Fate and Removal of Microplastics from Industrial Wastewaters
Abstract
:1. Introduction
2. Fate of Microplastics
3. Water Treatment Technologies for the Removal of Microplastics
3.1. Primary Treatment
3.2. Secondary Treatment
3.3. Tertiary Treatment
3.4. Color and Range of Size and Shape of MPs
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bäuerlein, P.S.; Hofman-Caris, R.C.H.M.; Pieke, E.N.; ter Laak, T.L. Fate of Microplastics in the Drinking Water Production. Water Res. 2022, 221, 118790. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- ISO/TR 21960:2020(en)Plastics—Environmental Aspects—State of Knowledge and Methodologies. Available online: https://www.iso.org/obp/ui/#iso:std:iso:tr:21960:ed-1:v1:en (accessed on 25 February 2023).
- Iyare, P.U.; Ouki, S.K.; Bond, T. Microplastics Removal in Wastewater Treatment Plants: A Critical Review. Environ. Sci. Water Res. Technol. 2020, 6, 2664–2675. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Sherrell, P.C.; Chen, J.; Wang, H.; Zhang, W.; Yang, J. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. Adv. Sci. 2022, 9, 2103764. [Google Scholar] [CrossRef]
- Deng, H.; Wei, R.; Luo, W.; Hu, L.; Li, B.; Di, Y.; Shi, H. Microplastic Pollution in Water and Sediment in a Textile Industrial Area. Environ. Pollut. 2020, 258, 113658. [Google Scholar] [CrossRef]
- Reddy, A.S.; Nair, A.T. The Fate of Microplastics in Wastewater Treatment Plants: An Overview of Source and Remediation Technologies. Environ. Technol. Innov. 2022, 28, 102815. [Google Scholar] [CrossRef]
- Townsend, K.R.; Lu, H.-C.; Sharley, D.J.; Pettigrove, V. Associations between Microplastic Pollution and Land Use in Urban Wetland Sediments. Environ. Sci. Pollut. Res. 2019, 26, 22551–22561. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Cai, C.; He, Y.; Chen, L.; Xiong, X.; Huang, H.; Tao, S.; Liu, W. Occurrence and Characteristics of Microplastics in the Haihe River: An Investigation of a Seagoing River Flowing through a Megacity in Northern China. Environ. Pollut. 2020, 262, 114261. [Google Scholar] [CrossRef]
- Wu, P.; Tang, Y.; Dang, M.; Wang, S.; Jin, H.; Liu, Y.; Jing, H.; Zheng, C.; Yi, S.; Cai, Z. Spatial-Temporal Distribution of Microplastics in Surface Water and Sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2020, 717, 135187. [Google Scholar] [CrossRef]
- Piehl, S.; Hauk, R.; Robbe, E.; Richter, B.; Kachholz, F.; Schilling, J.; Lenz, R.; Fischer, D.; Fischer, F.; Labrenz, M.; et al. Combined Approaches to Predict Microplastic Emissions Within an Urbanized Estuary (Warnow, Southwestern Baltic Sea). Front. Environ. Sci. 2021, 9, 616765. [Google Scholar] [CrossRef]
- Woodward, J.; Li, J.; Rothwell, J.; Hurley, R. Acute Riverine Microplastic Contamination Due to Avoidable Releases of Untreated Wastewater. Nat. Sustain. 2021, 4, 793–802. [Google Scholar] [CrossRef]
- Sun, J.; Dai, X.; Wang, Q.; van Loosdrecht, M.C.M.; Ni, B.-J. Microplastics in Wastewater Treatment Plants: Detection, Occurrence and Removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Manjón, A.; Martínez-Díez, R.; Sol, D.; Laca, A.; Laca, A.; Rancaño, A.; Díaz, M. Long-Term Occurrence and Fate of Microplastics in WWTPs: A Case Study in Southwest Europe. Appl. Sci. 2022, 12, 2133. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.J.; Dominguez, A.O.; Jaafarzadeh, N. Distribution and Potential Health Impacts of Microplastics and Microrubbers in Air and Street Dusts from Asaluyeh County, Iran. Environ. Pollut. 2019, 244, 153–164. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, Migration and Toxicology of Microplastics in Soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Zhou, X.; Tian, Y.; Lin, C.; Wang, W.; Zhou, K.; Zhang, Y.; Lin, H. Microplastic Abundance, Distribution and Composition in the Mid-West Pacific Ocean. Environ. Pollut. 2020, 264, 114125. [Google Scholar] [CrossRef]
- Han, M.; Niu, X.; Tang, M.; Zhang, B.-T.; Wang, G.; Yue, W.; Kong, X.; Zhu, J. Distribution of Microplastics in Surface Water of the Lower Yellow River near Estuary. Sci. Total Environ. 2020, 707, 135601. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, S.-H.; Ge, C.; Gao, Q.; Huang, S.; Kang, Y.; Luo, G.; Zhang, Z.; Fan, L.; Zhu, Y.; et al. Removing Microplastics from Aquatic Environments: A Critical Review. Environ. Sci. Ecotechnology 2023, 13, 100222. [Google Scholar] [CrossRef]
