Occupational Risk Assessment in Native Rainforest Management (MIARforest)—Parameters Definition and Validation
Abstract
:1. Introduction
2. MIAR’s Original Version—Short Presentation
3. Materials and Methods
- If you disagree with the presented proposal, what alternative wording do you propose?
- Do you agree with the assessment levels considered for the proposed parameters and sub-parameters?
- What valuation levels do you propose if you disagree with the proposal that has been made?
- Two factors with global impact:
- Worker protection (WP): whether the worker is protected by personal protective equipment or by a collective protection system;
- Forest typology (FT): tree density (in this research, only the ombrophilous forest is considered).
- Two controllable factors:
- iii.
- Machine- and tool-handling (MT): the level of protection that machines and tools have and the training that workers must have to use them;
- iv.
- Relationship between tasks (RBT): the number of and relationship between tasks being performed simultaneously on the same site.
- Six uncontrollable factors:
- v.
- Object fall (OF): the situation of a worker being hit not only by falling broken branches and/or trees but also by other objects such as logs and small tools/utensils that can fall during road and yard operations;
- vi.
- Terrain slope (TS): the ability/difficulty of maintaining the balance and the progress of workers both on foot and by vehicle within the forest;
- vii.
- Obstacles (Obst): the ability/difficulty of traversing vegetation, rivers and streams, fallen trees and rocks during road and yard operations;
- viii.
- Wild animals (WA): the presence of disease vectors, poisonous animals or predators that can cause severe injuries or death.
- ix.
- Precipitation intensity (PI): the feasibility of performing/or not performing work in rain;
- x.
- Wind intensity (WI): the feasibility of carrying out/or not carrying out work in windy conditions that contribute to the shaking of treetops as well as the falling of branches and objects onto the worker.
4. Delphi Rounds Results
5. MIARforest in Detail
5.1. Severity
5.1.1. Forest Typology (FT)
5.1.2. Worker Protection (WP)
5.1.3. Machines and Tools Handling (MT)
5.1.4. Relationship between Tasks of the Same Activity
5.1.5. Meteorological Conditions—Precipitation and Wind Intensity
5.1.6. Object Fall (OF)
5.1.7. Site Characteristics—Terrain Slope (TS) and Obstacles (Obst)
5.1.8. Wild Animals
5.1.9. Severity Bands
- Upper limit for “low severity” (<24)—all sub-parameters at the 2nd level of the respective scale;
- Upper limit for “medium-low severity” (<48)—sub-parameter “object fall” at the 3rd level of the respective scale and the remaining parameters at the 2nd level of the respective scale;
- Upper limit for “medium-high severity” (<96)—sub-parameter “object fall” at the 4th level of the respective scale and the remaining parameters at the 2nd level of the respective scale;
- Upper limit for “high severity” (<192)—sub-parameter “object fall” at the 5th level of the respective scale and the remaining parameters at the 2nd level of the respective scale;
- Lower limit for “extreme severity” (≥192)—sub-parameter “object fall” at the 5th level of respective scale and remaining parameters at the 2nd level of respective hierarchy.
5.2. Likelihood
5.2.1. Extent of Impact
5.2.2. Frequency of Exposure
- Continuous—the same activity is performed continuously and daily throughout the week;
- Usual—the same activity is performed for a period equal to or greater than half of the worker’s weekly working hours;
- Partial—the same activity is performed during a period equal to or less than half of the worker’s weekly working hours;
- Sporadic—the same activity is performed for a period equal to or less than one day during the working week;
- Occasional—the same activity is performed during a period equal to or less than one hour during the working week.
5.2.3. Likelihood Bands Explanation
- Upper limit for low likelihood—two workers exposed on an occasional basis (<1 h/week);
- Upper limit for medium-low likelihood—two workers exposed on a sporadic basis (≤1 day/week);
- Upper limit for medium-high likelihood—two workers exposed about half of the working week (<3 days/week);
- Upper limit for high likelihood—two workers exposed about half of the working week (≥3 days/week);
- Lower limit for extreme likelihood—two workers exposed continuously (every day of the week).
5.3. Risk Control
5.4. Risk Level
- Risk Level 1 (RL1)—the band’s upper limit represents the combination with a medium-low severity level (maximum value—24). To the result of this combination (475.2), the decimal digits have been truncated (475). Values lower than 475 obtained with other configurations are also included in this band.
