling synthesis and characterization of highly crystalline TiO2-ZnO hybrids for photovoltaic applications.
Phys. B Condens. Matter 2021, 621, 413291. [CrossRef]

133. Ullah, F.; Qureshi, M.T.; Sultana, K.; Saleem, M.; Al Elaimi, M.; Abdel Hameed, R.; Haq, S.u.; Ismail, H.S.; Anwar, M.S. Structural
and dielectric studies of MgAl2O4–TiO2 composites for energy storage applications. Ceram. Int. 2021, 47, 30665–30670. [CrossRef]

134. Abinaya, S.; Kavitha, H.P.; Prakash, M.; Muthukrishnaraj, A. Green synthesis of magnesium oxide nanoparticles and its
applications: A review. Sustain. Chem. Pharm. 2021, 19, 100368. [CrossRef]

135. Nagappa, B.; Chandrappa, G.T. Mesoporous nanocrystalline magnesium oxide for environmental remediation. Microporous
Mesoporous Mater. 2007, 106, 212–218. [CrossRef]

136. Mehta, M.; Mukhopadhyay, M.; Christian, R.; Mistry, N. Synthesis and characterization of MgO nanocrystals using strong and
weak bases. Powder Technol. 2012, 226, 213–221. [CrossRef]

137. Abdulkhaleq, N.A.; Nayef, U.M.; Albarazanchi, A.K.H. MgO nanoparticles synthesis via laser ablation stationed on porous
silicon for photoconversion application. Optik 2020, 212, 164793. [CrossRef]

138. Saito, A.; Obata, S.; Nishina, Y. Uniform coating of magnesium oxide crystal with reduced graphene oxide achieves moisture
barrier performance. Appl. Surf. Sci. 2022, 573, 151483. [CrossRef]

139. Sivaselvam, S.; Premasudha, P.; Viswanathan, C.; Ponpandian, N. Enhanced removal of emerging pharmaceutical contaminant
ciprofloxacin and pathogen inactivation using morphologically tuned MgO nanostructures. J. Environ. Chem. Eng. 2020, 8, 104256.
[CrossRef]

140. Alkhudhayri, A.; Thagfan, F.A.; Al-Quraishy, S.; Abdel-Gaber, R.; Dkhil, M.A. Assessment of the oxidative status and goblet
cell response during eimeriosis and after treatment of mice with magnesium oxide nanoparticles. Saudi J. Biol. Sci. 2022, 29,
1234–1238. [CrossRef]

https://doi.org/10.1016/j.apsusc.2017.02.173
https://doi.org/10.1111/cbdd.12145
https://doi.org/10.1016/j.wri.2018.10.001
https://doi.org/10.1016/j.apt.2018.05.016
https://doi.org/10.1016/j.est.2021.103144
https://doi.org/10.1016/j.cap.2017.12.001
https://doi.org/10.1016/j.rinp.2019.01.046
https://doi.org/10.1016/j.jallcom.2020.153662
https://doi.org/10.1038/s41598-017-15364-y
https://www.ncbi.nlm.nih.gov/pubmed/29123137
https://doi.org/10.1016/S1872-2067(10)60222-7
https://doi.org/10.1016/j.apsusc.2016.07.081
https://doi.org/10.1016/j.matpr.2017.09.087
https://doi.org/10.1016/j.apsusc.2012.12.128
https://doi.org/10.1016/j.apsusc.2015.11.021
https://doi.org/10.1016/j.jece.2020.104373
https://doi.org/10.1016/j.surfcoat.2019.02.089
https://doi.org/10.1016/j.physb.2021.413291
https://doi.org/10.1016/j.ceramint.2021.07.244
https://doi.org/10.1016/j.scp.2020.100368
https://doi.org/10.1016/j.micromeso.2007.02.052
https://doi.org/10.1016/j.powtec.2012.04.044
https://doi.org/10.1016/j.ijleo.2020.164793
https://doi.org/10.1016/j.apsusc.2021.151483
https://doi.org/10.1016/j.jece.2020.104256
https://doi.org/10.1016/j.sjbs.2021.09.034


Sustainability 2023, 15, 7336 35 of 43

141. El-Sawy, N.M.; Raafat, A.I.; Badawy, N.A.; Mohamed, A.M. Radiation development of pH-responsive (xanthan-acrylic acid)/MgO
nanocomposite hydrogels for controlled delivery of methotrexate anticancer drug. Int. J. Biol. Macromol. 2020, 142, 254–264.
[CrossRef]

142. Zheng, X.; Feng, S.; Wang, X.; Shi, Z.; Mao, Y.; Zhao, Q.; Wang, S. MSNCs and MgO-MSNCs as drug delivery systems to control
the adsorption kinetics and release rate of indometacin. Asian J. Pharm. Sci. 2019, 14, 275–286. [CrossRef]

143. Yang, S.; Liang, L.; Liu, L.; Yin, Y.; Liu, Y.; Lei, G.; Zhou, K.; Huang, Q.; Wu, H. Using MgO nanoparticles as a potential platform
to precisely load and steadily release Ag ions for enhanced osteogenesis and bacterial killing. Mater. Sci. Eng. C 2021, 119, 111399.
[CrossRef]

144. Nigam, A.; Saini, S.; Rai, A.K.; Pawar, S.J. Structural, optical, cytotoxicity, and antimicrobial properties of MgO, ZnO and
MgO/ZnO nanocomposite for biomedical applications. Ceram. Int. 2021, 47, 19515–19525. [CrossRef]

145. Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Fabrication of MgO nanostructures and its
efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B Biol. 2019, 190, 8–20. [CrossRef]

146. Nguyen, D.T.C.; Dang, H.H.; Vo, D.-V.N.; Bach, L.G.; Nguyen, T.D.; Tran, T.V. Biogenic synthesis of MgO nanoparticles from
different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. J. Hazard. Mater.
2021, 404, 124146. [CrossRef]
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