- Yazdani Foshtomi, M.; Oryan, S.; Taheri, M.; Darvish Bastami, K.; Zahed, M.A. Composition and Abundance of Microplastics in Surface Sediments and Their Interaction with Sedimentary Heavy Metals, PAHs and TPH (Total Petroleum Hydrocarbons). Mar. Pollut. Bull. 2019, 149, 110655. [Google Scholar] [CrossRef]
- Sørensen, L.; Rogers, E.; Altin, D.; Salaberria, I.; Booth, A.M. Sorption of PAHs to Microplastic and Their Bioavailability and Toxicity to Marine Copepods under Co-Exposure Conditions. Environ. Pollut. 2020, 258, 113844. [Google Scholar] [CrossRef]
- Singla, M.; Díaz, J.; Broto-Puig, F.; Borrós, S. Sorption and Release Process of Polybrominated Diphenyl Ethers (PBDEs) from Different Composition Microplastics in Aqueous Medium: Solubility Parameter Approach. Environ. Pollut. 2020, 262, 114377. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhao, J.; Zhu, Z.; Li, L.; Yu, F. Effect of Microplastic Size on the Adsorption Behavior and Mechanism of Triclosan on Polyvinyl Chloride. Environ. Pollut. 2019, 254, 113104. [Google Scholar] [CrossRef]
- Tang, K.H.D. Interactions of Microplastics with Persistent Organic Pollutants and the Ecotoxicological Effects: A Review. Trop. Aquat. Soil Pollut. 2021, 1, 24–34. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M.N. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water 2020, 12, 495. [Google Scholar] [CrossRef]
- Ho Daniel Tang, K. Ecotoxicological Impacts of Micro and Nanoplastics on Marine Fauna. Examines Mar. Biol. Oceanogr. 2020, 3. [Google Scholar] [CrossRef]
- Franco, A.A.; Arellano, J.M.; Albendín, G.; Rodríguez-Barroso, R.; Zahedi, S.; Quiroga, J.M.; Coello, M.D. Mapping Microplastics in Cadiz (Spain): Occurrence of Microplastics in Municipal and Industrial Wastewaters. J. Water Process Eng. 2020, 38, 101596. [Google Scholar] [CrossRef]
- Lechner, A.; Ramler, D. The Discharge of Certain Amounts of Industrial Microplastic from a Production Plant into the River Danube Is Permitted by the Austrian Legislation. Environ. Pollut. 2015, 200, 159–160. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Liu, H.; Guo, X.; Zhang, X.; Yao, X.; Cao, Z.; Zhang, T. A Review of the Removal of Microplastics in Global Wastewater Treatment Plants: Characteristics and Mechanisms. Environ. Int. 2021, 146, 106277. [Google Scholar] [CrossRef]
- Hou, L.; Kumar, D.; Yoo, C.G.; Gitsov, I.; Majumder, E.L.-W. Conversion and Removal Strategies for Microplastics in Wastewater Treatment Plants and Landfills. Chem. Eng. J. 2021, 406, 126715. [Google Scholar] [CrossRef]
- Franco, A.A.; Arellano, J.M.; Albendín, G.; Rodríguez-Barroso, R.; Quiroga, J.M.; Coello, M.D. Microplastic Pollution in Wastewater Treatment Plants in the City of Cádiz: Abundance, Removal Efficiency and Presence in Receiving Water Body. Sci. Total Environ. 2021, 776, 145795. [Google Scholar] [CrossRef]
- Hamidian, A.H.; Ozumchelouei, E.J.; Feizi, F.; Wu, C.; Zhang, Y.; Yang, M. A Review on the Characteristics of Microplastics in Wastewater Treatment Plants: A Source for Toxic Chemicals. J. Clean. Prod. 2021, 295, 126480. [Google Scholar] [CrossRef]
- Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.; Papazissimos, D.; Rogers, D.L. Microplastic Pollution Is Widely Detected in US Municipal Wastewater Treatment Plant Effluent. Environ. Pollut. 2016, 218, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Narvaez, O.M.; Goonetilleke, A.; Perez, L.; Bandala, E.R. Engineered Technologies for the Separation and Degradation of Microplastics in Water: A Review. Chem. Eng. J. 2021, 414, 128692. [Google Scholar] [CrossRef]
- Magni, S.; Binelli, A.; Pittura, L.; Avio, C.G.; Della Torre, C.; Parenti, C.C.; Gorbi, S.; Regoli, F. The Fate of Microplastics in an Italian Wastewater Treatment Plant. Sci. Total Environ. 2019, 652, 602–610. [Google Scholar] [CrossRef]
- Durenkamp, M.; Pawlett, M.; Ritz, K.; Harris, J.A.; Neal, A.L.; McGrath, S.P. Nanoparticles within WWTP Sludges Have Minimal Impact on Leachate Quality and Soil Microbial Community Structure and Function. Environ. Pollut. 2016, 211, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric Microplastic Deposition in an Urban Environment and an Evaluation of Transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef] [PubMed]