- Risk Level 2 (RL2)—the upper limit of the band is the combination of the defined likelihood ratio with a medium-low severity level (maximum value 48). To the result of this combination (950.4), the decimal digits have been truncated (950). Scores of 950 or lower obtained with other configurations are also accepted.
- Risk Level 3 (RL3)—the upper limit of the band is the combination of the defined likelihood ratio with a medium-high severity level (maximum value—96). To the result of this combination (1900.8), the decimal digits have been truncated (1900). Values lower than 1900 obtained with other configurations are also included in this band.
- Risk Level 4 (RL4)—the band’s upper limit is the combination of the defined likelihood ratio with a high level of severity (maximum value—192). The result of this combination (3801.6) has been rounded to 3800. Values lower than 3800 obtained with other configurations are also accepted in this band.
- Risk Level 5 (RL5)—This band represents the maximum level of risk and includes all values above 3800.
5.5. Prioritisation of Control Measures
5.6. Control Measures
- Application of administrative controls, including worker procedures and training, emergency management and medical monitoring;
- Implementation of missing personal protective equipment (PPE) as a complement to other control measures;
- Modification of the process or process conditions, where possible, to enclose or isolate the worker from the environment to prevent exposure;
- Implementation of engineering controls and external advice;
- Elimination of the specific risks of a particular activity by avoiding carrying it out or replacing it with one of lower risk.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustafsson, L.; Baker, S.C.; Bauhus, J.; Beese, W.J.; Brodie, A.; Kouki, J.; Lindenmayer, D.B.; Lõhmus, A.; Pastur, G.M.; Messier, C.; et al. Retention Forestry to Maintain Multifunctional Forests: A World Perspective. BioScience 2012, 62, 633–645. [Google Scholar] [CrossRef]
- IN5—Instrução Normativa Nº 5, de 11 de Dezembro de 2006; DF, 13 dez; Diário Oficial da União: Brasília, Brazil, 2006; p. 155.
- ISO 14001:2004 Environmental Management Systems—Requirements with Guidance for Use. Available online: https://www.iso.org/standard/31807.html (accessed on 1 January 2022).
- Ackerknecht, C. Occupational Accidents Footprint: New Concept linked to Chain of Custody in Sustainable Forest Management. Cienc. Trab. 2014, 16, 131–137. [Google Scholar] [CrossRef]
- Bermudes, W.; Barros, E. Work accident incidence rates from 2007 to 2013 in planted forests in the Brazilian states and the risks of this activity. Vértices 2016, 18, 53–64. [Google Scholar] [CrossRef]
- EU-OSHA. E-Facts 29: Occupational Safety and Health in Europe’s Forestry Industry. 2008. Available online: https://osha.europa.eu/en/tools-and-publications/publications/e-facts/efact29 (accessed on 1 January 2022).
- ILO—International Labour Organization. Safety and Health in Forestry Work—ILO Codes of Practice. 1998. Available online: https://www.ilo.org/wcmsp5/groups/public/@ed_protect/@protrav/@safework/documents/normativeinstrument/wcms_107793.pdf (accessed on 1 January 2022).
- Medeiros, J.; Jurado, S. Acidentes de trabalho em empresas florestais de plantio, cultivo e extração de madeira. Rev. Agrogeoambiental 2013, 5, 87–96. [Google Scholar] [CrossRef]
- Viegas, J.; Freitas, L.; Santos, R.; Leite, A.; Fiedler, N. Work accidents in the Brazilian forest sector. Floresta 2017, 47, 561. [Google Scholar] [CrossRef]
- Ackerknecht, C. Occupational Safety Indicators for Forest Operations, Sawmilling and Wood-Based Panels Manufacture; an International Benchmarking. Cienc. Trab. 2015, 17, 89–98. [Google Scholar] [CrossRef]
- Albizu-Urionabarrenetxea, P.M.; Tolosana-Esteban, E.; Roman-Jordan, E. Safety and health in forest harvesting operations. Diagnosis and preventive actions. A review. For. Syst. 2013, 22, 392–400. [Google Scholar] [CrossRef]
- Leka, S.; Wassenhove, W.V.; Jain, A. Is psychosocial risk prevention possible? Deconstructing common presumptions. Saf. Sci. 2015, 71, 61–67. [Google Scholar] [CrossRef]
- EU-OSHA—Guidance on Risk Assessment at Work. 1996. Available online: https://op.europa.eu/en/publication-detail/-/publication/1a3462b0-728c-4a2b-88f0-6c641b91a86f (accessed on 24 October 2022).