- Conley, K.; Clum, A.; Deepe, J.; Lane, H.; Beckingham, B. Wastewater Treatment Plants as a Source of Microplastics to an Urban Estuary: Removal Efficiencies and Loading per Capita over One Year. Water Res. X 2019, 3, 100030. [Google Scholar] [CrossRef] [PubMed]
- Wolff, S.; Kerpen, J.; Prediger, J.; Barkmann, L.; Müller, L. Determination of the Microplastics Emission in the Effluent of a Municipal Waste Water Treatment Plant Using Raman Microspectroscopy. Water Res. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of Microplastics in Raw and Treated Drinking Water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef]
- Barchiesi, M.; Chiavola, A.; Di Marcantonio, C.; Boni, M.R. Presence and Fate of Microplastics in the Water Sources: Focus on the Role of Wastewater and Drinking Water Treatment Plants. J. Water Process Eng. 2021, 40, 101787. [Google Scholar] [CrossRef]
- Tursi, A.; Baratta, M.; Easton, T.; Chatzisymeon, E.; Chidichimo, F.; De Biase, M.; De Filpo, G. Microplastics in Aquatic Systems, a Comprehensive Review: Origination, Accumulation, Impact, and Removal Technologies. RSC Adv. 2022, 12, 28318–28340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, J.; Xie, Y.; Zhong, S.; Gao, P. Occurrence and Removal of Microplastics from Wastewater Treatment Plants in a Typical Tourist City in China. J. Clean. Prod. 2021, 291, 125968. [Google Scholar] [CrossRef]
- Mallow, O.; Spacek, S.; Schwarzböck, T.; Fellner, J.; Rechberger, H. A New Thermoanalytical Method for the Quantification of Microplastics in Industrial Wastewater. Environ. Pollut. 2020, 259, 113862. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.; Booth, A.M.; Sabbah, I.; Tiller, R.; Dierking, J.; Klun, K.; Rotter, A.; Ben-David, E.; Javidpour, J.; Angel, D.L. Between Source and Sea: The Role of Wastewater Treatment in Reducing Marine Microplastics. J. Environ. Manag. 2020, 266, 110642. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D.L. Wastewater Treatment Plants as a Pathway for Microplastics: Development of a New Approach to Sample Wastewater-Based Microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A Global Perspective on Microplastics. J. Geophys. Res. Oceans 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Sol, D.; Laca, A.; Laca, A.; Díaz, M. Microplastics in Wastewater and Drinking Water Treatment Plants: Occurrence and Removal of Microfibres. Appl. Sci. 2021, 11, 10109. [Google Scholar] [CrossRef]
- Zha, F.; Shang, M.; Ouyang, Z.; Guo, X. The Aging Behaviors and Release of Microplastics: A Review. Gondwana Res. 2022, 108, 60–71. [Google Scholar] [CrossRef]
- Wang, C.; O’Connor, D.; Wang, L.; Wu, W.-M.; Luo, J.; Hou, D. Microplastics in Urban Runoff: Global Occurrence and Fate. Water Res. 2022, 225, 119129. [Google Scholar] [CrossRef]
- Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. Occurrence, Sources, Human Health Impacts and Mitigation of Microplastic Pollution. Environ. Sci. Pollut. Res. 2018, 25, 36046–36063. [Google Scholar] [CrossRef]
- Du, S.; Zhu, R.; Cai, Y.; Xu, N.; Yap, P.-S.; Zhang, Y.; He, Y.; Zhang, Y. Environmental Fate and Impacts of Microplastics in Aquatic Ecosystems: A Review. RSC Adv. 2021, 11, 15762–15784. [Google Scholar] [CrossRef] [PubMed]
- Kane, I.A.; Clare, M.A. Dispersion, Accumulation, and the Ultimate Fate of Microplastics in Deep-Marine Environments: A Review and Future Directions. Front. Earth Sci. 2019, 7, 80. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; dos Santos Galvão, L.; de Weger, L.A.; Hiemstra, P.S.; Vijver, M.G.; Mauad, T. An Emerging Class of Air Pollutants: Potential Effects of Microplastics to Respiratory Human Health? Sci. Total Environ. 2020, 749, 141676. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental Fate and Impacts of Microplastics in Soil Ecosystems: Progress and Perspective. Sci. Total Environ. 2020, 708, 134841. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Xing, B. Environmental Source, Fate, and Toxicity of Microplastics. J. Hazard. Mater. 2021, 407, 124357. [Google Scholar] [CrossRef]
- Das, S.; Ray, N.M.; Wan, J.; Khan, A.; Chakraborty, T.; Ray, M.B. Micropollutants in Wastewater: Fate and Removal Processes. In Physico-Chemical Wastewater Treatment and Resource Recovery; Farooq, R., Ahmad, Z., Eds.; InTech: London, UK, 2017; ISBN 978-953-51-3129-8. [Google Scholar]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Occurrence, Identification and Removal of Microplastic Particles and Fibers in Conventional Activated Sludge Process and Advanced MBR Technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T.-G. A Study on Characteristics of Microplastic in Wastewater of South Korea: Identification, Quantification, and Fate of Microplastics during Treatment Process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Margot, J.; Rossi, L.; Barry, D.A.; Holliger, C. A Review of the Fate of Micropollutants in Wastewater Treatment Plants. WIREs Water 2015, 2, 457–487. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Guerrero–Barajas, C.; Ahmad, A.; Ibrahim, M.N.M.; Alshammari, M.B. Advanced Technologies for Wastewater Treatment. In Green Chemistry for Sustainable Water Purification; Shahid-ul-Islam, Shalla, A.H., Shahadat, M., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 179–202. ISBN 978-1-119-85229-2. [Google Scholar]
- Ngo, P.L.; Pramanik, B.K.; Shah, K.; Roychand, R. Pathway, Classification and Removal Efficiency of Microplastics in Wastewater Treatment Plants. Environ. Pollut. 2019, 255, 113326. [Google Scholar] [CrossRef]
- Fahrenfeld, N.L.; Arbuckle-Keil, G.; Naderi Beni, N.; Bartelt-Hunt, S.L. Source Tracking Microplastics in the Freshwater Environment. TrAC Trends Anal. Chem. 2019, 112, 248–254. [Google Scholar] [CrossRef]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of Microplastics in Wastewater Treatment Plants and Their Environmental Dispersion with Effluent and Sludge. Environ. Pollut. 2020, 259, 113837. [Google Scholar] [CrossRef]
- Xu, X.; Jian, Y.; Xue, Y.; Hou, Q.; Wang, L. Microplastics in the Wastewater Treatment Plants (WWTPs): Occurrence and Removal. Chemosphere 2019, 235, 1089–1096. [Google Scholar] [CrossRef]
- Raju, S.; Carbery, M.; Kuttykattil, A.; Senthirajah, K.; Lundmark, A.; Rogers, Z.; Scb, S.; Evans, G.; Palanisami, T. Improved Methodology to Determine the Fate and Transport of Microplastics in a Secondary Wastewater Treatment Plant. Water Res. 2020, 173, 115549. [Google Scholar] [CrossRef] [PubMed]
- Bayo, J.; Olmos, S.; López-Castellanos, J. Microplastics in an Urban Wastewater Treatment Plant: The Influence of Physicochemical Parameters and Environmental Factors. Chemosphere 2020, 238, 124593. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Oh, M.-J.; Kim, P.-G.; Kim, G.; Jeong, D.-H.; Ju, B.-K.; Lee, W.-S.; Chung, H.-M.; Kang, H.-J.; Kwon, J.-H. National Reconnaissance Survey of Microplastics in Municipal Wastewater Treatment Plants in Korea. Environ. Sci. Technol. 2020, 54, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Bayo, J.; López-Castellanos, J.; Olmos, S. Membrane Bioreactor and Rapid Sand Filtration for the Removal of Microplastics in an Urban Wastewater Treatment Plant. Mar. Pollut. Bull. 2020, 156, 111211. [Google Scholar] [CrossRef]
- Golgoli, M.; Khiadani, M.; Shafieian, A.; Sen, T.K.; Hartanto, Y.; Johns, M.L.; Zargar, M. Microplastics Fouling and Interaction with Polymeric Membranes: A Review. Chemosphere 2021, 283, 131185. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Low Numbers of Microplastics Detected in Drinking Water from Ground Water Sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to Microplastic Pollution—Removal of Microplastics from Wastewater Effluent with Advanced Wastewater Treatment Technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef]
- Masiá, P.; Sol, D.; Ardura, A.; Laca, A.; Borrell, Y.J.; Dopico, E.; Laca, A.; Machado-Schiaffino, G.; Díaz, M.; Garcia-Vazquez, E. Bioremediation as a Promising Strategy for Microplastics Removal in Wastewater Treatment Plants. Mar. Pollut. Bull. 2020, 156, 111252. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.M.; Waldron, S.; Gauchotte-Lindsay, C. Average Daily Flow of Microplastics through a Tertiary Wastewater Treatment Plant over a Ten-Month Period. Water Res. 2019, 163, 114909. [Google Scholar] [CrossRef] [PubMed]