- ILO Guidelines for Labour Inspection in Forestry. 2005. Available online: https://www.ilo.org/safework/info/standards-and-instruments/WCMS_107610/lang--en/index.htm (accessed on 13 April 2023).
- Unver, S.; Ergenc, I. Safety risk identification and prioritise of forest logging activities using analytic hierarchy process (AHP). Alex. Eng. J. 2021, 60, 1591–1599. [Google Scholar] [CrossRef]
- Camara, G.; Assunção, A.; Lima, F. The limitations of the traditional approach to work accidents: The case of timber exploitation in Minas Gerais, Brazil. Rev. Bras. de Saude Ocup. 2007, 32, 41–51. [Google Scholar] [CrossRef]
- Conway, S.H.; Pompeii, L.A.; Casanova, V.; Douphrate, D.I. A Qualitative Assessment of Safe Work Practices in Logging in the Southern United States. Am. J. Ind. Med. 2017, 60, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Enez, K.; Topbas, M.; Acar, H. An evaluation of the occupational accidents among logging workers within the boundaries of Trabzon Forestry Directorate, Turkey. Int. J. Ind. Ergon. 2014, 44, 621–628. [Google Scholar] [CrossRef]
- Heck, S.; Oliveira, L. Evaluation of Health and Safety at Work: Chain Saw Operators in the Region of Campos Gerais in State of Paraná. Espacios 2015, 36, 11–20. Available online: http://www.revistaespacios.com/a15v36n08/15360811.html (accessed on 2 February 2021).
- Lagerstrom, E.; Magzamen, S.; Rosecrance, J. A mixed-methods analysis of logging injuries in Montana and Idaho. Am. J. Ind. Med. 2017, 60, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Melemez, K. Risk factor analysis of fatal forest harvesting accidents: A case study in Turkey. Saf. Sci. 2015, 79, 369–378. [Google Scholar] [CrossRef]
- Kuhn, G.C.; Kolodziej, S.F.; Cruz, E.R. Evaluation of risks in the forest terrestrial transportation. Procedia Manuf. 2015, 3, 4808–4815. [Google Scholar] [CrossRef]
- Bermudes, W.L.; Minette, L.J.; Soranso, D.R.; Schettino, S. Aplicação do processo de avaliação de risco em atividades de colheita florestal semimecanizada e mecanizada. Vértices 2020, 22, 59–81. [Google Scholar] [CrossRef]
- Antunes, F.A.; Baptista, J.S.; Diogo, M.T. Metodologia de avaliação integrada de riscos ambientais e ocupacionais. In SHO 2010—International Symposium on Occupational Safety and Hygiene; Carneiro, P., Perestelo, G., Baptista, J.S., Miguel, A.S., Arezes, P., Barroso, M.P., Costa, N., Eds.; Sociedade Portuguesa de Segurança e Higiene Ocupacionais: Guimarães, Portugal, 2010; pp. 75–79. Available online: https://repositorio-aberto.up.pt/bitstream/10216/85186/2/65660.pdf (accessed on 24 October 2022).
- Silva, M. Avaliação de Riscos no Trabalho como Instrumento de Gestão na Indústria Metalomecânica. Dissertação Apresentada para Obtenção do Grau de Mestre em Engenharia de Segurança e Higiene Ocupacionais; Faculdade de Engenharia da Universidade do Porto–Universidade do Porto: Porto, Portugal, 2014; Available online: https://repositorio-aberto.up.pt/bitstream/10216/77228/2/33329.pdf (accessed on 24 October 2022).
- Bessa, R.; Baptista, J.S.; Oliveira, M. Comparing Three Risk Analysis Methods on the Evaluation of A Trench Opening in an Urban Site; Occupational Safety and Hygiene, III; Arezes, P.M., Baptista, J.S., Barroso, M.P., Carneiro, P., Cordeiro, P., Costa, N., Melo, R., Miguel, A.S., Perestrelo, G., Eds.; Taylor & Francis Group: London, UK, 2015; ISBN 978-1-138-02765-7. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/b18042-87/comparing-three-risk-analysis-methods-evaluation-trench-opening-urban-site-bessa-santos-baptista-oliveira (accessed on 24 October 2022).