- Ainali, N.M.; Kalaronis, D.; Kontogiannis, A.; Evgenidou, E.; Kyzas, G.Z.; Yang, X.; Bikiaris, D.N.; Lambropoulou, D.A. Microplastics in the Environment: Sampling, Pretreatment, Analysis and Occurrence Based on Current and Newly-Exploited Chromatographic Approaches. Sci. Total Environ. 2021, 794, 148725. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and Fate of Microplastic Particles in Wastewater Treatment Plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, X.; Ren, H.; Cao, G.; Xie, G.; Xing, D.; Liu, B. Investigation and Fate of Microplastics in Wastewater and Sludge Filter Cake from a Wastewater Treatment Plant in China. Sci. Total Environ. 2020, 746, 141378. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, M.; Yurtsever, M.; Karadagli, F. Microplastic Removal by Aerated Grit Chambers versus Settling Tanks of a Municipal Wastewater Treatment Plant. J. Water Process Eng. 2020, 38, 101604. [Google Scholar] [CrossRef]
- Lv, X.; Dong, Q.; Zuo, Z.; Liu, Y.; Huang, X.; Wu, W.-M. Microplastics in a Municipal Wastewater Treatment Plant: Fate, Dynamic Distribution, Removal Efficiencies, and Control Strategies. J. Clean. Prod. 2019, 225, 579–586. [Google Scholar] [CrossRef]
- Castelluccio, S.; Alvim, C.B.; Bes-Piá, M.A.; Mendoza-Roca, J.A.; Fiore, S. Assessment of Microplastics Distribution in a Biological Wastewater Treatment. Microplastics 2022, 1, 141–155. [Google Scholar] [CrossRef]
- Khatmullina, L.; Isachenko, I. Settling Velocity of Microplastic Particles of Regular Shapes. Mar. Pollut. Bull. 2017, 114, 871–880. [Google Scholar] [CrossRef]
- Kittipongvises, S.; Phetrak, A.; Hongprasith, N.; Lohwacharin, J. Unravelling Capability of Municipal Wastewater Treatment Plant in Thailand for Microplastics: Effects of Seasonality on Detection, Fate and Transport. J. Environ. Manag. 2022, 302, 113990. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Q.; Li, J.; Li, Q.; Xu, H.; Ye, Q.; Wang, Y.; Shu, S.; Zhang, J. Removal of Polystyrene and Polyethylene Microplastics Using PAC and FeCl3 Coagulation: Performance and Mechanism. Sci. Total Environ. 2021, 752, 141837. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Q.; Xing, Y.; Liu, K.; Ling, W.; Yang, J.; Yang, Q.; Wu, T.; Zhang, J.; Pei, Z.; et al. Review of Research on Migration, Distribution, Biological Effects, and Analytical Methods of Microfibers in the Environment. Sci. Total Environ. 2023, 855, 158922. [Google Scholar] [CrossRef] [PubMed]
- Vasiljević, S.; Vujić, M.; Agbaba, J.; Federici, S.; Ducoli, S.; Tomić, R.; Tubić, A. Efficiency of Coagulation/Flocculation for the Removal of Complex Mixture of Textile Fibers from Water. Process. 2023, 11, 820. [Google Scholar] [CrossRef]
- Jachimowicz, P.; Cydzik-Kwiatkowska, A. Coagulation and Flocculation before Primary Clarification as Efficient Solutions for Low-Density Microplastic Removal from Wastewater. Int. J. Environ. Res. Public. Health 2022, 19, 13013. [Google Scholar] [CrossRef]
- Lapointe, M.; Farner, J.M.; Hernandez, L.M.; Tufenkji, N. Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environ. Sci. Technol. 2020, 54, 8719–8727. [Google Scholar] [CrossRef]
- Simon, M.; Vianello, A.; Vollertsen, J. Removal of >10 Μm Microplastic Particles from Treated Wastewater by a Disc Filter. Water 2019, 11, 1935. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, Z.; Yin, L.; Wen, X.; Xiao, R.; Du, L.; Zhu, L.; Liu, R.; Xu, Q.; Li, H.; et al. Microplastics Removal and Characteristics of Constructed Wetlands WWTPs in Rural Area of Changsha, China: A Different Situation from Urban WWTPs. Sci. Total Environ. 2022, 811, 152352. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, R.; Liu, Y.; Zhang, Y.; Zhou, J.; Qu, G.; Tang, S.; Wang, T. Plasma-Induced Conversion of Polystyrene Nanoplastics in Water: Intermediates Release, Toxicity, and Disinfection Byproducts Formation. Chem. Eng. J. 2022, 433, 134543. [Google Scholar] [CrossRef]
- Leslie, H.A.; Brandsma, S.H.; van Velzen, M.J.M.; Vethaak, A.D. Microplastics En Route: Field Measurements in the Dutch River Delta and Amsterdam Canals, Wastewater Treatment Plants, North Sea Sediments and Biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef]
- Wei, F.; Xu, C.; Chen, C.; Wang, Y.; Lan, Y.; Long, L.; Xu, M.; Wu, J.; Shen, F.; Zhang, Y.; et al. Distribution of Microplastics in the Sludge of Wastewater Treatment Plants in Chengdu, China. Chemosphere 2022, 287, 132357. [Google Scholar] [CrossRef]