- Botelho, R.M.R. Avaliação de Riscos Pelos Métodos MIAR, NTP330 e WTF, Numa Empresa de Triagem de Resíduos Industriais. Dissertação, Engenharia de Segurança e Higiene Ocupacionais; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2015; Available online: https://repositorio-aberto.up.pt/bitstream/10216/79942/2/36187.pdf (accessed on 24 October 2022).
- Sousa, I. Aplicação da Metodologia Integrada de Avaliação de Risco na Indústria Extrativa a céu Aberto. 2015. Dissertação Engenharia de Segurança e Higiene Ocupacionais; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2015; Available online: https://repositorio-aberto.up.pt/bitstream/10216/80093/2/36352.pdf (accessed on 24 October 2022).
- Branco, J.C. Avaliação do Risco de Acidente Na Indústria Extrativa a céu Aberto. Tese, Engenharia de Segurança e Higiene Ocupacionais; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2018; Available online: https://hdl.handle.net/10216/117873 (accessed on 24 October 2022).
- Guimarães, H. Avaliação do Risco de Exposição A Agentes Biológicos: Reprodutibilidade dos Métodos DGS, NTP 833 e MIAR (BIO) em Matadouros; Departamento de Engenharia, Universidade do Porto: Porto, Portugal, 2016; Available online: https://repositorio-aberto.up.pt/bitstream/10216/85900/2/153123.pdf. (accessed on 1 June 2021).
- Santos, M.; Almeida, A.; Lopes, C.; Oliveira, T. MIAR? (Método Integrado para a Avaliação de Riscos). Revista Portuguesa de Saúde Ocup. Online 2019, 7, 1–2. [Google Scholar] [CrossRef]
- ISO 31000:2018—Risk Management—Guidelines. Available online: https://www.iso.org/obp/ui/#iso:std:iso:31000:ed-2:v1:en (accessed on 1 January 2022).
- Lima, K.S.; Meira Castro, A.C.; Santos Baptista, J.; Silva, U. Wood-Logging Process Management in Eastern Amazonia (Brazil). Sustainability 2020, 12, 7571. [Google Scholar] [CrossRef]
- Nogueira, M.; Lentini, M.; Pires, I.; Bittencourt, P.; Zweede, J. Manual Técnico 1—Procedimentos Simplificados em Segurança e Saúde do Trabalho no Manejo Florestal; Instituto Floresta Tropical: Belém, Brasil, 2010. [Google Scholar]
- Linstone, H.A.; Turoff, M. (Eds.) The Delphi Method: Techniques and Applications. 2002. Available online: http://www.foresight.pl/assets/downloads/publications/Turoff_Linstone.pdf (accessed on 1 October 2022).
- Marques, J.B.V.; Freitas, D. Método DELPHI: Caracterização e potencialidades na pesquisa em Educação. Pro-Posições 2018, 29, 389–415. [Google Scholar] [CrossRef]
- Bispo, P.C.; Valeriano, M.M.; Kuplich, T.M. Variáveis geomorfométricas locais e sua relação com a vegetação da região do interflúvio Madeira-Purus (AM-RO). Acta Amazônica 2009, 39, 81–90. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Manual Técnico da Vegetação Brasileira, 2nd ed.; IBGE: Rio de Janeiro, Brazil, 2012; Volume 271, ISSN 0103-9598. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=263011 (accessed on 1 October 2022).
- Canto, J.; Machado, C.; Souza, A.; Garlet, A.; Carvalho, R.; Noce, R. Evaluation of work safety conditions of timber harvesting and transport in fomented farms of the state of Espírito Santo, Brazil. Rev. Árvore 2007, 31, 513–520. [Google Scholar] [CrossRef]
- David, H.; Fiedler, N.; Baum, L. Ergonomia e Segurança Na Colheita Florestal: Uma Revisão Ante a NR 17 e a NR 31. Enciclopédia Biosf. 2014, 10, 1537–1550. Available online: https://www.conhecer.org.br/enciclop/2014a/AGRARIAS/ergonomia.pdf (accessed on 24 October 2022).