- Kang, J.; Zhou, L.; Duan, X.; Sun, H.; Ao, Z.; Wang, S. Degradation of Cosmetic Microplastics via Functionalized Carbon Nanosprings. Matter 2019, 1, 745–758. [Google Scholar] [CrossRef]
- Siddique, A.; Yaqoob, A.A.; Mirza, M.A.; Kanwal, A.; Ibrahim, M.N.M.; Ahmad, A. Potential Use of Ultrafiltration (UF) Membrane for Remediation of Metal Contaminants. In Emerging Techniques for Treatment of Toxic Metals from Wastewater; Elsevier: Amsterdam, The Netherlands, 2023; pp. 341–364. ISBN 978-0-12-822880-7. [Google Scholar]
- Yaqoob, A.A.; Kanwal, A.; Ibrahim, M.N.M.; Mohammad, S.A.G.; Ahmad, A. Application and Fabrication of Nanofiltration Membrane for Separation of Metal Ions from Wastewater. In Emerging Techniques for Treatment of Toxic Metals from Wastewater; Elsevier: Amsterdam, The Netherlands, 2023; pp. 365–398. ISBN 978-0-12-822880-7. [Google Scholar]
- Rybachuk, Y.; Jodłowski, A. Mathematical Model of Dissolved Air Flotation (DAF) Based on Impulse Conservation Law. SN Appl. Sci. 2019, 1, 541. [Google Scholar] [CrossRef]
- Rubio, J.; Souza, M.L.; Smith, R.W. Overview of Flotation as a Wastewater Treatment Technique. Miner. Eng. 2002, 15, 139–155. [Google Scholar] [CrossRef]
- Wang, Q.; Hernández-Crespo, C.; Du, B.; Van Hulle, S.W.H.; Rousseau, D.P.L. Fate and Removal of Microplastics in Unplanted Lab-Scale Vertical Flow Constructed Wetlands. Sci. Total Environ. 2021, 778, 146152. [Google Scholar] [CrossRef] [PubMed]
- Bule Možar, K.; Miloloža, M.; Martinjak, V.; Cvetnić, M.; Kušić, H.; Bolanča, T.; Kučić Grgić, D.; Ukić, Š. Potential of Advanced Oxidation as Pretreatment for Microplastics Biodegradation. Separations 2023, 10, 132. [Google Scholar] [CrossRef]
- Dhodapkar, R.S.; Gandhi, K.N. Pharmaceuticals and Personal Care Products in Aquatic Environment: Chemicals of Emerging Concern? In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 63–85. ISBN 978-0-12-816189-0. [Google Scholar]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Cheng, Y.-X.; Chen, J.; Wu, D.; Liu, Y.-S.; Yang, Y.-Q.; He, L.-X.; Ye, P.; Zhao, J.-L.; Liu, S.-S.; Yang, B.; et al. Highly Enhanced Biodegradation of Pharmaceutical and Personal Care Products in a Novel Tidal Flow Constructed Wetland with Baffle and Plants. Water Res. 2021, 193, 116870. [Google Scholar] [CrossRef]
- Van Do, M.; Le, T.X.T.; Vu, N.D.; Dang, T.T. Distribution and Occurrence of Microplastics in Wastewater Treatment Plants. Environ. Technol. Innov. 2022, 26, 102286. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic Contamination in an Urban Area: A Case Study in Greater Paris. Environ. Chem. 2015, 12, 592. [Google Scholar] [CrossRef]
- Fryczkowska, B.; Przywara, L. Removal of Microplastics from Industrial Wastewater Utilizing an Ultrafiltration Composite Membrane RGO/PAN Application. Desalination Water Treat. 2021, 214, 252–262. [Google Scholar] [CrossRef]
- Long, Z.; Pan, Z.; Wang, W.; Ren, J.; Yu, X.; Lin, L.; Lin, H.; Chen, H.; Jin, X. Microplastic Abundance, Characteristics, and Removal in Wastewater Treatment Plants in a Coastal City of China. Water Res. 2019, 155, 255–265. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Duan, L.; Zhang, Y.; Zhou, Y.; Sui, Q.; Xu, D.; Qu, H.; Yu, G. Occurrence and Distribution of Microplastics in Domestic, Industrial, Agricultural and Aquacultural Wastewater Sources: A Case Study in Changzhou, China. Water Res. 2020, 182, 115956. [Google Scholar] [CrossRef] [PubMed]
- Lehtiniemi, M.; Hartikainen, S.; Näkki, P.; Engström-Öst, J.; Koistinen, A.; Setälä, O. Size Matters More than Shape: Ingestion of Primary and Secondary Microplastics by Small Predators. Food Webs 2018, 17, e00097. [Google Scholar] [CrossRef]
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic Is an Abundant and Distinct Microbial Habitat in an Urban River. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef] [PubMed]
Removal Method | Advantages | Drawbacks | References |
---|---|---|---|
Sand filtration | Quick and effective MP elimination. Low cost of operation and maintenance. | The filter material is highly porous. | [62] |
Dissolved air flotation | Compact design, short retention period, high hydraulic capacity and small footprint of flocculation and flotation units, enabling low capital costs. | Apart from the adhesion via hydrophobic forces, there are concerns regarding the mechanism of interactions between bubbles and particles. | [96,97] |
MBR | High elimination efficiency of MPs. Effective removal of MPs because of the smallest pore size. A combination of biodegradation and membrane filtration. | It is challenging to regulate different factors that impact the treatment efficacy, such as the type, dimensions and concentration of MPs. More expensive and with greater energy requirements than sedimentation. | [79] |
Constructed wetlands | Requires less frequent maintenance. Limited operating cost. | Limited information about the related mechanisms. The impact of external factors is not fully known. | [98] |
Coagulation–Flocculation–Sedimentation | Simple and easy to operate. Ability to capture and eliminate small MPs. | High requirement for chemicals. Mostly studied only in laboratories. Not widely studied at the commercial level. | [87] |
RO | Elimination through semi-permeable membrane. Ease of treatment. | Lower elimination rate of MPs than that of the MBR process. Even after RO, plastic debris still remains in WWTPs. | [62] |
AOP Fenton | Simple process with high mineralization percentages for recalcitrant organic pollutants. | Low pH requirement, needs quite large amounts of ferrous ions and the formulation of iron sludge, i.e., a secondary contamination source. | [99] |
AOP Ozonation | High elimination rate. | No effect on salinity (ozone) | [100,101] |
AOP Photocatalysis | High degradation percentage. | Exposure to carcinogenic UV light. | [102] |
Technology | Types of Polymers | WWTPs Location | Concentration of MPs in Influent (Particles L−1) | Concentration of MPs in Effluent (Particles L−1) | WWTP Treatment | Concentration of MPs % (Influent) | MPs Total Removal Efficiency | Reference |
---|---|---|---|---|---|---|---|---|
Grit and grease removal; primary clarifier; activated sludge reactor; secondary clarifier | Seventeen polymer families were detected, with low-density polyethylene (LPDE) being the most frequently encountered one (52.4%). | Spain/Cabezo Beaza WWTP | 3.20 (±0.67) | 0.31 (±0.06) | Primary Treatment; secondary Treatment | 52.40% | 90.30% | [67] |
Grit chamber; primary settling tank; anaerobic–anoxic–oxic | The main polymer compositions of MPs included polyethylene. Terephthalate (PET); polyethylene (PE); nylon; polyvinyl chloride (PVC). | Vietnam/HoaCam WWTP | 183–443 particles/L | 138–340 particles/L | Primary Treatment; secondary Treatment; tertiary treatment | PET was the most common MP at 22–29.9% of the MPs | 25.50% | [103] |
Grit chamber; primary settling tank; activated sludge | The main polymer compositions of MPs included polyethylene terephthalate, polyethylene, nylon and polyvinyl chloride | Vietnam/DaNang WWTP | 183–443 particles/L | 138–340 particles/L | Primary treatment; secondary treatment; tertiary treatment | PET was the most common MP at 22–29.9% of the MPs | 21.80% | [103] |
Grit chamber; primary settling tank; sequencing batch reactor | Polyethylene terephthalate (PET); polyethylene (PE); nylon; polyvinyl chloride (PVC) | Vietnam/HoaKhanh WWTP | 183–443 particles/L | 138–340 particles/L | Primary treatment; secondary treatment; tertiary treatment | PET was the most common MP at 22–29.9% of the MPs | 25.30% | [103] |
Biofilter | N/A | France/Seine-Centre WWTP | 260–320 × 1000 particles m−3 | 14–50 × 1000 particles m−3 | Primary treatment; secondary treatment | N/A | 83 to 95% | [104] |
Filtered via stainless steel sieves of various mesh sizes | PVC, HDPE, PEMA, PP, PS and PE were the most common MPs detected | Spain/5 municipal and 2 industrial WWTPs in Cadiz | 264–1567 partickes/L | 39–131 partickes/L | Primary treatment | N/A | 78–97% | [27] |
Ultrafiltration composite membrane made of polyacrylonitrile with added rGO | polyethylene terephthalate | Poland/Silesian Province | not mentioned | not mentioned | N/A | >80% | [105] | |
Activated sludge; secondary settling tank | Not specified (they were categorized by type/shape) | South Korea/Three WWTP in Daegu | 4200 MP/L (total) in WWTP A31400 in WWTP B5840 in WWTP C | 33 MP/L in WWTP A 297 in WWTP B 66 in WWTP C | Primary treatment; secondary treatment; tertiary treatment | 31.4–53.4% for WWTP-A and C70.4% for WWTP-B | 98.9–99.2% after tertiary treatment | [59] |