- Lopes, E.; Zanlorenzi, E.; Couto, L. Análise dos fatores humanos e condições de trabalho no processamento mecânico primário e secundário da madeira. Ciência Florest. 2003, 13, 177–183. [Google Scholar] [CrossRef]
- Nascimento, K.; Catai, R. Risk sizing and classification of laboral risks of forest harvesting in slope relief. BIOFIX Sci. J. 2017, 2, 28–33. [Google Scholar] [CrossRef]
- Pignati, W.; Machado, J. Riscos e agravos à saúde e à vida dos trabalhadores das indústrias madeireiras de Mato Grosso. Ciência E Saúde Coletiva 2005, 10, 961–973. [Google Scholar] [CrossRef]
- Rodrigues, C. Colheita e Transporte Florestal, Curitiba, Brazil. 2018. ISBN 978-85-924196-2-2. Available online: https://www.passeidireto.com/arquivo/109434140/livro-transporteflorestal (accessed on 1 September 2022).
- Souza, V.; Blank, V.L.G.; Calvo, M.C. Cenários típicos de trabalho na indústria madeireira. Rev. Saúde Pública 2002, 36, 702–708. [Google Scholar] [CrossRef]
- Torres, A.; Pereira, T.; Almeida, R.; Cunha, F.; Nieri, E.; Melo, L. Análise de riscos associados a colheita florestal em áreas declivosas no Brasil. In Conceitos e Conhecimentos de Métodos e Técnicas de Pesquisa Científica em Engenharia Florestal; Atena Editora: Ponta-Grossa, Paraná, Brazil, 2021; Volume 2, pp. 91–107. [Google Scholar] [CrossRef]
- Allman, M.; Allmanová, Z.; Jankovský, M. Is cable yarding a dangerous occupation? A Survey from the public and private sector. Cent. Eur. For. J. 2018, 64, 127–132. [Google Scholar] [CrossRef]
- Roloff, C. Apostila de Mecanização Florestal. CEEPR, Visconde de São Leopoldo. 2019. Available online: http://www.ceepro.com.br/documentos/Apostila%20Mecanizacao%20Florestal%202019.pdf (accessed on 1 September 2022).
- Fernandes, A.; Guimarães, P.; Braz, E.; Hoeflich, V.; Arce, J. Alternativas de Planejamento para A Exploração Florestal. Embrapa Florestas 2013, 43, 339–350. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/975345/alternativas-de-planejamento-para-a-exploracao-florestal (accessed on 24 October 2022). [CrossRef]
- WMO—World Meteorological Organization. Guide to Instruments and Methods of Observation; WMO: Geneva, Switzerland, 2018; Volume I, p. 506. Available online: https://library.wmo.int/index.php?id=12407&lvl=notice_display#.Y1ba7ezMKgQ (accessed on 24 October 2022).
- Marinha do Brasil. Centro de Hidrografia da Marinha: Escala Beaufort. Available online: https://www.marinha.mil.br/chm/sites/www.marinha.mil.br.chm/files/u2035/escala_beaufort.pdf (accessed on 24 October 2022).
- DCM-RJ Defesa Civil do Rio de Janeiro. Escala da Força dos Ventos de Beaufort. 2021. Available online: http://www0.rio.rj.gov.br/defesacivil/ventos.htm (accessed on 24 October 2022).
- Pires, I.P.; Miranda, A.M.; Couto, C.S.; Lentini, M.W.; Zweede, J.C. Exploração de Impacto Reduzido em Período Chuvoso Em Florestas de Terra Firme da Amazônia Brasileira: Considerações Técnicas, Minimização de Impactos e Índices de Produtividade. Boletim Técnico do Instituto Floresta Tropical. 2015. Available online: http://ift.org.br/wp-content/uploads/2015/05/BOLETIM_TECNICO_07.pdf (accessed on 24 October 2022).
- SINAN—Sistema de Informação de Agravos de Notificação. Acidente por Animais Peçonhentos. 2019. Available online: http://portalsinan.saude.gov.br/acidente-por-animais-peconhentos (accessed on 24 October 2022).
- Cornelissen, I.R.; Jongeneelen, F.; Broekhuizen, V.; Broekhuizen, F.V. Guidance Working Safely with Nanomaterials and Nanoproducts, the Guide for Employers and Employees. 2011. Available online: http://www.etui.org/content/download/3553/39999/file/Guidance+on+safe+handling+nanomats&products.pdf (accessed on 24 October 2022).
Absent/Very Low | Low | Moderate | High | Very High |
---|---|---|---|---|
Parameter/ Sub-Parameter | 1st Round | 2nd Round | ||||
---|---|---|---|---|---|---|
Consideration of the Parameter | Writing of Risk Levels | Parameter/ Sub-Parameter | Consideration of the Parameter | Writing of Risk Levels | ||
S | WP | 100.0 | 100.0 | |||
FT | 89.2 | 83.1 | ||||
MT | 89.2 | 86.2 | MT | 82.3 | 82.3 | |
RBT | 89.2 | 86.2 | RBT | 82.3 | 83.9 | |
OF | 88.7 | 88.7 | ||||
TC | 93.8 | 93.8 | TS | 80.6 | 80.6 | |
Obst | 83.9 | 82.3 | ||||
WA | 95.4 | 90.8 | WA | 83.9 | 83.9 | |
PI | 95.4 | 89.2 | PI | 80.6 | 80.6 | |
WI | 96.9 | 89.2 | WI | 80.6 | 79.0 | |
Li | Ei | 89.2 | 84.6 | |||
Fe | 95.4 | 89.2 | ||||
RC | 100.0 | 95.4 |
Subparameter | Level Description | Rating |
---|---|---|
Worker protection (WP) | Individual protection | 1 |
Collective protection | 0.25 | |
Forest typology (FT) | Submontane dense ombrophilous forest. | 16 |
Submontane open ombrophilous forest. | 8 | |
Alluvial dense ombrophilous forest. | 4 | |
Lowland dense ombrophilous forest. | 2 | |
Lowland open ombrophilous forest. | 1 | |
Machinery and tools (MT) | Forest harvesting machine with a manual device, e.g., steel cable. | 16 |
Forest harvesting machine with a hydraulic device, e.g., grapple, blade. | 8 | |
Portable forest harvesting machine, e.g., chainsaw. | 4 | |
Hand tool, e.g., machete, wedge, sledgehammer. | 2 | |
No use of tool or machine—situation without injury or damage. | 1 | |
Relationship between tasks (RBT) | >3 different tasks running simultaneously. | 8 |
Three different tasks running simultaneously. | 4 | |
Two distinct and dependent tasks running simultaneously but lagged. | 2 | |
Two separate and independent tasks running simultaneously. | 1 | |
One task. | 0.5 | |
Precipitation intensity (PI) | Precipitation intensity > 0.5 mm/h. | 256 |
0 mm/h < precipitation intensity ≤ 0.5 mm/h. | 2 | |
Without precipitation, precipitation probability—60% < pp ≤ 100%. | 1 | |
Without precipitation, precipitation probability—0% < pp ≤ 60%. | 0.5 | |
No precipitation, precipitation probability 0%. | 0.25 | |
Wind intensity (WI) | Wind intensity > 40 km/h. | 256 |
20 km/h < wind intensity ≤ 40 km/h. | 2 | |
10 km/h < wind intensity ≤ 20 km/h. | 1 | |
0 km/h < wind intensity ≤ 10 km/h. | 0.5 | |
No wind. | 0.25 | |
Object fall * (OF) | Fall of an object with sufficient energy to cause death or total permanent disability. | 48 |
Fall from an object with sufficient energy to cause severe injury with total temporary incapacity or partial but low-percentage permanent incapacity. | 24 | |
Fall of an object with sufficient energy to cause minor injuries with partial temporary incapacity but low severity. | 8 | |
Fall of an object with sufficient energy to cause minor injuries without any form of disability. | 6 | |
Fall of an object without sufficient energy to cause injury to the worker. | 3 | |
Terrain slope (TS) | Strongly sloping surface (30–45%). | 4 |
Moderate sloping surface (8–30%). | 2 | |
Smoothly sloping surface (3–8%). | 1 | |
Flat surface (0–3%). | 0.5 | |
Flat surface 0%. | 0.25 | |
Obstacles Obst | Surface with obstacles that are impossible to cross on foot. | 4 |
Surface with obstacles that are difficult to cross. | 2 | |
Surface with obstacles that are easy to cross and/or remove. | 1 | |
Surface with obstacles that are very easy to cross. | 0.5 | |
Unobstructed surface. | 0.25 | |
Wild animals (WA) | Contact resulting in injury or damage by large mammals (e.g., Panthera onca), snakes with high venom inoculation (e.g., Micrurus altirostris), venomous spiders (e.g., Loxosceles amazonica) and swarms of bees. | 4 |
Contact resulting in injury or damage by mid-sized mammals in flocks (e.g., Pecari tajacu), snakes with moderate venom inoculation (e.g., Bothrops jararaca or Lachesis muta) and scorpions. | 2 | |