Biofilter | Polypropylene (31.6%); polyethylene (21.9%); polystyrene (10.1%); propylene/ethylene copolymer (9.2%); polyethylene terephthalate (7.5%). | China/7 WWTPs in Xiamen | 1.57 to 13.69 items/L | 0.20–1.73 items/L | Primary treatment; secondary treatment | not mentioned (we have percentages of distribution for MP types but not total mp concentration) | 79.3 to 97.8% | [106] |
Gravity filters/membrane reactor | Polyethylene was the most frequent polymer type in both size classes. PP, PE, PA, styrene295 acrylonitrile (SAN) and PEST were found. | Germany/12 WWTPs in Lower Saxony | 0 to 5 × 10 m−3 MP (size >500 nm)1 × 10 to 9 × 10 + 3 m−3 MP (size <500 nm) | Not mentioned | Tertiary treatment | Not mentioned | Up yo 97% after tertiary treatment | [71] |
Sand filtration | Polyethylene (PE); polypropylene (PP); polystyrene (PS); polyvinyl chloride (PVC); polyethylene terephthalate (PET); polyamide (PA). Polyethylene (PE) polypropylene (PP) and polystyrene (PS) constituted almost 83% of all the MPs. | China/9 domestic wastewater treatment plants (WWTPs), 5 industrial WWTPs, wastewater from ten industrial facilities, 4livestock farms and another 4 fish ponds | 18–890 n L−1 | 6–26 n L−1, | Primary treatment; secondary treatment | PE, PP and PS comprised 83% of total MPs | 35% to 98%, depending on the WWTP | [107] |
WWTPs Location | Shape | Range Size Particles | Color | Reference |
---|---|---|---|---|
Spain/Cabezo Beaza WWTP | The shapes of the detected MPs were fragments (46.9%), films (34.0%), beads (11.5%), fibers (7.4%) and foam (0.2%). LPDE’s most common shape was film (27.7%) | 400–600 nm | Beige (37%), white (23%), black (8%), blue (7%) and green (4%) | [67] |
Vietnam/HoaCam WWTP | Fibers and fragments | 1.6 to 5000 μm | Yellow, white, blue and black Black 50.48–58.55% Yellow 21.53 to 32.99%. White 8.81 to 22.34% Blue < 2% | [103] |
Vietnam/DaNang WWTP | Fibers and fragments | 1.6 to 5000 μm | yellow, white, blue and black Black 50.48–58.55% Yellow 21.53 to 32.99%. White 8.81 to 22.34% Blue < 2% | [103] |
Vietnam/HoaKhanh WWTP | Fibers and fragments | 1.6 to 5000 μm | yellow, white, blue and black Black 50.48–58.55% Yellow 21.53 to 32.99% White 8.81 to 22.34% Blue <2% | [103] |
France/Seine-Centre WWTP | Fibers | 100–5000-mm | Transparent, green, blue, and red | [104] |
Spain/5 municipal and 2 industrial WWTPs in Cadiz | (A) Flake, (B) sphere, (C) fiber, (D) filament and (E) fragment. | <355 μm | N/A | [27] |
Poland/Silesian Province | Not mentioned | <150 nm | N/A | [105] |
South Korea/Three WWTP in Daegu | Microbeads, fragments, fibers and sheets | <65 μm | N/A | [59] |
China/7 WWTPs in Xiamen | Granules (~41%) were the most frequently found shape of the MPs, while fragments follow behind at about 31% and fibers are last at approximately 24%. | 43 μm–355 μm | black, yellow, red, blue, green, white and clear Mostly white (27.3%) and clear (25.8%) | [106] |
Germany/12 WWTPs in Lower Saxony | Fibers | 20 μm. | N/A | [71] |
China/9 domestic and 5 industrial WWTPs, wastewater from 10 industrial facilities, 4 livestock farms and 4 fish ponds | Fragments and films were the most abundant shapes | <500 μm | Transparent, yellow, gray, green white, blue and pink Transparent (72%), white (20%) and colored (8%) | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkika, D.A.; Tolkou, A.K.; Evgenidou, E.; Bikiaris, D.N.; Lambropoulou, D.A.; Mitropoulos, A.C.; Kalavrouziotis, I.K.; Kyzas, G.Z. Fate and Removal of Microplastics from Industrial Wastewaters. Sustainability 2023, 15, 6969. https://doi.org/10.3390/su15086969
Gkika DA, Tolkou AK, Evgenidou E, Bikiaris DN, Lambropoulou DA, Mitropoulos AC, Kalavrouziotis IK, Kyzas GZ. Fate and Removal of Microplastics from Industrial Wastewaters. Sustainability. 2023; 15(8):6969. https://doi.org/10.3390/su15086969
Chicago/Turabian StyleGkika, Despina A., Athanasia K. Tolkou, Eleni Evgenidou, Dimitrios N. Bikiaris, Dimitra A. Lambropoulou, Athanasios C. Mitropoulos, Ioannis K. Kalavrouziotis, and George Z. Kyzas. 2023. "Fate and Removal of Microplastics from Industrial Wastewaters" Sustainability 15, no. 8: 6969. https://doi.org/10.3390/su15086969