Contact resulting in injury or damage by small mammals, snakes with low venom inoculation (e.g., Helicops angulatus). | 1 | |
Contact resulting in injury or damage by isolated insects (e.g., Paraponera clavata). | 0.5 | |
There is no contact with animals. | 0.25 |
Severity | Bands |
---|---|
Extreme | S ≥ 192 |
High | 96 ≤ S < 192 |
Medium-high | 48 ≤ S < 96 |
Medium-low | 24 ≤ S < 48 |
Low | S < 24 |
Exposure—Ex—(Description) | Score | |
---|---|---|
Extent of Impact Ei | >5 workers. | 5 |
4 workers. | 4.9 | |
3 workers. | 4.7 | |
2 workers. | 4.4 | |
1 worker. | 4 | |
Frequency of Exposure Fe | Continuous (every day of the week). | 5 |
Usual (≥3 days/week). | 4.5 | |
Partial (<3 days/week). | 4 | |
Sporadic (≤1 day/week). | 3.5 | |
Punctual (≤1 h/week). | 3 |
Likelihood | Bands |
---|---|
Extreme | E > 22 |
High | 19.8 < E ≤ 22 |
Medium-high | 17.6 < E ≤ 19.8 |
Medium-low | 15.4 < E ≤ 17.6 |
Low | E ≤ 15.4 |
Performance of Prevention Systems (Description) | Score |
---|---|
There is no occupational health and safety management system or any control of occupational health and safety. | 0.50 |
There is no occupational health and safety management system in place, and there is an occupational health and safety control system with visible flaws in its operation. | 0.75 |
There is no occupational health and safety management system in place, but there is an occupational health and safety control system with evidence of operational practices. | 1.00 |
There is an occupational health and safety management system, but there is no objective evidence of a continuous improvement culture. | 1.50 |
There is a continuous improvement culture linked to an occupational health and safety management system with evidence of its functionality. | 2.00 |
Risk Level 5 (RL5) | RL5 > 3800 |
Risk Level 4 (RL4) | 1900 < RL4 ≤ 3800 |
Risk Level 3 (RL3) | 950 < RL3 ≤ 1900 |
Risk Level 2 (RL2) | 475 < RL2 ≤ 950 |
Risk Level 1 (RL1) | RL1 ≤ 475 |
Priority | Risk Level | Description |
---|---|---|
V | RL5 > 3800 | Unacceptable conditions. The activity/task should be suspended immediately. The activity/task should only be restarted after a detailed risk assessment and the definition and implementation of corrective actions and control measures. |
IV | 1900 < RL4 ≤ 3800 | Critical conditions which require urgent correction. A detailed risk assessment and the short-term definition and implementation of corrective actions and control measures are required. |
III | 950 < RL3 ≤ 1900 | Conditions to improve. Preventive and control measures should be taken/revised. |
II | 475 < RL2 ≤ 950 | Conditions subject to surveillance. Possible improvements should be considered. |
I | RL1 ≤ 475 | Conditions in which no immediate intervention is required. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, K.; Meira Castro, A.C.; Baptista, J.S. Occupational Risk Assessment in Native Rainforest Management (MIARforest)—Parameters Definition and Validation. Sustainability 2023, 15, 6794. https://doi.org/10.3390/su15086794
Lima K, Meira Castro AC, Baptista JS. Occupational Risk Assessment in Native Rainforest Management (MIARforest)—Parameters Definition and Validation. Sustainability. 2023; 15(8):6794. https://doi.org/10.3390/su15086794
Chicago/Turabian StyleLima, Killian, Ana C. Meira Castro, and João Santos Baptista. 2023. "Occupational Risk Assessment in Native Rainforest Management (MIARforest)—Parameters Definition and Validation" Sustainability 15, no. 8: 6794. https://doi.org/10.3390/su15086794
APA StyleLima, K., Meira Castro, A. C., & Baptista, J. S. (2023). Occupational Risk Assessment in Native Rainforest Management (MIARforest)—Parameters Definition and Validation. Sustainability, 15(8), 6794. https://doi.org/10.3390/su15086794